mirror of
git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
synced 2025-04-13 09:59:31 +00:00

__split_huge_pmd_locked() can be called for a present THP, devmap or
(non-present) migration entry. It calls pmdp_invalidate() unconditionally
on the pmdp and only determines if it is present or not based on the
returned old pmd. This is a problem for the migration entry case because
pmd_mkinvalid(), called by pmdp_invalidate() must only be called for a
present pmd.
On arm64 at least, pmd_mkinvalid() will mark the pmd such that any future
call to pmd_present() will return true. And therefore any lockless
pgtable walker could see the migration entry pmd in this state and start
interpretting the fields as if it were present, leading to BadThings (TM).
GUP-fast appears to be one such lockless pgtable walker.
x86 does not suffer the above problem, but instead pmd_mkinvalid() will
corrupt the offset field of the swap entry within the swap pte. See link
below for discussion of that problem.
Fix all of this by only calling pmdp_invalidate() for a present pmd. And
for good measure let's add a warning to all implementations of
pmdp_invalidate[_ad](). I've manually reviewed all other
pmdp_invalidate[_ad]() call sites and believe all others to be conformant.
This is a theoretical bug found during code review. I don't have any test
case to trigger it in practice.
Link: https://lkml.kernel.org/r/20240501143310.1381675-1-ryan.roberts@arm.com
Link: https://lore.kernel.org/all/0dd7827a-6334-439a-8fd0-43c98e6af22b@arm.com/
Fixes: 84c3fc4e9c
("mm: thp: check pmd migration entry in common path")
Signed-off-by: Ryan Roberts <ryan.roberts@arm.com>
Reviewed-by: Zi Yan <ziy@nvidia.com>
Reviewed-by: Anshuman Khandual <anshuman.khandual@arm.com>
Acked-by: David Hildenbrand <david@redhat.com>
Cc: Andreas Larsson <andreas@gaisler.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Aneesh Kumar K.V <aneesh.kumar@kernel.org>
Cc: Borislav Petkov (AMD) <bp@alien8.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christian Borntraeger <borntraeger@linux.ibm.com>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Naveen N. Rao <naveen.n.rao@linux.ibm.com>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Sven Schnelle <svens@linux.ibm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Deacon <will@kernel.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
655 lines
17 KiB
C
655 lines
17 KiB
C
// SPDX-License-Identifier: GPL-2.0-or-later
|
|
/*
|
|
* Copyright 2015-2016, Aneesh Kumar K.V, IBM Corporation.
|
|
*/
|
|
|
|
#include <linux/sched.h>
|
|
#include <linux/mm_types.h>
|
|
#include <linux/memblock.h>
|
|
#include <linux/memremap.h>
|
|
#include <linux/pkeys.h>
|
|
#include <linux/debugfs.h>
|
|
#include <linux/proc_fs.h>
|
|
#include <misc/cxl-base.h>
|
|
|
|
#include <asm/pgalloc.h>
|
|
#include <asm/tlb.h>
|
|
#include <asm/trace.h>
|
|
#include <asm/powernv.h>
|
|
#include <asm/firmware.h>
|
|
#include <asm/ultravisor.h>
|
|
#include <asm/kexec.h>
|
|
|
|
#include <mm/mmu_decl.h>
|
|
#include <trace/events/thp.h>
|
|
|
|
#include "internal.h"
|
|
|
|
struct mmu_psize_def mmu_psize_defs[MMU_PAGE_COUNT];
|
|
EXPORT_SYMBOL_GPL(mmu_psize_defs);
|
|
|
|
#ifdef CONFIG_SPARSEMEM_VMEMMAP
|
|
int mmu_vmemmap_psize = MMU_PAGE_4K;
|
|
#endif
|
|
|
|
unsigned long __pmd_frag_nr;
|
|
EXPORT_SYMBOL(__pmd_frag_nr);
|
|
unsigned long __pmd_frag_size_shift;
|
|
EXPORT_SYMBOL(__pmd_frag_size_shift);
|
|
|
|
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
|
|
/*
|
|
* This is called when relaxing access to a hugepage. It's also called in the page
|
|
* fault path when we don't hit any of the major fault cases, ie, a minor
|
|
* update of _PAGE_ACCESSED, _PAGE_DIRTY, etc... The generic code will have
|
|
* handled those two for us, we additionally deal with missing execute
|
|
* permission here on some processors
|
|
*/
|
|
int pmdp_set_access_flags(struct vm_area_struct *vma, unsigned long address,
|
|
pmd_t *pmdp, pmd_t entry, int dirty)
|
|
{
|
|
int changed;
|
|
#ifdef CONFIG_DEBUG_VM
|
|
WARN_ON(!pmd_trans_huge(*pmdp) && !pmd_devmap(*pmdp));
|
|
assert_spin_locked(pmd_lockptr(vma->vm_mm, pmdp));
|
|
#endif
|
|
changed = !pmd_same(*(pmdp), entry);
|
|
if (changed) {
|
|
/*
|
|
* We can use MMU_PAGE_2M here, because only radix
|
|
* path look at the psize.
|
|
*/
|
|
__ptep_set_access_flags(vma, pmdp_ptep(pmdp),
|
|
pmd_pte(entry), address, MMU_PAGE_2M);
|
|
}
|
|
return changed;
|
|
}
|
|
|
|
int pudp_set_access_flags(struct vm_area_struct *vma, unsigned long address,
|
|
pud_t *pudp, pud_t entry, int dirty)
|
|
{
|
|
int changed;
|
|
#ifdef CONFIG_DEBUG_VM
|
|
WARN_ON(!pud_devmap(*pudp));
|
|
assert_spin_locked(pud_lockptr(vma->vm_mm, pudp));
|
|
#endif
|
|
changed = !pud_same(*(pudp), entry);
|
|
if (changed) {
|
|
/*
|
|
* We can use MMU_PAGE_1G here, because only radix
|
|
* path look at the psize.
|
|
*/
|
|
__ptep_set_access_flags(vma, pudp_ptep(pudp),
|
|
pud_pte(entry), address, MMU_PAGE_1G);
|
|
}
|
|
return changed;
|
|
}
|
|
|
|
|
|
int pmdp_test_and_clear_young(struct vm_area_struct *vma,
|
|
unsigned long address, pmd_t *pmdp)
|
|
{
|
|
return __pmdp_test_and_clear_young(vma->vm_mm, address, pmdp);
|
|
}
|
|
|
|
int pudp_test_and_clear_young(struct vm_area_struct *vma,
|
|
unsigned long address, pud_t *pudp)
|
|
{
|
|
return __pudp_test_and_clear_young(vma->vm_mm, address, pudp);
|
|
}
|
|
|
|
/*
|
|
* set a new huge pmd. We should not be called for updating
|
|
* an existing pmd entry. That should go via pmd_hugepage_update.
|
|
*/
|
|
void set_pmd_at(struct mm_struct *mm, unsigned long addr,
|
|
pmd_t *pmdp, pmd_t pmd)
|
|
{
|
|
#ifdef CONFIG_DEBUG_VM
|
|
/*
|
|
* Make sure hardware valid bit is not set. We don't do
|
|
* tlb flush for this update.
|
|
*/
|
|
|
|
WARN_ON(pte_hw_valid(pmd_pte(*pmdp)) && !pte_protnone(pmd_pte(*pmdp)));
|
|
assert_spin_locked(pmd_lockptr(mm, pmdp));
|
|
WARN_ON(!(pmd_leaf(pmd)));
|
|
#endif
|
|
trace_hugepage_set_pmd(addr, pmd_val(pmd));
|
|
return set_pte_at(mm, addr, pmdp_ptep(pmdp), pmd_pte(pmd));
|
|
}
|
|
|
|
void set_pud_at(struct mm_struct *mm, unsigned long addr,
|
|
pud_t *pudp, pud_t pud)
|
|
{
|
|
#ifdef CONFIG_DEBUG_VM
|
|
/*
|
|
* Make sure hardware valid bit is not set. We don't do
|
|
* tlb flush for this update.
|
|
*/
|
|
|
|
WARN_ON(pte_hw_valid(pud_pte(*pudp)));
|
|
assert_spin_locked(pud_lockptr(mm, pudp));
|
|
WARN_ON(!(pud_leaf(pud)));
|
|
#endif
|
|
trace_hugepage_set_pud(addr, pud_val(pud));
|
|
return set_pte_at(mm, addr, pudp_ptep(pudp), pud_pte(pud));
|
|
}
|
|
|
|
static void do_serialize(void *arg)
|
|
{
|
|
/* We've taken the IPI, so try to trim the mask while here */
|
|
if (radix_enabled()) {
|
|
struct mm_struct *mm = arg;
|
|
exit_lazy_flush_tlb(mm, false);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Serialize against __find_linux_pte() which does lock-less
|
|
* lookup in page tables with local interrupts disabled. For huge pages
|
|
* it casts pmd_t to pte_t. Since format of pte_t is different from
|
|
* pmd_t we want to prevent transit from pmd pointing to page table
|
|
* to pmd pointing to huge page (and back) while interrupts are disabled.
|
|
* We clear pmd to possibly replace it with page table pointer in
|
|
* different code paths. So make sure we wait for the parallel
|
|
* __find_linux_pte() to finish.
|
|
*/
|
|
void serialize_against_pte_lookup(struct mm_struct *mm)
|
|
{
|
|
smp_mb();
|
|
smp_call_function_many(mm_cpumask(mm), do_serialize, mm, 1);
|
|
}
|
|
|
|
/*
|
|
* We use this to invalidate a pmdp entry before switching from a
|
|
* hugepte to regular pmd entry.
|
|
*/
|
|
pmd_t pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
|
|
pmd_t *pmdp)
|
|
{
|
|
unsigned long old_pmd;
|
|
|
|
VM_WARN_ON_ONCE(!pmd_present(*pmdp));
|
|
old_pmd = pmd_hugepage_update(vma->vm_mm, address, pmdp, _PAGE_PRESENT, _PAGE_INVALID);
|
|
flush_pmd_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
|
|
return __pmd(old_pmd);
|
|
}
|
|
|
|
pmd_t pmdp_huge_get_and_clear_full(struct vm_area_struct *vma,
|
|
unsigned long addr, pmd_t *pmdp, int full)
|
|
{
|
|
pmd_t pmd;
|
|
VM_BUG_ON(addr & ~HPAGE_PMD_MASK);
|
|
VM_BUG_ON((pmd_present(*pmdp) && !pmd_trans_huge(*pmdp) &&
|
|
!pmd_devmap(*pmdp)) || !pmd_present(*pmdp));
|
|
pmd = pmdp_huge_get_and_clear(vma->vm_mm, addr, pmdp);
|
|
/*
|
|
* if it not a fullmm flush, then we can possibly end up converting
|
|
* this PMD pte entry to a regular level 0 PTE by a parallel page fault.
|
|
* Make sure we flush the tlb in this case.
|
|
*/
|
|
if (!full)
|
|
flush_pmd_tlb_range(vma, addr, addr + HPAGE_PMD_SIZE);
|
|
return pmd;
|
|
}
|
|
|
|
pud_t pudp_huge_get_and_clear_full(struct vm_area_struct *vma,
|
|
unsigned long addr, pud_t *pudp, int full)
|
|
{
|
|
pud_t pud;
|
|
|
|
VM_BUG_ON(addr & ~HPAGE_PMD_MASK);
|
|
VM_BUG_ON((pud_present(*pudp) && !pud_devmap(*pudp)) ||
|
|
!pud_present(*pudp));
|
|
pud = pudp_huge_get_and_clear(vma->vm_mm, addr, pudp);
|
|
/*
|
|
* if it not a fullmm flush, then we can possibly end up converting
|
|
* this PMD pte entry to a regular level 0 PTE by a parallel page fault.
|
|
* Make sure we flush the tlb in this case.
|
|
*/
|
|
if (!full)
|
|
flush_pud_tlb_range(vma, addr, addr + HPAGE_PUD_SIZE);
|
|
return pud;
|
|
}
|
|
|
|
static pmd_t pmd_set_protbits(pmd_t pmd, pgprot_t pgprot)
|
|
{
|
|
return __pmd(pmd_val(pmd) | pgprot_val(pgprot));
|
|
}
|
|
|
|
static pud_t pud_set_protbits(pud_t pud, pgprot_t pgprot)
|
|
{
|
|
return __pud(pud_val(pud) | pgprot_val(pgprot));
|
|
}
|
|
|
|
/*
|
|
* At some point we should be able to get rid of
|
|
* pmd_mkhuge() and mk_huge_pmd() when we update all the
|
|
* other archs to mark the pmd huge in pfn_pmd()
|
|
*/
|
|
pmd_t pfn_pmd(unsigned long pfn, pgprot_t pgprot)
|
|
{
|
|
unsigned long pmdv;
|
|
|
|
pmdv = (pfn << PAGE_SHIFT) & PTE_RPN_MASK;
|
|
|
|
return __pmd_mkhuge(pmd_set_protbits(__pmd(pmdv), pgprot));
|
|
}
|
|
|
|
pud_t pfn_pud(unsigned long pfn, pgprot_t pgprot)
|
|
{
|
|
unsigned long pudv;
|
|
|
|
pudv = (pfn << PAGE_SHIFT) & PTE_RPN_MASK;
|
|
|
|
return __pud_mkhuge(pud_set_protbits(__pud(pudv), pgprot));
|
|
}
|
|
|
|
pmd_t mk_pmd(struct page *page, pgprot_t pgprot)
|
|
{
|
|
return pfn_pmd(page_to_pfn(page), pgprot);
|
|
}
|
|
|
|
pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
|
|
{
|
|
unsigned long pmdv;
|
|
|
|
pmdv = pmd_val(pmd);
|
|
pmdv &= _HPAGE_CHG_MASK;
|
|
return pmd_set_protbits(__pmd(pmdv), newprot);
|
|
}
|
|
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
|
|
|
|
/* For use by kexec, called with MMU off */
|
|
notrace void mmu_cleanup_all(void)
|
|
{
|
|
if (radix_enabled())
|
|
radix__mmu_cleanup_all();
|
|
else if (mmu_hash_ops.hpte_clear_all)
|
|
mmu_hash_ops.hpte_clear_all();
|
|
|
|
reset_sprs();
|
|
}
|
|
|
|
#ifdef CONFIG_MEMORY_HOTPLUG
|
|
int __meminit create_section_mapping(unsigned long start, unsigned long end,
|
|
int nid, pgprot_t prot)
|
|
{
|
|
if (radix_enabled())
|
|
return radix__create_section_mapping(start, end, nid, prot);
|
|
|
|
return hash__create_section_mapping(start, end, nid, prot);
|
|
}
|
|
|
|
int __meminit remove_section_mapping(unsigned long start, unsigned long end)
|
|
{
|
|
if (radix_enabled())
|
|
return radix__remove_section_mapping(start, end);
|
|
|
|
return hash__remove_section_mapping(start, end);
|
|
}
|
|
#endif /* CONFIG_MEMORY_HOTPLUG */
|
|
|
|
void __init mmu_partition_table_init(void)
|
|
{
|
|
unsigned long patb_size = 1UL << PATB_SIZE_SHIFT;
|
|
unsigned long ptcr;
|
|
|
|
/* Initialize the Partition Table with no entries */
|
|
partition_tb = memblock_alloc(patb_size, patb_size);
|
|
if (!partition_tb)
|
|
panic("%s: Failed to allocate %lu bytes align=0x%lx\n",
|
|
__func__, patb_size, patb_size);
|
|
|
|
ptcr = __pa(partition_tb) | (PATB_SIZE_SHIFT - 12);
|
|
set_ptcr_when_no_uv(ptcr);
|
|
powernv_set_nmmu_ptcr(ptcr);
|
|
}
|
|
|
|
static void flush_partition(unsigned int lpid, bool radix)
|
|
{
|
|
if (radix) {
|
|
radix__flush_all_lpid(lpid);
|
|
radix__flush_all_lpid_guest(lpid);
|
|
} else {
|
|
asm volatile("ptesync" : : : "memory");
|
|
asm volatile(PPC_TLBIE_5(%0,%1,2,0,0) : :
|
|
"r" (TLBIEL_INVAL_SET_LPID), "r" (lpid));
|
|
/* do we need fixup here ?*/
|
|
asm volatile("eieio; tlbsync; ptesync" : : : "memory");
|
|
trace_tlbie(lpid, 0, TLBIEL_INVAL_SET_LPID, lpid, 2, 0, 0);
|
|
}
|
|
}
|
|
|
|
void mmu_partition_table_set_entry(unsigned int lpid, unsigned long dw0,
|
|
unsigned long dw1, bool flush)
|
|
{
|
|
unsigned long old = be64_to_cpu(partition_tb[lpid].patb0);
|
|
|
|
/*
|
|
* When ultravisor is enabled, the partition table is stored in secure
|
|
* memory and can only be accessed doing an ultravisor call. However, we
|
|
* maintain a copy of the partition table in normal memory to allow Nest
|
|
* MMU translations to occur (for normal VMs).
|
|
*
|
|
* Therefore, here we always update partition_tb, regardless of whether
|
|
* we are running under an ultravisor or not.
|
|
*/
|
|
partition_tb[lpid].patb0 = cpu_to_be64(dw0);
|
|
partition_tb[lpid].patb1 = cpu_to_be64(dw1);
|
|
|
|
/*
|
|
* If ultravisor is enabled, we do an ultravisor call to register the
|
|
* partition table entry (PATE), which also do a global flush of TLBs
|
|
* and partition table caches for the lpid. Otherwise, just do the
|
|
* flush. The type of flush (hash or radix) depends on what the previous
|
|
* use of the partition ID was, not the new use.
|
|
*/
|
|
if (firmware_has_feature(FW_FEATURE_ULTRAVISOR)) {
|
|
uv_register_pate(lpid, dw0, dw1);
|
|
pr_info("PATE registered by ultravisor: dw0 = 0x%lx, dw1 = 0x%lx\n",
|
|
dw0, dw1);
|
|
} else if (flush) {
|
|
/*
|
|
* Boot does not need to flush, because MMU is off and each
|
|
* CPU does a tlbiel_all() before switching them on, which
|
|
* flushes everything.
|
|
*/
|
|
flush_partition(lpid, (old & PATB_HR));
|
|
}
|
|
}
|
|
EXPORT_SYMBOL_GPL(mmu_partition_table_set_entry);
|
|
|
|
static pmd_t *get_pmd_from_cache(struct mm_struct *mm)
|
|
{
|
|
void *pmd_frag, *ret;
|
|
|
|
if (PMD_FRAG_NR == 1)
|
|
return NULL;
|
|
|
|
spin_lock(&mm->page_table_lock);
|
|
ret = mm->context.pmd_frag;
|
|
if (ret) {
|
|
pmd_frag = ret + PMD_FRAG_SIZE;
|
|
/*
|
|
* If we have taken up all the fragments mark PTE page NULL
|
|
*/
|
|
if (((unsigned long)pmd_frag & ~PAGE_MASK) == 0)
|
|
pmd_frag = NULL;
|
|
mm->context.pmd_frag = pmd_frag;
|
|
}
|
|
spin_unlock(&mm->page_table_lock);
|
|
return (pmd_t *)ret;
|
|
}
|
|
|
|
static pmd_t *__alloc_for_pmdcache(struct mm_struct *mm)
|
|
{
|
|
void *ret = NULL;
|
|
struct ptdesc *ptdesc;
|
|
gfp_t gfp = GFP_KERNEL_ACCOUNT | __GFP_ZERO;
|
|
|
|
if (mm == &init_mm)
|
|
gfp &= ~__GFP_ACCOUNT;
|
|
ptdesc = pagetable_alloc(gfp, 0);
|
|
if (!ptdesc)
|
|
return NULL;
|
|
if (!pagetable_pmd_ctor(ptdesc)) {
|
|
pagetable_free(ptdesc);
|
|
return NULL;
|
|
}
|
|
|
|
atomic_set(&ptdesc->pt_frag_refcount, 1);
|
|
|
|
ret = ptdesc_address(ptdesc);
|
|
/*
|
|
* if we support only one fragment just return the
|
|
* allocated page.
|
|
*/
|
|
if (PMD_FRAG_NR == 1)
|
|
return ret;
|
|
|
|
spin_lock(&mm->page_table_lock);
|
|
/*
|
|
* If we find ptdesc_page set, we return
|
|
* the allocated page with single fragment
|
|
* count.
|
|
*/
|
|
if (likely(!mm->context.pmd_frag)) {
|
|
atomic_set(&ptdesc->pt_frag_refcount, PMD_FRAG_NR);
|
|
mm->context.pmd_frag = ret + PMD_FRAG_SIZE;
|
|
}
|
|
spin_unlock(&mm->page_table_lock);
|
|
|
|
return (pmd_t *)ret;
|
|
}
|
|
|
|
pmd_t *pmd_fragment_alloc(struct mm_struct *mm, unsigned long vmaddr)
|
|
{
|
|
pmd_t *pmd;
|
|
|
|
pmd = get_pmd_from_cache(mm);
|
|
if (pmd)
|
|
return pmd;
|
|
|
|
return __alloc_for_pmdcache(mm);
|
|
}
|
|
|
|
void pmd_fragment_free(unsigned long *pmd)
|
|
{
|
|
struct ptdesc *ptdesc = virt_to_ptdesc(pmd);
|
|
|
|
if (pagetable_is_reserved(ptdesc))
|
|
return free_reserved_ptdesc(ptdesc);
|
|
|
|
BUG_ON(atomic_read(&ptdesc->pt_frag_refcount) <= 0);
|
|
if (atomic_dec_and_test(&ptdesc->pt_frag_refcount)) {
|
|
pagetable_pmd_dtor(ptdesc);
|
|
pagetable_free(ptdesc);
|
|
}
|
|
}
|
|
|
|
static inline void pgtable_free(void *table, int index)
|
|
{
|
|
switch (index) {
|
|
case PTE_INDEX:
|
|
pte_fragment_free(table, 0);
|
|
break;
|
|
case PMD_INDEX:
|
|
pmd_fragment_free(table);
|
|
break;
|
|
case PUD_INDEX:
|
|
__pud_free(table);
|
|
break;
|
|
#if defined(CONFIG_PPC_4K_PAGES) && defined(CONFIG_HUGETLB_PAGE)
|
|
/* 16M hugepd directory at pud level */
|
|
case HTLB_16M_INDEX:
|
|
BUILD_BUG_ON(H_16M_CACHE_INDEX <= 0);
|
|
kmem_cache_free(PGT_CACHE(H_16M_CACHE_INDEX), table);
|
|
break;
|
|
/* 16G hugepd directory at the pgd level */
|
|
case HTLB_16G_INDEX:
|
|
BUILD_BUG_ON(H_16G_CACHE_INDEX <= 0);
|
|
kmem_cache_free(PGT_CACHE(H_16G_CACHE_INDEX), table);
|
|
break;
|
|
#endif
|
|
/* We don't free pgd table via RCU callback */
|
|
default:
|
|
BUG();
|
|
}
|
|
}
|
|
|
|
void pgtable_free_tlb(struct mmu_gather *tlb, void *table, int index)
|
|
{
|
|
unsigned long pgf = (unsigned long)table;
|
|
|
|
BUG_ON(index > MAX_PGTABLE_INDEX_SIZE);
|
|
pgf |= index;
|
|
tlb_remove_table(tlb, (void *)pgf);
|
|
}
|
|
|
|
void __tlb_remove_table(void *_table)
|
|
{
|
|
void *table = (void *)((unsigned long)_table & ~MAX_PGTABLE_INDEX_SIZE);
|
|
unsigned int index = (unsigned long)_table & MAX_PGTABLE_INDEX_SIZE;
|
|
|
|
return pgtable_free(table, index);
|
|
}
|
|
|
|
#ifdef CONFIG_PROC_FS
|
|
atomic_long_t direct_pages_count[MMU_PAGE_COUNT];
|
|
|
|
void arch_report_meminfo(struct seq_file *m)
|
|
{
|
|
/*
|
|
* Hash maps the memory with one size mmu_linear_psize.
|
|
* So don't bother to print these on hash
|
|
*/
|
|
if (!radix_enabled())
|
|
return;
|
|
seq_printf(m, "DirectMap4k: %8lu kB\n",
|
|
atomic_long_read(&direct_pages_count[MMU_PAGE_4K]) << 2);
|
|
seq_printf(m, "DirectMap64k: %8lu kB\n",
|
|
atomic_long_read(&direct_pages_count[MMU_PAGE_64K]) << 6);
|
|
seq_printf(m, "DirectMap2M: %8lu kB\n",
|
|
atomic_long_read(&direct_pages_count[MMU_PAGE_2M]) << 11);
|
|
seq_printf(m, "DirectMap1G: %8lu kB\n",
|
|
atomic_long_read(&direct_pages_count[MMU_PAGE_1G]) << 20);
|
|
}
|
|
#endif /* CONFIG_PROC_FS */
|
|
|
|
pte_t ptep_modify_prot_start(struct vm_area_struct *vma, unsigned long addr,
|
|
pte_t *ptep)
|
|
{
|
|
unsigned long pte_val;
|
|
|
|
/*
|
|
* Clear the _PAGE_PRESENT so that no hardware parallel update is
|
|
* possible. Also keep the pte_present true so that we don't take
|
|
* wrong fault.
|
|
*/
|
|
pte_val = pte_update(vma->vm_mm, addr, ptep, _PAGE_PRESENT, _PAGE_INVALID, 0);
|
|
|
|
return __pte(pte_val);
|
|
|
|
}
|
|
|
|
void ptep_modify_prot_commit(struct vm_area_struct *vma, unsigned long addr,
|
|
pte_t *ptep, pte_t old_pte, pte_t pte)
|
|
{
|
|
if (radix_enabled())
|
|
return radix__ptep_modify_prot_commit(vma, addr,
|
|
ptep, old_pte, pte);
|
|
set_pte_at(vma->vm_mm, addr, ptep, pte);
|
|
}
|
|
|
|
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
|
|
/*
|
|
* For hash translation mode, we use the deposited table to store hash slot
|
|
* information and they are stored at PTRS_PER_PMD offset from related pmd
|
|
* location. Hence a pmd move requires deposit and withdraw.
|
|
*
|
|
* For radix translation with split pmd ptl, we store the deposited table in the
|
|
* pmd page. Hence if we have different pmd page we need to withdraw during pmd
|
|
* move.
|
|
*
|
|
* With hash we use deposited table always irrespective of anon or not.
|
|
* With radix we use deposited table only for anonymous mapping.
|
|
*/
|
|
int pmd_move_must_withdraw(struct spinlock *new_pmd_ptl,
|
|
struct spinlock *old_pmd_ptl,
|
|
struct vm_area_struct *vma)
|
|
{
|
|
if (radix_enabled())
|
|
return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
|
|
|
|
return true;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Does the CPU support tlbie?
|
|
*/
|
|
bool tlbie_capable __read_mostly = true;
|
|
EXPORT_SYMBOL(tlbie_capable);
|
|
|
|
/*
|
|
* Should tlbie be used for management of CPU TLBs, for kernel and process
|
|
* address spaces? tlbie may still be used for nMMU accelerators, and for KVM
|
|
* guest address spaces.
|
|
*/
|
|
bool tlbie_enabled __read_mostly = true;
|
|
|
|
static int __init setup_disable_tlbie(char *str)
|
|
{
|
|
if (!radix_enabled()) {
|
|
pr_err("disable_tlbie: Unable to disable TLBIE with Hash MMU.\n");
|
|
return 1;
|
|
}
|
|
|
|
tlbie_capable = false;
|
|
tlbie_enabled = false;
|
|
|
|
return 1;
|
|
}
|
|
__setup("disable_tlbie", setup_disable_tlbie);
|
|
|
|
static int __init pgtable_debugfs_setup(void)
|
|
{
|
|
if (!tlbie_capable)
|
|
return 0;
|
|
|
|
/*
|
|
* There is no locking vs tlb flushing when changing this value.
|
|
* The tlb flushers will see one value or another, and use either
|
|
* tlbie or tlbiel with IPIs. In both cases the TLBs will be
|
|
* invalidated as expected.
|
|
*/
|
|
debugfs_create_bool("tlbie_enabled", 0600,
|
|
arch_debugfs_dir,
|
|
&tlbie_enabled);
|
|
|
|
return 0;
|
|
}
|
|
arch_initcall(pgtable_debugfs_setup);
|
|
|
|
#if defined(CONFIG_ZONE_DEVICE) && defined(CONFIG_ARCH_HAS_MEMREMAP_COMPAT_ALIGN)
|
|
/*
|
|
* Override the generic version in mm/memremap.c.
|
|
*
|
|
* With hash translation, the direct-map range is mapped with just one
|
|
* page size selected by htab_init_page_sizes(). Consult
|
|
* mmu_psize_defs[] to determine the minimum page size alignment.
|
|
*/
|
|
unsigned long memremap_compat_align(void)
|
|
{
|
|
if (!radix_enabled()) {
|
|
unsigned int shift = mmu_psize_defs[mmu_linear_psize].shift;
|
|
return max(SUBSECTION_SIZE, 1UL << shift);
|
|
}
|
|
|
|
return SUBSECTION_SIZE;
|
|
}
|
|
EXPORT_SYMBOL_GPL(memremap_compat_align);
|
|
#endif
|
|
|
|
pgprot_t vm_get_page_prot(unsigned long vm_flags)
|
|
{
|
|
unsigned long prot;
|
|
|
|
/* Radix supports execute-only, but protection_map maps X -> RX */
|
|
if (!radix_enabled() && ((vm_flags & VM_ACCESS_FLAGS) == VM_EXEC))
|
|
vm_flags |= VM_READ;
|
|
|
|
prot = pgprot_val(protection_map[vm_flags & (VM_ACCESS_FLAGS | VM_SHARED)]);
|
|
|
|
if (vm_flags & VM_SAO)
|
|
prot |= _PAGE_SAO;
|
|
|
|
#ifdef CONFIG_PPC_MEM_KEYS
|
|
prot |= vmflag_to_pte_pkey_bits(vm_flags);
|
|
#endif
|
|
|
|
return __pgprot(prot);
|
|
}
|
|
EXPORT_SYMBOL(vm_get_page_prot);
|