mirror of
				git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
				synced 2025-09-18 22:14:16 +00:00 
			
		
		
		
	 c376222960
			
		
	
	
		c376222960
		
	
	
	
	
		
			
			Replace appropriate pairs of "kmem_cache_alloc()" + "memset(0)" with the corresponding "kmem_cache_zalloc()" call. Signed-off-by: Robert P. J. Day <rpjday@mindspring.com> Cc: "Luck, Tony" <tony.luck@intel.com> Cc: Andi Kleen <ak@muc.de> Cc: Roland McGrath <roland@redhat.com> Cc: James Bottomley <James.Bottomley@steeleye.com> Cc: Greg KH <greg@kroah.com> Acked-by: Joel Becker <Joel.Becker@oracle.com> Cc: Steven Whitehouse <swhiteho@redhat.com> Cc: Jan Kara <jack@ucw.cz> Cc: Michael Halcrow <mhalcrow@us.ibm.com> Cc: "David S. Miller" <davem@davemloft.net> Cc: Stephen Smalley <sds@tycho.nsa.gov> Cc: James Morris <jmorris@namei.org> Cc: Chris Wright <chrisw@sous-sol.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
		
			
				
	
	
		
			1769 lines
		
	
	
	
		
			45 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1769 lines
		
	
	
	
		
			45 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  *	An async IO implementation for Linux
 | |
|  *	Written by Benjamin LaHaise <bcrl@kvack.org>
 | |
|  *
 | |
|  *	Implements an efficient asynchronous io interface.
 | |
|  *
 | |
|  *	Copyright 2000, 2001, 2002 Red Hat, Inc.  All Rights Reserved.
 | |
|  *
 | |
|  *	See ../COPYING for licensing terms.
 | |
|  */
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/errno.h>
 | |
| #include <linux/time.h>
 | |
| #include <linux/aio_abi.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/syscalls.h>
 | |
| #include <linux/uio.h>
 | |
| 
 | |
| #define DEBUG 0
 | |
| 
 | |
| #include <linux/sched.h>
 | |
| #include <linux/fs.h>
 | |
| #include <linux/file.h>
 | |
| #include <linux/mm.h>
 | |
| #include <linux/mman.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/timer.h>
 | |
| #include <linux/aio.h>
 | |
| #include <linux/highmem.h>
 | |
| #include <linux/workqueue.h>
 | |
| #include <linux/security.h>
 | |
| 
 | |
| #include <asm/kmap_types.h>
 | |
| #include <asm/uaccess.h>
 | |
| #include <asm/mmu_context.h>
 | |
| 
 | |
| #if DEBUG > 1
 | |
| #define dprintk		printk
 | |
| #else
 | |
| #define dprintk(x...)	do { ; } while (0)
 | |
| #endif
 | |
| 
 | |
| /*------ sysctl variables----*/
 | |
| static DEFINE_SPINLOCK(aio_nr_lock);
 | |
| unsigned long aio_nr;		/* current system wide number of aio requests */
 | |
| unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
 | |
| /*----end sysctl variables---*/
 | |
| 
 | |
| static struct kmem_cache	*kiocb_cachep;
 | |
| static struct kmem_cache	*kioctx_cachep;
 | |
| 
 | |
| static struct workqueue_struct *aio_wq;
 | |
| 
 | |
| /* Used for rare fput completion. */
 | |
| static void aio_fput_routine(struct work_struct *);
 | |
| static DECLARE_WORK(fput_work, aio_fput_routine);
 | |
| 
 | |
| static DEFINE_SPINLOCK(fput_lock);
 | |
| static LIST_HEAD(fput_head);
 | |
| 
 | |
| static void aio_kick_handler(struct work_struct *);
 | |
| static void aio_queue_work(struct kioctx *);
 | |
| 
 | |
| /* aio_setup
 | |
|  *	Creates the slab caches used by the aio routines, panic on
 | |
|  *	failure as this is done early during the boot sequence.
 | |
|  */
 | |
| static int __init aio_setup(void)
 | |
| {
 | |
| 	kiocb_cachep = kmem_cache_create("kiocb", sizeof(struct kiocb),
 | |
| 				0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
 | |
| 	kioctx_cachep = kmem_cache_create("kioctx", sizeof(struct kioctx),
 | |
| 				0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
 | |
| 
 | |
| 	aio_wq = create_workqueue("aio");
 | |
| 
 | |
| 	pr_debug("aio_setup: sizeof(struct page) = %d\n", (int)sizeof(struct page));
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void aio_free_ring(struct kioctx *ctx)
 | |
| {
 | |
| 	struct aio_ring_info *info = &ctx->ring_info;
 | |
| 	long i;
 | |
| 
 | |
| 	for (i=0; i<info->nr_pages; i++)
 | |
| 		put_page(info->ring_pages[i]);
 | |
| 
 | |
| 	if (info->mmap_size) {
 | |
| 		down_write(&ctx->mm->mmap_sem);
 | |
| 		do_munmap(ctx->mm, info->mmap_base, info->mmap_size);
 | |
| 		up_write(&ctx->mm->mmap_sem);
 | |
| 	}
 | |
| 
 | |
| 	if (info->ring_pages && info->ring_pages != info->internal_pages)
 | |
| 		kfree(info->ring_pages);
 | |
| 	info->ring_pages = NULL;
 | |
| 	info->nr = 0;
 | |
| }
 | |
| 
 | |
| static int aio_setup_ring(struct kioctx *ctx)
 | |
| {
 | |
| 	struct aio_ring *ring;
 | |
| 	struct aio_ring_info *info = &ctx->ring_info;
 | |
| 	unsigned nr_events = ctx->max_reqs;
 | |
| 	unsigned long size;
 | |
| 	int nr_pages;
 | |
| 
 | |
| 	/* Compensate for the ring buffer's head/tail overlap entry */
 | |
| 	nr_events += 2;	/* 1 is required, 2 for good luck */
 | |
| 
 | |
| 	size = sizeof(struct aio_ring);
 | |
| 	size += sizeof(struct io_event) * nr_events;
 | |
| 	nr_pages = (size + PAGE_SIZE-1) >> PAGE_SHIFT;
 | |
| 
 | |
| 	if (nr_pages < 0)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring)) / sizeof(struct io_event);
 | |
| 
 | |
| 	info->nr = 0;
 | |
| 	info->ring_pages = info->internal_pages;
 | |
| 	if (nr_pages > AIO_RING_PAGES) {
 | |
| 		info->ring_pages = kcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL);
 | |
| 		if (!info->ring_pages)
 | |
| 			return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	info->mmap_size = nr_pages * PAGE_SIZE;
 | |
| 	dprintk("attempting mmap of %lu bytes\n", info->mmap_size);
 | |
| 	down_write(&ctx->mm->mmap_sem);
 | |
| 	info->mmap_base = do_mmap(NULL, 0, info->mmap_size, 
 | |
| 				  PROT_READ|PROT_WRITE, MAP_ANONYMOUS|MAP_PRIVATE,
 | |
| 				  0);
 | |
| 	if (IS_ERR((void *)info->mmap_base)) {
 | |
| 		up_write(&ctx->mm->mmap_sem);
 | |
| 		printk("mmap err: %ld\n", -info->mmap_base);
 | |
| 		info->mmap_size = 0;
 | |
| 		aio_free_ring(ctx);
 | |
| 		return -EAGAIN;
 | |
| 	}
 | |
| 
 | |
| 	dprintk("mmap address: 0x%08lx\n", info->mmap_base);
 | |
| 	info->nr_pages = get_user_pages(current, ctx->mm,
 | |
| 					info->mmap_base, nr_pages, 
 | |
| 					1, 0, info->ring_pages, NULL);
 | |
| 	up_write(&ctx->mm->mmap_sem);
 | |
| 
 | |
| 	if (unlikely(info->nr_pages != nr_pages)) {
 | |
| 		aio_free_ring(ctx);
 | |
| 		return -EAGAIN;
 | |
| 	}
 | |
| 
 | |
| 	ctx->user_id = info->mmap_base;
 | |
| 
 | |
| 	info->nr = nr_events;		/* trusted copy */
 | |
| 
 | |
| 	ring = kmap_atomic(info->ring_pages[0], KM_USER0);
 | |
| 	ring->nr = nr_events;	/* user copy */
 | |
| 	ring->id = ctx->user_id;
 | |
| 	ring->head = ring->tail = 0;
 | |
| 	ring->magic = AIO_RING_MAGIC;
 | |
| 	ring->compat_features = AIO_RING_COMPAT_FEATURES;
 | |
| 	ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
 | |
| 	ring->header_length = sizeof(struct aio_ring);
 | |
| 	kunmap_atomic(ring, KM_USER0);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* aio_ring_event: returns a pointer to the event at the given index from
 | |
|  * kmap_atomic(, km).  Release the pointer with put_aio_ring_event();
 | |
|  */
 | |
| #define AIO_EVENTS_PER_PAGE	(PAGE_SIZE / sizeof(struct io_event))
 | |
| #define AIO_EVENTS_FIRST_PAGE	((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
 | |
| #define AIO_EVENTS_OFFSET	(AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
 | |
| 
 | |
| #define aio_ring_event(info, nr, km) ({					\
 | |
| 	unsigned pos = (nr) + AIO_EVENTS_OFFSET;			\
 | |
| 	struct io_event *__event;					\
 | |
| 	__event = kmap_atomic(						\
 | |
| 			(info)->ring_pages[pos / AIO_EVENTS_PER_PAGE], km); \
 | |
| 	__event += pos % AIO_EVENTS_PER_PAGE;				\
 | |
| 	__event;							\
 | |
| })
 | |
| 
 | |
| #define put_aio_ring_event(event, km) do {	\
 | |
| 	struct io_event *__event = (event);	\
 | |
| 	(void)__event;				\
 | |
| 	kunmap_atomic((void *)((unsigned long)__event & PAGE_MASK), km); \
 | |
| } while(0)
 | |
| 
 | |
| /* ioctx_alloc
 | |
|  *	Allocates and initializes an ioctx.  Returns an ERR_PTR if it failed.
 | |
|  */
 | |
| static struct kioctx *ioctx_alloc(unsigned nr_events)
 | |
| {
 | |
| 	struct mm_struct *mm;
 | |
| 	struct kioctx *ctx;
 | |
| 
 | |
| 	/* Prevent overflows */
 | |
| 	if ((nr_events > (0x10000000U / sizeof(struct io_event))) ||
 | |
| 	    (nr_events > (0x10000000U / sizeof(struct kiocb)))) {
 | |
| 		pr_debug("ENOMEM: nr_events too high\n");
 | |
| 		return ERR_PTR(-EINVAL);
 | |
| 	}
 | |
| 
 | |
| 	if ((unsigned long)nr_events > aio_max_nr)
 | |
| 		return ERR_PTR(-EAGAIN);
 | |
| 
 | |
| 	ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL);
 | |
| 	if (!ctx)
 | |
| 		return ERR_PTR(-ENOMEM);
 | |
| 
 | |
| 	ctx->max_reqs = nr_events;
 | |
| 	mm = ctx->mm = current->mm;
 | |
| 	atomic_inc(&mm->mm_count);
 | |
| 
 | |
| 	atomic_set(&ctx->users, 1);
 | |
| 	spin_lock_init(&ctx->ctx_lock);
 | |
| 	spin_lock_init(&ctx->ring_info.ring_lock);
 | |
| 	init_waitqueue_head(&ctx->wait);
 | |
| 
 | |
| 	INIT_LIST_HEAD(&ctx->active_reqs);
 | |
| 	INIT_LIST_HEAD(&ctx->run_list);
 | |
| 	INIT_DELAYED_WORK(&ctx->wq, aio_kick_handler);
 | |
| 
 | |
| 	if (aio_setup_ring(ctx) < 0)
 | |
| 		goto out_freectx;
 | |
| 
 | |
| 	/* limit the number of system wide aios */
 | |
| 	spin_lock(&aio_nr_lock);
 | |
| 	if (aio_nr + ctx->max_reqs > aio_max_nr ||
 | |
| 	    aio_nr + ctx->max_reqs < aio_nr)
 | |
| 		ctx->max_reqs = 0;
 | |
| 	else
 | |
| 		aio_nr += ctx->max_reqs;
 | |
| 	spin_unlock(&aio_nr_lock);
 | |
| 	if (ctx->max_reqs == 0)
 | |
| 		goto out_cleanup;
 | |
| 
 | |
| 	/* now link into global list.  kludge.  FIXME */
 | |
| 	write_lock(&mm->ioctx_list_lock);
 | |
| 	ctx->next = mm->ioctx_list;
 | |
| 	mm->ioctx_list = ctx;
 | |
| 	write_unlock(&mm->ioctx_list_lock);
 | |
| 
 | |
| 	dprintk("aio: allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
 | |
| 		ctx, ctx->user_id, current->mm, ctx->ring_info.nr);
 | |
| 	return ctx;
 | |
| 
 | |
| out_cleanup:
 | |
| 	__put_ioctx(ctx);
 | |
| 	return ERR_PTR(-EAGAIN);
 | |
| 
 | |
| out_freectx:
 | |
| 	mmdrop(mm);
 | |
| 	kmem_cache_free(kioctx_cachep, ctx);
 | |
| 	ctx = ERR_PTR(-ENOMEM);
 | |
| 
 | |
| 	dprintk("aio: error allocating ioctx %p\n", ctx);
 | |
| 	return ctx;
 | |
| }
 | |
| 
 | |
| /* aio_cancel_all
 | |
|  *	Cancels all outstanding aio requests on an aio context.  Used 
 | |
|  *	when the processes owning a context have all exited to encourage 
 | |
|  *	the rapid destruction of the kioctx.
 | |
|  */
 | |
| static void aio_cancel_all(struct kioctx *ctx)
 | |
| {
 | |
| 	int (*cancel)(struct kiocb *, struct io_event *);
 | |
| 	struct io_event res;
 | |
| 	spin_lock_irq(&ctx->ctx_lock);
 | |
| 	ctx->dead = 1;
 | |
| 	while (!list_empty(&ctx->active_reqs)) {
 | |
| 		struct list_head *pos = ctx->active_reqs.next;
 | |
| 		struct kiocb *iocb = list_kiocb(pos);
 | |
| 		list_del_init(&iocb->ki_list);
 | |
| 		cancel = iocb->ki_cancel;
 | |
| 		kiocbSetCancelled(iocb);
 | |
| 		if (cancel) {
 | |
| 			iocb->ki_users++;
 | |
| 			spin_unlock_irq(&ctx->ctx_lock);
 | |
| 			cancel(iocb, &res);
 | |
| 			spin_lock_irq(&ctx->ctx_lock);
 | |
| 		}
 | |
| 	}
 | |
| 	spin_unlock_irq(&ctx->ctx_lock);
 | |
| }
 | |
| 
 | |
| static void wait_for_all_aios(struct kioctx *ctx)
 | |
| {
 | |
| 	struct task_struct *tsk = current;
 | |
| 	DECLARE_WAITQUEUE(wait, tsk);
 | |
| 
 | |
| 	spin_lock_irq(&ctx->ctx_lock);
 | |
| 	if (!ctx->reqs_active)
 | |
| 		goto out;
 | |
| 
 | |
| 	add_wait_queue(&ctx->wait, &wait);
 | |
| 	set_task_state(tsk, TASK_UNINTERRUPTIBLE);
 | |
| 	while (ctx->reqs_active) {
 | |
| 		spin_unlock_irq(&ctx->ctx_lock);
 | |
| 		schedule();
 | |
| 		set_task_state(tsk, TASK_UNINTERRUPTIBLE);
 | |
| 		spin_lock_irq(&ctx->ctx_lock);
 | |
| 	}
 | |
| 	__set_task_state(tsk, TASK_RUNNING);
 | |
| 	remove_wait_queue(&ctx->wait, &wait);
 | |
| 
 | |
| out:
 | |
| 	spin_unlock_irq(&ctx->ctx_lock);
 | |
| }
 | |
| 
 | |
| /* wait_on_sync_kiocb:
 | |
|  *	Waits on the given sync kiocb to complete.
 | |
|  */
 | |
| ssize_t fastcall wait_on_sync_kiocb(struct kiocb *iocb)
 | |
| {
 | |
| 	while (iocb->ki_users) {
 | |
| 		set_current_state(TASK_UNINTERRUPTIBLE);
 | |
| 		if (!iocb->ki_users)
 | |
| 			break;
 | |
| 		schedule();
 | |
| 	}
 | |
| 	__set_current_state(TASK_RUNNING);
 | |
| 	return iocb->ki_user_data;
 | |
| }
 | |
| 
 | |
| /* exit_aio: called when the last user of mm goes away.  At this point, 
 | |
|  * there is no way for any new requests to be submited or any of the 
 | |
|  * io_* syscalls to be called on the context.  However, there may be 
 | |
|  * outstanding requests which hold references to the context; as they 
 | |
|  * go away, they will call put_ioctx and release any pinned memory
 | |
|  * associated with the request (held via struct page * references).
 | |
|  */
 | |
| void fastcall exit_aio(struct mm_struct *mm)
 | |
| {
 | |
| 	struct kioctx *ctx = mm->ioctx_list;
 | |
| 	mm->ioctx_list = NULL;
 | |
| 	while (ctx) {
 | |
| 		struct kioctx *next = ctx->next;
 | |
| 		ctx->next = NULL;
 | |
| 		aio_cancel_all(ctx);
 | |
| 
 | |
| 		wait_for_all_aios(ctx);
 | |
| 		/*
 | |
| 		 * this is an overkill, but ensures we don't leave
 | |
| 		 * the ctx on the aio_wq
 | |
| 		 */
 | |
| 		flush_workqueue(aio_wq);
 | |
| 
 | |
| 		if (1 != atomic_read(&ctx->users))
 | |
| 			printk(KERN_DEBUG
 | |
| 				"exit_aio:ioctx still alive: %d %d %d\n",
 | |
| 				atomic_read(&ctx->users), ctx->dead,
 | |
| 				ctx->reqs_active);
 | |
| 		put_ioctx(ctx);
 | |
| 		ctx = next;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* __put_ioctx
 | |
|  *	Called when the last user of an aio context has gone away,
 | |
|  *	and the struct needs to be freed.
 | |
|  */
 | |
| void fastcall __put_ioctx(struct kioctx *ctx)
 | |
| {
 | |
| 	unsigned nr_events = ctx->max_reqs;
 | |
| 
 | |
| 	BUG_ON(ctx->reqs_active);
 | |
| 
 | |
| 	cancel_delayed_work(&ctx->wq);
 | |
| 	flush_workqueue(aio_wq);
 | |
| 	aio_free_ring(ctx);
 | |
| 	mmdrop(ctx->mm);
 | |
| 	ctx->mm = NULL;
 | |
| 	pr_debug("__put_ioctx: freeing %p\n", ctx);
 | |
| 	kmem_cache_free(kioctx_cachep, ctx);
 | |
| 
 | |
| 	if (nr_events) {
 | |
| 		spin_lock(&aio_nr_lock);
 | |
| 		BUG_ON(aio_nr - nr_events > aio_nr);
 | |
| 		aio_nr -= nr_events;
 | |
| 		spin_unlock(&aio_nr_lock);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* aio_get_req
 | |
|  *	Allocate a slot for an aio request.  Increments the users count
 | |
|  * of the kioctx so that the kioctx stays around until all requests are
 | |
|  * complete.  Returns NULL if no requests are free.
 | |
|  *
 | |
|  * Returns with kiocb->users set to 2.  The io submit code path holds
 | |
|  * an extra reference while submitting the i/o.
 | |
|  * This prevents races between the aio code path referencing the
 | |
|  * req (after submitting it) and aio_complete() freeing the req.
 | |
|  */
 | |
| static struct kiocb *FASTCALL(__aio_get_req(struct kioctx *ctx));
 | |
| static struct kiocb fastcall *__aio_get_req(struct kioctx *ctx)
 | |
| {
 | |
| 	struct kiocb *req = NULL;
 | |
| 	struct aio_ring *ring;
 | |
| 	int okay = 0;
 | |
| 
 | |
| 	req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL);
 | |
| 	if (unlikely(!req))
 | |
| 		return NULL;
 | |
| 
 | |
| 	req->ki_flags = 0;
 | |
| 	req->ki_users = 2;
 | |
| 	req->ki_key = 0;
 | |
| 	req->ki_ctx = ctx;
 | |
| 	req->ki_cancel = NULL;
 | |
| 	req->ki_retry = NULL;
 | |
| 	req->ki_dtor = NULL;
 | |
| 	req->private = NULL;
 | |
| 	req->ki_iovec = NULL;
 | |
| 	INIT_LIST_HEAD(&req->ki_run_list);
 | |
| 
 | |
| 	/* Check if the completion queue has enough free space to
 | |
| 	 * accept an event from this io.
 | |
| 	 */
 | |
| 	spin_lock_irq(&ctx->ctx_lock);
 | |
| 	ring = kmap_atomic(ctx->ring_info.ring_pages[0], KM_USER0);
 | |
| 	if (ctx->reqs_active < aio_ring_avail(&ctx->ring_info, ring)) {
 | |
| 		list_add(&req->ki_list, &ctx->active_reqs);
 | |
| 		ctx->reqs_active++;
 | |
| 		okay = 1;
 | |
| 	}
 | |
| 	kunmap_atomic(ring, KM_USER0);
 | |
| 	spin_unlock_irq(&ctx->ctx_lock);
 | |
| 
 | |
| 	if (!okay) {
 | |
| 		kmem_cache_free(kiocb_cachep, req);
 | |
| 		req = NULL;
 | |
| 	}
 | |
| 
 | |
| 	return req;
 | |
| }
 | |
| 
 | |
| static inline struct kiocb *aio_get_req(struct kioctx *ctx)
 | |
| {
 | |
| 	struct kiocb *req;
 | |
| 	/* Handle a potential starvation case -- should be exceedingly rare as 
 | |
| 	 * requests will be stuck on fput_head only if the aio_fput_routine is 
 | |
| 	 * delayed and the requests were the last user of the struct file.
 | |
| 	 */
 | |
| 	req = __aio_get_req(ctx);
 | |
| 	if (unlikely(NULL == req)) {
 | |
| 		aio_fput_routine(NULL);
 | |
| 		req = __aio_get_req(ctx);
 | |
| 	}
 | |
| 	return req;
 | |
| }
 | |
| 
 | |
| static inline void really_put_req(struct kioctx *ctx, struct kiocb *req)
 | |
| {
 | |
| 	assert_spin_locked(&ctx->ctx_lock);
 | |
| 
 | |
| 	if (req->ki_dtor)
 | |
| 		req->ki_dtor(req);
 | |
| 	if (req->ki_iovec != &req->ki_inline_vec)
 | |
| 		kfree(req->ki_iovec);
 | |
| 	kmem_cache_free(kiocb_cachep, req);
 | |
| 	ctx->reqs_active--;
 | |
| 
 | |
| 	if (unlikely(!ctx->reqs_active && ctx->dead))
 | |
| 		wake_up(&ctx->wait);
 | |
| }
 | |
| 
 | |
| static void aio_fput_routine(struct work_struct *data)
 | |
| {
 | |
| 	spin_lock_irq(&fput_lock);
 | |
| 	while (likely(!list_empty(&fput_head))) {
 | |
| 		struct kiocb *req = list_kiocb(fput_head.next);
 | |
| 		struct kioctx *ctx = req->ki_ctx;
 | |
| 
 | |
| 		list_del(&req->ki_list);
 | |
| 		spin_unlock_irq(&fput_lock);
 | |
| 
 | |
| 		/* Complete the fput */
 | |
| 		__fput(req->ki_filp);
 | |
| 
 | |
| 		/* Link the iocb into the context's free list */
 | |
| 		spin_lock_irq(&ctx->ctx_lock);
 | |
| 		really_put_req(ctx, req);
 | |
| 		spin_unlock_irq(&ctx->ctx_lock);
 | |
| 
 | |
| 		put_ioctx(ctx);
 | |
| 		spin_lock_irq(&fput_lock);
 | |
| 	}
 | |
| 	spin_unlock_irq(&fput_lock);
 | |
| }
 | |
| 
 | |
| /* __aio_put_req
 | |
|  *	Returns true if this put was the last user of the request.
 | |
|  */
 | |
| static int __aio_put_req(struct kioctx *ctx, struct kiocb *req)
 | |
| {
 | |
| 	dprintk(KERN_DEBUG "aio_put(%p): f_count=%d\n",
 | |
| 		req, atomic_read(&req->ki_filp->f_count));
 | |
| 
 | |
| 	assert_spin_locked(&ctx->ctx_lock);
 | |
| 
 | |
| 	req->ki_users --;
 | |
| 	BUG_ON(req->ki_users < 0);
 | |
| 	if (likely(req->ki_users))
 | |
| 		return 0;
 | |
| 	list_del(&req->ki_list);		/* remove from active_reqs */
 | |
| 	req->ki_cancel = NULL;
 | |
| 	req->ki_retry = NULL;
 | |
| 
 | |
| 	/* Must be done under the lock to serialise against cancellation.
 | |
| 	 * Call this aio_fput as it duplicates fput via the fput_work.
 | |
| 	 */
 | |
| 	if (unlikely(atomic_dec_and_test(&req->ki_filp->f_count))) {
 | |
| 		get_ioctx(ctx);
 | |
| 		spin_lock(&fput_lock);
 | |
| 		list_add(&req->ki_list, &fput_head);
 | |
| 		spin_unlock(&fput_lock);
 | |
| 		queue_work(aio_wq, &fput_work);
 | |
| 	} else
 | |
| 		really_put_req(ctx, req);
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /* aio_put_req
 | |
|  *	Returns true if this put was the last user of the kiocb,
 | |
|  *	false if the request is still in use.
 | |
|  */
 | |
| int fastcall aio_put_req(struct kiocb *req)
 | |
| {
 | |
| 	struct kioctx *ctx = req->ki_ctx;
 | |
| 	int ret;
 | |
| 	spin_lock_irq(&ctx->ctx_lock);
 | |
| 	ret = __aio_put_req(ctx, req);
 | |
| 	spin_unlock_irq(&ctx->ctx_lock);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*	Lookup an ioctx id.  ioctx_list is lockless for reads.
 | |
|  *	FIXME: this is O(n) and is only suitable for development.
 | |
|  */
 | |
| struct kioctx *lookup_ioctx(unsigned long ctx_id)
 | |
| {
 | |
| 	struct kioctx *ioctx;
 | |
| 	struct mm_struct *mm;
 | |
| 
 | |
| 	mm = current->mm;
 | |
| 	read_lock(&mm->ioctx_list_lock);
 | |
| 	for (ioctx = mm->ioctx_list; ioctx; ioctx = ioctx->next)
 | |
| 		if (likely(ioctx->user_id == ctx_id && !ioctx->dead)) {
 | |
| 			get_ioctx(ioctx);
 | |
| 			break;
 | |
| 		}
 | |
| 	read_unlock(&mm->ioctx_list_lock);
 | |
| 
 | |
| 	return ioctx;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * use_mm
 | |
|  *	Makes the calling kernel thread take on the specified
 | |
|  *	mm context.
 | |
|  *	Called by the retry thread execute retries within the
 | |
|  *	iocb issuer's mm context, so that copy_from/to_user
 | |
|  *	operations work seamlessly for aio.
 | |
|  *	(Note: this routine is intended to be called only
 | |
|  *	from a kernel thread context)
 | |
|  */
 | |
| static void use_mm(struct mm_struct *mm)
 | |
| {
 | |
| 	struct mm_struct *active_mm;
 | |
| 	struct task_struct *tsk = current;
 | |
| 
 | |
| 	task_lock(tsk);
 | |
| 	tsk->flags |= PF_BORROWED_MM;
 | |
| 	active_mm = tsk->active_mm;
 | |
| 	atomic_inc(&mm->mm_count);
 | |
| 	tsk->mm = mm;
 | |
| 	tsk->active_mm = mm;
 | |
| 	/*
 | |
| 	 * Note that on UML this *requires* PF_BORROWED_MM to be set, otherwise
 | |
| 	 * it won't work. Update it accordingly if you change it here
 | |
| 	 */
 | |
| 	switch_mm(active_mm, mm, tsk);
 | |
| 	task_unlock(tsk);
 | |
| 
 | |
| 	mmdrop(active_mm);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * unuse_mm
 | |
|  *	Reverses the effect of use_mm, i.e. releases the
 | |
|  *	specified mm context which was earlier taken on
 | |
|  *	by the calling kernel thread
 | |
|  *	(Note: this routine is intended to be called only
 | |
|  *	from a kernel thread context)
 | |
|  */
 | |
| static void unuse_mm(struct mm_struct *mm)
 | |
| {
 | |
| 	struct task_struct *tsk = current;
 | |
| 
 | |
| 	task_lock(tsk);
 | |
| 	tsk->flags &= ~PF_BORROWED_MM;
 | |
| 	tsk->mm = NULL;
 | |
| 	/* active_mm is still 'mm' */
 | |
| 	enter_lazy_tlb(mm, tsk);
 | |
| 	task_unlock(tsk);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Queue up a kiocb to be retried. Assumes that the kiocb
 | |
|  * has already been marked as kicked, and places it on
 | |
|  * the retry run list for the corresponding ioctx, if it
 | |
|  * isn't already queued. Returns 1 if it actually queued
 | |
|  * the kiocb (to tell the caller to activate the work
 | |
|  * queue to process it), or 0, if it found that it was
 | |
|  * already queued.
 | |
|  */
 | |
| static inline int __queue_kicked_iocb(struct kiocb *iocb)
 | |
| {
 | |
| 	struct kioctx *ctx = iocb->ki_ctx;
 | |
| 
 | |
| 	assert_spin_locked(&ctx->ctx_lock);
 | |
| 
 | |
| 	if (list_empty(&iocb->ki_run_list)) {
 | |
| 		list_add_tail(&iocb->ki_run_list,
 | |
| 			&ctx->run_list);
 | |
| 		return 1;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* aio_run_iocb
 | |
|  *	This is the core aio execution routine. It is
 | |
|  *	invoked both for initial i/o submission and
 | |
|  *	subsequent retries via the aio_kick_handler.
 | |
|  *	Expects to be invoked with iocb->ki_ctx->lock
 | |
|  *	already held. The lock is released and reacquired
 | |
|  *	as needed during processing.
 | |
|  *
 | |
|  * Calls the iocb retry method (already setup for the
 | |
|  * iocb on initial submission) for operation specific
 | |
|  * handling, but takes care of most of common retry
 | |
|  * execution details for a given iocb. The retry method
 | |
|  * needs to be non-blocking as far as possible, to avoid
 | |
|  * holding up other iocbs waiting to be serviced by the
 | |
|  * retry kernel thread.
 | |
|  *
 | |
|  * The trickier parts in this code have to do with
 | |
|  * ensuring that only one retry instance is in progress
 | |
|  * for a given iocb at any time. Providing that guarantee
 | |
|  * simplifies the coding of individual aio operations as
 | |
|  * it avoids various potential races.
 | |
|  */
 | |
| static ssize_t aio_run_iocb(struct kiocb *iocb)
 | |
| {
 | |
| 	struct kioctx	*ctx = iocb->ki_ctx;
 | |
| 	ssize_t (*retry)(struct kiocb *);
 | |
| 	ssize_t ret;
 | |
| 
 | |
| 	if (!(retry = iocb->ki_retry)) {
 | |
| 		printk("aio_run_iocb: iocb->ki_retry = NULL\n");
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * We don't want the next retry iteration for this
 | |
| 	 * operation to start until this one has returned and
 | |
| 	 * updated the iocb state. However, wait_queue functions
 | |
| 	 * can trigger a kick_iocb from interrupt context in the
 | |
| 	 * meantime, indicating that data is available for the next
 | |
| 	 * iteration. We want to remember that and enable the
 | |
| 	 * next retry iteration _after_ we are through with
 | |
| 	 * this one.
 | |
| 	 *
 | |
| 	 * So, in order to be able to register a "kick", but
 | |
| 	 * prevent it from being queued now, we clear the kick
 | |
| 	 * flag, but make the kick code *think* that the iocb is
 | |
| 	 * still on the run list until we are actually done.
 | |
| 	 * When we are done with this iteration, we check if
 | |
| 	 * the iocb was kicked in the meantime and if so, queue
 | |
| 	 * it up afresh.
 | |
| 	 */
 | |
| 
 | |
| 	kiocbClearKicked(iocb);
 | |
| 
 | |
| 	/*
 | |
| 	 * This is so that aio_complete knows it doesn't need to
 | |
| 	 * pull the iocb off the run list (We can't just call
 | |
| 	 * INIT_LIST_HEAD because we don't want a kick_iocb to
 | |
| 	 * queue this on the run list yet)
 | |
| 	 */
 | |
| 	iocb->ki_run_list.next = iocb->ki_run_list.prev = NULL;
 | |
| 	spin_unlock_irq(&ctx->ctx_lock);
 | |
| 
 | |
| 	/* Quit retrying if the i/o has been cancelled */
 | |
| 	if (kiocbIsCancelled(iocb)) {
 | |
| 		ret = -EINTR;
 | |
| 		aio_complete(iocb, ret, 0);
 | |
| 		/* must not access the iocb after this */
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Now we are all set to call the retry method in async
 | |
| 	 * context. By setting this thread's io_wait context
 | |
| 	 * to point to the wait queue entry inside the currently
 | |
| 	 * running iocb for the duration of the retry, we ensure
 | |
| 	 * that async notification wakeups are queued by the
 | |
| 	 * operation instead of blocking waits, and when notified,
 | |
| 	 * cause the iocb to be kicked for continuation (through
 | |
| 	 * the aio_wake_function callback).
 | |
| 	 */
 | |
| 	BUG_ON(current->io_wait != NULL);
 | |
| 	current->io_wait = &iocb->ki_wait;
 | |
| 	ret = retry(iocb);
 | |
| 	current->io_wait = NULL;
 | |
| 
 | |
| 	if (ret != -EIOCBRETRY && ret != -EIOCBQUEUED) {
 | |
| 		BUG_ON(!list_empty(&iocb->ki_wait.task_list));
 | |
| 		aio_complete(iocb, ret, 0);
 | |
| 	}
 | |
| out:
 | |
| 	spin_lock_irq(&ctx->ctx_lock);
 | |
| 
 | |
| 	if (-EIOCBRETRY == ret) {
 | |
| 		/*
 | |
| 		 * OK, now that we are done with this iteration
 | |
| 		 * and know that there is more left to go,
 | |
| 		 * this is where we let go so that a subsequent
 | |
| 		 * "kick" can start the next iteration
 | |
| 		 */
 | |
| 
 | |
| 		/* will make __queue_kicked_iocb succeed from here on */
 | |
| 		INIT_LIST_HEAD(&iocb->ki_run_list);
 | |
| 		/* we must queue the next iteration ourselves, if it
 | |
| 		 * has already been kicked */
 | |
| 		if (kiocbIsKicked(iocb)) {
 | |
| 			__queue_kicked_iocb(iocb);
 | |
| 
 | |
| 			/*
 | |
| 			 * __queue_kicked_iocb will always return 1 here, because
 | |
| 			 * iocb->ki_run_list is empty at this point so it should
 | |
| 			 * be safe to unconditionally queue the context into the
 | |
| 			 * work queue.
 | |
| 			 */
 | |
| 			aio_queue_work(ctx);
 | |
| 		}
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * __aio_run_iocbs:
 | |
|  * 	Process all pending retries queued on the ioctx
 | |
|  * 	run list.
 | |
|  * Assumes it is operating within the aio issuer's mm
 | |
|  * context.
 | |
|  */
 | |
| static int __aio_run_iocbs(struct kioctx *ctx)
 | |
| {
 | |
| 	struct kiocb *iocb;
 | |
| 	struct list_head run_list;
 | |
| 
 | |
| 	assert_spin_locked(&ctx->ctx_lock);
 | |
| 
 | |
| 	list_replace_init(&ctx->run_list, &run_list);
 | |
| 	while (!list_empty(&run_list)) {
 | |
| 		iocb = list_entry(run_list.next, struct kiocb,
 | |
| 			ki_run_list);
 | |
| 		list_del(&iocb->ki_run_list);
 | |
| 		/*
 | |
| 		 * Hold an extra reference while retrying i/o.
 | |
| 		 */
 | |
| 		iocb->ki_users++;       /* grab extra reference */
 | |
| 		aio_run_iocb(iocb);
 | |
| 		__aio_put_req(ctx, iocb);
 | |
|  	}
 | |
| 	if (!list_empty(&ctx->run_list))
 | |
| 		return 1;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void aio_queue_work(struct kioctx * ctx)
 | |
| {
 | |
| 	unsigned long timeout;
 | |
| 	/*
 | |
| 	 * if someone is waiting, get the work started right
 | |
| 	 * away, otherwise, use a longer delay
 | |
| 	 */
 | |
| 	smp_mb();
 | |
| 	if (waitqueue_active(&ctx->wait))
 | |
| 		timeout = 1;
 | |
| 	else
 | |
| 		timeout = HZ/10;
 | |
| 	queue_delayed_work(aio_wq, &ctx->wq, timeout);
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * aio_run_iocbs:
 | |
|  * 	Process all pending retries queued on the ioctx
 | |
|  * 	run list.
 | |
|  * Assumes it is operating within the aio issuer's mm
 | |
|  * context.
 | |
|  */
 | |
| static inline void aio_run_iocbs(struct kioctx *ctx)
 | |
| {
 | |
| 	int requeue;
 | |
| 
 | |
| 	spin_lock_irq(&ctx->ctx_lock);
 | |
| 
 | |
| 	requeue = __aio_run_iocbs(ctx);
 | |
| 	spin_unlock_irq(&ctx->ctx_lock);
 | |
| 	if (requeue)
 | |
| 		aio_queue_work(ctx);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * just like aio_run_iocbs, but keeps running them until
 | |
|  * the list stays empty
 | |
|  */
 | |
| static inline void aio_run_all_iocbs(struct kioctx *ctx)
 | |
| {
 | |
| 	spin_lock_irq(&ctx->ctx_lock);
 | |
| 	while (__aio_run_iocbs(ctx))
 | |
| 		;
 | |
| 	spin_unlock_irq(&ctx->ctx_lock);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * aio_kick_handler:
 | |
|  * 	Work queue handler triggered to process pending
 | |
|  * 	retries on an ioctx. Takes on the aio issuer's
 | |
|  *	mm context before running the iocbs, so that
 | |
|  *	copy_xxx_user operates on the issuer's address
 | |
|  *      space.
 | |
|  * Run on aiod's context.
 | |
|  */
 | |
| static void aio_kick_handler(struct work_struct *work)
 | |
| {
 | |
| 	struct kioctx *ctx = container_of(work, struct kioctx, wq.work);
 | |
| 	mm_segment_t oldfs = get_fs();
 | |
| 	struct mm_struct *mm;
 | |
| 	int requeue;
 | |
| 
 | |
| 	set_fs(USER_DS);
 | |
| 	use_mm(ctx->mm);
 | |
| 	spin_lock_irq(&ctx->ctx_lock);
 | |
| 	requeue =__aio_run_iocbs(ctx);
 | |
| 	mm = ctx->mm;
 | |
| 	spin_unlock_irq(&ctx->ctx_lock);
 | |
|  	unuse_mm(mm);
 | |
| 	set_fs(oldfs);
 | |
| 	/*
 | |
| 	 * we're in a worker thread already, don't use queue_delayed_work,
 | |
| 	 */
 | |
| 	if (requeue)
 | |
| 		queue_delayed_work(aio_wq, &ctx->wq, 0);
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Called by kick_iocb to queue the kiocb for retry
 | |
|  * and if required activate the aio work queue to process
 | |
|  * it
 | |
|  */
 | |
| static void try_queue_kicked_iocb(struct kiocb *iocb)
 | |
| {
 | |
|  	struct kioctx	*ctx = iocb->ki_ctx;
 | |
| 	unsigned long flags;
 | |
| 	int run = 0;
 | |
| 
 | |
| 	/* We're supposed to be the only path putting the iocb back on the run
 | |
| 	 * list.  If we find that the iocb is *back* on a wait queue already
 | |
| 	 * than retry has happened before we could queue the iocb.  This also
 | |
| 	 * means that the retry could have completed and freed our iocb, no
 | |
| 	 * good. */
 | |
| 	BUG_ON((!list_empty(&iocb->ki_wait.task_list)));
 | |
| 
 | |
| 	spin_lock_irqsave(&ctx->ctx_lock, flags);
 | |
| 	/* set this inside the lock so that we can't race with aio_run_iocb()
 | |
| 	 * testing it and putting the iocb on the run list under the lock */
 | |
| 	if (!kiocbTryKick(iocb))
 | |
| 		run = __queue_kicked_iocb(iocb);
 | |
| 	spin_unlock_irqrestore(&ctx->ctx_lock, flags);
 | |
| 	if (run)
 | |
| 		aio_queue_work(ctx);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * kick_iocb:
 | |
|  *      Called typically from a wait queue callback context
 | |
|  *      (aio_wake_function) to trigger a retry of the iocb.
 | |
|  *      The retry is usually executed by aio workqueue
 | |
|  *      threads (See aio_kick_handler).
 | |
|  */
 | |
| void fastcall kick_iocb(struct kiocb *iocb)
 | |
| {
 | |
| 	/* sync iocbs are easy: they can only ever be executing from a 
 | |
| 	 * single context. */
 | |
| 	if (is_sync_kiocb(iocb)) {
 | |
| 		kiocbSetKicked(iocb);
 | |
| 	        wake_up_process(iocb->ki_obj.tsk);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	try_queue_kicked_iocb(iocb);
 | |
| }
 | |
| EXPORT_SYMBOL(kick_iocb);
 | |
| 
 | |
| /* aio_complete
 | |
|  *	Called when the io request on the given iocb is complete.
 | |
|  *	Returns true if this is the last user of the request.  The 
 | |
|  *	only other user of the request can be the cancellation code.
 | |
|  */
 | |
| int fastcall aio_complete(struct kiocb *iocb, long res, long res2)
 | |
| {
 | |
| 	struct kioctx	*ctx = iocb->ki_ctx;
 | |
| 	struct aio_ring_info	*info;
 | |
| 	struct aio_ring	*ring;
 | |
| 	struct io_event	*event;
 | |
| 	unsigned long	flags;
 | |
| 	unsigned long	tail;
 | |
| 	int		ret;
 | |
| 
 | |
| 	/*
 | |
| 	 * Special case handling for sync iocbs:
 | |
| 	 *  - events go directly into the iocb for fast handling
 | |
| 	 *  - the sync task with the iocb in its stack holds the single iocb
 | |
| 	 *    ref, no other paths have a way to get another ref
 | |
| 	 *  - the sync task helpfully left a reference to itself in the iocb
 | |
| 	 */
 | |
| 	if (is_sync_kiocb(iocb)) {
 | |
| 		BUG_ON(iocb->ki_users != 1);
 | |
| 		iocb->ki_user_data = res;
 | |
| 		iocb->ki_users = 0;
 | |
| 		wake_up_process(iocb->ki_obj.tsk);
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	info = &ctx->ring_info;
 | |
| 
 | |
| 	/* add a completion event to the ring buffer.
 | |
| 	 * must be done holding ctx->ctx_lock to prevent
 | |
| 	 * other code from messing with the tail
 | |
| 	 * pointer since we might be called from irq
 | |
| 	 * context.
 | |
| 	 */
 | |
| 	spin_lock_irqsave(&ctx->ctx_lock, flags);
 | |
| 
 | |
| 	if (iocb->ki_run_list.prev && !list_empty(&iocb->ki_run_list))
 | |
| 		list_del_init(&iocb->ki_run_list);
 | |
| 
 | |
| 	/*
 | |
| 	 * cancelled requests don't get events, userland was given one
 | |
| 	 * when the event got cancelled.
 | |
| 	 */
 | |
| 	if (kiocbIsCancelled(iocb))
 | |
| 		goto put_rq;
 | |
| 
 | |
| 	ring = kmap_atomic(info->ring_pages[0], KM_IRQ1);
 | |
| 
 | |
| 	tail = info->tail;
 | |
| 	event = aio_ring_event(info, tail, KM_IRQ0);
 | |
| 	if (++tail >= info->nr)
 | |
| 		tail = 0;
 | |
| 
 | |
| 	event->obj = (u64)(unsigned long)iocb->ki_obj.user;
 | |
| 	event->data = iocb->ki_user_data;
 | |
| 	event->res = res;
 | |
| 	event->res2 = res2;
 | |
| 
 | |
| 	dprintk("aio_complete: %p[%lu]: %p: %p %Lx %lx %lx\n",
 | |
| 		ctx, tail, iocb, iocb->ki_obj.user, iocb->ki_user_data,
 | |
| 		res, res2);
 | |
| 
 | |
| 	/* after flagging the request as done, we
 | |
| 	 * must never even look at it again
 | |
| 	 */
 | |
| 	smp_wmb();	/* make event visible before updating tail */
 | |
| 
 | |
| 	info->tail = tail;
 | |
| 	ring->tail = tail;
 | |
| 
 | |
| 	put_aio_ring_event(event, KM_IRQ0);
 | |
| 	kunmap_atomic(ring, KM_IRQ1);
 | |
| 
 | |
| 	pr_debug("added to ring %p at [%lu]\n", iocb, tail);
 | |
| put_rq:
 | |
| 	/* everything turned out well, dispose of the aiocb. */
 | |
| 	ret = __aio_put_req(ctx, iocb);
 | |
| 
 | |
| 	if (waitqueue_active(&ctx->wait))
 | |
| 		wake_up(&ctx->wait);
 | |
| 
 | |
| 	spin_unlock_irqrestore(&ctx->ctx_lock, flags);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /* aio_read_evt
 | |
|  *	Pull an event off of the ioctx's event ring.  Returns the number of 
 | |
|  *	events fetched (0 or 1 ;-)
 | |
|  *	FIXME: make this use cmpxchg.
 | |
|  *	TODO: make the ringbuffer user mmap()able (requires FIXME).
 | |
|  */
 | |
| static int aio_read_evt(struct kioctx *ioctx, struct io_event *ent)
 | |
| {
 | |
| 	struct aio_ring_info *info = &ioctx->ring_info;
 | |
| 	struct aio_ring *ring;
 | |
| 	unsigned long head;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	ring = kmap_atomic(info->ring_pages[0], KM_USER0);
 | |
| 	dprintk("in aio_read_evt h%lu t%lu m%lu\n",
 | |
| 		 (unsigned long)ring->head, (unsigned long)ring->tail,
 | |
| 		 (unsigned long)ring->nr);
 | |
| 
 | |
| 	if (ring->head == ring->tail)
 | |
| 		goto out;
 | |
| 
 | |
| 	spin_lock(&info->ring_lock);
 | |
| 
 | |
| 	head = ring->head % info->nr;
 | |
| 	if (head != ring->tail) {
 | |
| 		struct io_event *evp = aio_ring_event(info, head, KM_USER1);
 | |
| 		*ent = *evp;
 | |
| 		head = (head + 1) % info->nr;
 | |
| 		smp_mb(); /* finish reading the event before updatng the head */
 | |
| 		ring->head = head;
 | |
| 		ret = 1;
 | |
| 		put_aio_ring_event(evp, KM_USER1);
 | |
| 	}
 | |
| 	spin_unlock(&info->ring_lock);
 | |
| 
 | |
| out:
 | |
| 	kunmap_atomic(ring, KM_USER0);
 | |
| 	dprintk("leaving aio_read_evt: %d  h%lu t%lu\n", ret,
 | |
| 		 (unsigned long)ring->head, (unsigned long)ring->tail);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| struct aio_timeout {
 | |
| 	struct timer_list	timer;
 | |
| 	int			timed_out;
 | |
| 	struct task_struct	*p;
 | |
| };
 | |
| 
 | |
| static void timeout_func(unsigned long data)
 | |
| {
 | |
| 	struct aio_timeout *to = (struct aio_timeout *)data;
 | |
| 
 | |
| 	to->timed_out = 1;
 | |
| 	wake_up_process(to->p);
 | |
| }
 | |
| 
 | |
| static inline void init_timeout(struct aio_timeout *to)
 | |
| {
 | |
| 	init_timer(&to->timer);
 | |
| 	to->timer.data = (unsigned long)to;
 | |
| 	to->timer.function = timeout_func;
 | |
| 	to->timed_out = 0;
 | |
| 	to->p = current;
 | |
| }
 | |
| 
 | |
| static inline void set_timeout(long start_jiffies, struct aio_timeout *to,
 | |
| 			       const struct timespec *ts)
 | |
| {
 | |
| 	to->timer.expires = start_jiffies + timespec_to_jiffies(ts);
 | |
| 	if (time_after(to->timer.expires, jiffies))
 | |
| 		add_timer(&to->timer);
 | |
| 	else
 | |
| 		to->timed_out = 1;
 | |
| }
 | |
| 
 | |
| static inline void clear_timeout(struct aio_timeout *to)
 | |
| {
 | |
| 	del_singleshot_timer_sync(&to->timer);
 | |
| }
 | |
| 
 | |
| static int read_events(struct kioctx *ctx,
 | |
| 			long min_nr, long nr,
 | |
| 			struct io_event __user *event,
 | |
| 			struct timespec __user *timeout)
 | |
| {
 | |
| 	long			start_jiffies = jiffies;
 | |
| 	struct task_struct	*tsk = current;
 | |
| 	DECLARE_WAITQUEUE(wait, tsk);
 | |
| 	int			ret;
 | |
| 	int			i = 0;
 | |
| 	struct io_event		ent;
 | |
| 	struct aio_timeout	to;
 | |
| 	int			retry = 0;
 | |
| 
 | |
| 	/* needed to zero any padding within an entry (there shouldn't be 
 | |
| 	 * any, but C is fun!
 | |
| 	 */
 | |
| 	memset(&ent, 0, sizeof(ent));
 | |
| retry:
 | |
| 	ret = 0;
 | |
| 	while (likely(i < nr)) {
 | |
| 		ret = aio_read_evt(ctx, &ent);
 | |
| 		if (unlikely(ret <= 0))
 | |
| 			break;
 | |
| 
 | |
| 		dprintk("read event: %Lx %Lx %Lx %Lx\n",
 | |
| 			ent.data, ent.obj, ent.res, ent.res2);
 | |
| 
 | |
| 		/* Could we split the check in two? */
 | |
| 		ret = -EFAULT;
 | |
| 		if (unlikely(copy_to_user(event, &ent, sizeof(ent)))) {
 | |
| 			dprintk("aio: lost an event due to EFAULT.\n");
 | |
| 			break;
 | |
| 		}
 | |
| 		ret = 0;
 | |
| 
 | |
| 		/* Good, event copied to userland, update counts. */
 | |
| 		event ++;
 | |
| 		i ++;
 | |
| 	}
 | |
| 
 | |
| 	if (min_nr <= i)
 | |
| 		return i;
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	/* End fast path */
 | |
| 
 | |
| 	/* racey check, but it gets redone */
 | |
| 	if (!retry && unlikely(!list_empty(&ctx->run_list))) {
 | |
| 		retry = 1;
 | |
| 		aio_run_all_iocbs(ctx);
 | |
| 		goto retry;
 | |
| 	}
 | |
| 
 | |
| 	init_timeout(&to);
 | |
| 	if (timeout) {
 | |
| 		struct timespec	ts;
 | |
| 		ret = -EFAULT;
 | |
| 		if (unlikely(copy_from_user(&ts, timeout, sizeof(ts))))
 | |
| 			goto out;
 | |
| 
 | |
| 		set_timeout(start_jiffies, &to, &ts);
 | |
| 	}
 | |
| 
 | |
| 	while (likely(i < nr)) {
 | |
| 		add_wait_queue_exclusive(&ctx->wait, &wait);
 | |
| 		do {
 | |
| 			set_task_state(tsk, TASK_INTERRUPTIBLE);
 | |
| 			ret = aio_read_evt(ctx, &ent);
 | |
| 			if (ret)
 | |
| 				break;
 | |
| 			if (min_nr <= i)
 | |
| 				break;
 | |
| 			ret = 0;
 | |
| 			if (to.timed_out)	/* Only check after read evt */
 | |
| 				break;
 | |
| 			schedule();
 | |
| 			if (signal_pending(tsk)) {
 | |
| 				ret = -EINTR;
 | |
| 				break;
 | |
| 			}
 | |
| 			/*ret = aio_read_evt(ctx, &ent);*/
 | |
| 		} while (1) ;
 | |
| 
 | |
| 		set_task_state(tsk, TASK_RUNNING);
 | |
| 		remove_wait_queue(&ctx->wait, &wait);
 | |
| 
 | |
| 		if (unlikely(ret <= 0))
 | |
| 			break;
 | |
| 
 | |
| 		ret = -EFAULT;
 | |
| 		if (unlikely(copy_to_user(event, &ent, sizeof(ent)))) {
 | |
| 			dprintk("aio: lost an event due to EFAULT.\n");
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		/* Good, event copied to userland, update counts. */
 | |
| 		event ++;
 | |
| 		i ++;
 | |
| 	}
 | |
| 
 | |
| 	if (timeout)
 | |
| 		clear_timeout(&to);
 | |
| out:
 | |
| 	return i ? i : ret;
 | |
| }
 | |
| 
 | |
| /* Take an ioctx and remove it from the list of ioctx's.  Protects 
 | |
|  * against races with itself via ->dead.
 | |
|  */
 | |
| static void io_destroy(struct kioctx *ioctx)
 | |
| {
 | |
| 	struct mm_struct *mm = current->mm;
 | |
| 	struct kioctx **tmp;
 | |
| 	int was_dead;
 | |
| 
 | |
| 	/* delete the entry from the list is someone else hasn't already */
 | |
| 	write_lock(&mm->ioctx_list_lock);
 | |
| 	was_dead = ioctx->dead;
 | |
| 	ioctx->dead = 1;
 | |
| 	for (tmp = &mm->ioctx_list; *tmp && *tmp != ioctx;
 | |
| 	     tmp = &(*tmp)->next)
 | |
| 		;
 | |
| 	if (*tmp)
 | |
| 		*tmp = ioctx->next;
 | |
| 	write_unlock(&mm->ioctx_list_lock);
 | |
| 
 | |
| 	dprintk("aio_release(%p)\n", ioctx);
 | |
| 	if (likely(!was_dead))
 | |
| 		put_ioctx(ioctx);	/* twice for the list */
 | |
| 
 | |
| 	aio_cancel_all(ioctx);
 | |
| 	wait_for_all_aios(ioctx);
 | |
| 	put_ioctx(ioctx);	/* once for the lookup */
 | |
| }
 | |
| 
 | |
| /* sys_io_setup:
 | |
|  *	Create an aio_context capable of receiving at least nr_events.
 | |
|  *	ctxp must not point to an aio_context that already exists, and
 | |
|  *	must be initialized to 0 prior to the call.  On successful
 | |
|  *	creation of the aio_context, *ctxp is filled in with the resulting 
 | |
|  *	handle.  May fail with -EINVAL if *ctxp is not initialized,
 | |
|  *	if the specified nr_events exceeds internal limits.  May fail 
 | |
|  *	with -EAGAIN if the specified nr_events exceeds the user's limit 
 | |
|  *	of available events.  May fail with -ENOMEM if insufficient kernel
 | |
|  *	resources are available.  May fail with -EFAULT if an invalid
 | |
|  *	pointer is passed for ctxp.  Will fail with -ENOSYS if not
 | |
|  *	implemented.
 | |
|  */
 | |
| asmlinkage long sys_io_setup(unsigned nr_events, aio_context_t __user *ctxp)
 | |
| {
 | |
| 	struct kioctx *ioctx = NULL;
 | |
| 	unsigned long ctx;
 | |
| 	long ret;
 | |
| 
 | |
| 	ret = get_user(ctx, ctxp);
 | |
| 	if (unlikely(ret))
 | |
| 		goto out;
 | |
| 
 | |
| 	ret = -EINVAL;
 | |
| 	if (unlikely(ctx || nr_events == 0)) {
 | |
| 		pr_debug("EINVAL: io_setup: ctx %lu nr_events %u\n",
 | |
| 		         ctx, nr_events);
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	ioctx = ioctx_alloc(nr_events);
 | |
| 	ret = PTR_ERR(ioctx);
 | |
| 	if (!IS_ERR(ioctx)) {
 | |
| 		ret = put_user(ioctx->user_id, ctxp);
 | |
| 		if (!ret)
 | |
| 			return 0;
 | |
| 
 | |
| 		get_ioctx(ioctx); /* io_destroy() expects us to hold a ref */
 | |
| 		io_destroy(ioctx);
 | |
| 	}
 | |
| 
 | |
| out:
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /* sys_io_destroy:
 | |
|  *	Destroy the aio_context specified.  May cancel any outstanding 
 | |
|  *	AIOs and block on completion.  Will fail with -ENOSYS if not
 | |
|  *	implemented.  May fail with -EFAULT if the context pointed to
 | |
|  *	is invalid.
 | |
|  */
 | |
| asmlinkage long sys_io_destroy(aio_context_t ctx)
 | |
| {
 | |
| 	struct kioctx *ioctx = lookup_ioctx(ctx);
 | |
| 	if (likely(NULL != ioctx)) {
 | |
| 		io_destroy(ioctx);
 | |
| 		return 0;
 | |
| 	}
 | |
| 	pr_debug("EINVAL: io_destroy: invalid context id\n");
 | |
| 	return -EINVAL;
 | |
| }
 | |
| 
 | |
| static void aio_advance_iovec(struct kiocb *iocb, ssize_t ret)
 | |
| {
 | |
| 	struct iovec *iov = &iocb->ki_iovec[iocb->ki_cur_seg];
 | |
| 
 | |
| 	BUG_ON(ret <= 0);
 | |
| 
 | |
| 	while (iocb->ki_cur_seg < iocb->ki_nr_segs && ret > 0) {
 | |
| 		ssize_t this = min((ssize_t)iov->iov_len, ret);
 | |
| 		iov->iov_base += this;
 | |
| 		iov->iov_len -= this;
 | |
| 		iocb->ki_left -= this;
 | |
| 		ret -= this;
 | |
| 		if (iov->iov_len == 0) {
 | |
| 			iocb->ki_cur_seg++;
 | |
| 			iov++;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* the caller should not have done more io than what fit in
 | |
| 	 * the remaining iovecs */
 | |
| 	BUG_ON(ret > 0 && iocb->ki_left == 0);
 | |
| }
 | |
| 
 | |
| static ssize_t aio_rw_vect_retry(struct kiocb *iocb)
 | |
| {
 | |
| 	struct file *file = iocb->ki_filp;
 | |
| 	struct address_space *mapping = file->f_mapping;
 | |
| 	struct inode *inode = mapping->host;
 | |
| 	ssize_t (*rw_op)(struct kiocb *, const struct iovec *,
 | |
| 			 unsigned long, loff_t);
 | |
| 	ssize_t ret = 0;
 | |
| 	unsigned short opcode;
 | |
| 
 | |
| 	if ((iocb->ki_opcode == IOCB_CMD_PREADV) ||
 | |
| 		(iocb->ki_opcode == IOCB_CMD_PREAD)) {
 | |
| 		rw_op = file->f_op->aio_read;
 | |
| 		opcode = IOCB_CMD_PREADV;
 | |
| 	} else {
 | |
| 		rw_op = file->f_op->aio_write;
 | |
| 		opcode = IOCB_CMD_PWRITEV;
 | |
| 	}
 | |
| 
 | |
| 	do {
 | |
| 		ret = rw_op(iocb, &iocb->ki_iovec[iocb->ki_cur_seg],
 | |
| 			    iocb->ki_nr_segs - iocb->ki_cur_seg,
 | |
| 			    iocb->ki_pos);
 | |
| 		if (ret > 0)
 | |
| 			aio_advance_iovec(iocb, ret);
 | |
| 
 | |
| 	/* retry all partial writes.  retry partial reads as long as its a
 | |
| 	 * regular file. */
 | |
| 	} while (ret > 0 && iocb->ki_left > 0 &&
 | |
| 		 (opcode == IOCB_CMD_PWRITEV ||
 | |
| 		  (!S_ISFIFO(inode->i_mode) && !S_ISSOCK(inode->i_mode))));
 | |
| 
 | |
| 	/* This means we must have transferred all that we could */
 | |
| 	/* No need to retry anymore */
 | |
| 	if ((ret == 0) || (iocb->ki_left == 0))
 | |
| 		ret = iocb->ki_nbytes - iocb->ki_left;
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static ssize_t aio_fdsync(struct kiocb *iocb)
 | |
| {
 | |
| 	struct file *file = iocb->ki_filp;
 | |
| 	ssize_t ret = -EINVAL;
 | |
| 
 | |
| 	if (file->f_op->aio_fsync)
 | |
| 		ret = file->f_op->aio_fsync(iocb, 1);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static ssize_t aio_fsync(struct kiocb *iocb)
 | |
| {
 | |
| 	struct file *file = iocb->ki_filp;
 | |
| 	ssize_t ret = -EINVAL;
 | |
| 
 | |
| 	if (file->f_op->aio_fsync)
 | |
| 		ret = file->f_op->aio_fsync(iocb, 0);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static ssize_t aio_setup_vectored_rw(int type, struct kiocb *kiocb)
 | |
| {
 | |
| 	ssize_t ret;
 | |
| 
 | |
| 	ret = rw_copy_check_uvector(type, (struct iovec __user *)kiocb->ki_buf,
 | |
| 				    kiocb->ki_nbytes, 1,
 | |
| 				    &kiocb->ki_inline_vec, &kiocb->ki_iovec);
 | |
| 	if (ret < 0)
 | |
| 		goto out;
 | |
| 
 | |
| 	kiocb->ki_nr_segs = kiocb->ki_nbytes;
 | |
| 	kiocb->ki_cur_seg = 0;
 | |
| 	/* ki_nbytes/left now reflect bytes instead of segs */
 | |
| 	kiocb->ki_nbytes = ret;
 | |
| 	kiocb->ki_left = ret;
 | |
| 
 | |
| 	ret = 0;
 | |
| out:
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static ssize_t aio_setup_single_vector(struct kiocb *kiocb)
 | |
| {
 | |
| 	kiocb->ki_iovec = &kiocb->ki_inline_vec;
 | |
| 	kiocb->ki_iovec->iov_base = kiocb->ki_buf;
 | |
| 	kiocb->ki_iovec->iov_len = kiocb->ki_left;
 | |
| 	kiocb->ki_nr_segs = 1;
 | |
| 	kiocb->ki_cur_seg = 0;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * aio_setup_iocb:
 | |
|  *	Performs the initial checks and aio retry method
 | |
|  *	setup for the kiocb at the time of io submission.
 | |
|  */
 | |
| static ssize_t aio_setup_iocb(struct kiocb *kiocb)
 | |
| {
 | |
| 	struct file *file = kiocb->ki_filp;
 | |
| 	ssize_t ret = 0;
 | |
| 
 | |
| 	switch (kiocb->ki_opcode) {
 | |
| 	case IOCB_CMD_PREAD:
 | |
| 		ret = -EBADF;
 | |
| 		if (unlikely(!(file->f_mode & FMODE_READ)))
 | |
| 			break;
 | |
| 		ret = -EFAULT;
 | |
| 		if (unlikely(!access_ok(VERIFY_WRITE, kiocb->ki_buf,
 | |
| 			kiocb->ki_left)))
 | |
| 			break;
 | |
| 		ret = security_file_permission(file, MAY_READ);
 | |
| 		if (unlikely(ret))
 | |
| 			break;
 | |
| 		ret = aio_setup_single_vector(kiocb);
 | |
| 		if (ret)
 | |
| 			break;
 | |
| 		ret = -EINVAL;
 | |
| 		if (file->f_op->aio_read)
 | |
| 			kiocb->ki_retry = aio_rw_vect_retry;
 | |
| 		break;
 | |
| 	case IOCB_CMD_PWRITE:
 | |
| 		ret = -EBADF;
 | |
| 		if (unlikely(!(file->f_mode & FMODE_WRITE)))
 | |
| 			break;
 | |
| 		ret = -EFAULT;
 | |
| 		if (unlikely(!access_ok(VERIFY_READ, kiocb->ki_buf,
 | |
| 			kiocb->ki_left)))
 | |
| 			break;
 | |
| 		ret = security_file_permission(file, MAY_WRITE);
 | |
| 		if (unlikely(ret))
 | |
| 			break;
 | |
| 		ret = aio_setup_single_vector(kiocb);
 | |
| 		if (ret)
 | |
| 			break;
 | |
| 		ret = -EINVAL;
 | |
| 		if (file->f_op->aio_write)
 | |
| 			kiocb->ki_retry = aio_rw_vect_retry;
 | |
| 		break;
 | |
| 	case IOCB_CMD_PREADV:
 | |
| 		ret = -EBADF;
 | |
| 		if (unlikely(!(file->f_mode & FMODE_READ)))
 | |
| 			break;
 | |
| 		ret = security_file_permission(file, MAY_READ);
 | |
| 		if (unlikely(ret))
 | |
| 			break;
 | |
| 		ret = aio_setup_vectored_rw(READ, kiocb);
 | |
| 		if (ret)
 | |
| 			break;
 | |
| 		ret = -EINVAL;
 | |
| 		if (file->f_op->aio_read)
 | |
| 			kiocb->ki_retry = aio_rw_vect_retry;
 | |
| 		break;
 | |
| 	case IOCB_CMD_PWRITEV:
 | |
| 		ret = -EBADF;
 | |
| 		if (unlikely(!(file->f_mode & FMODE_WRITE)))
 | |
| 			break;
 | |
| 		ret = security_file_permission(file, MAY_WRITE);
 | |
| 		if (unlikely(ret))
 | |
| 			break;
 | |
| 		ret = aio_setup_vectored_rw(WRITE, kiocb);
 | |
| 		if (ret)
 | |
| 			break;
 | |
| 		ret = -EINVAL;
 | |
| 		if (file->f_op->aio_write)
 | |
| 			kiocb->ki_retry = aio_rw_vect_retry;
 | |
| 		break;
 | |
| 	case IOCB_CMD_FDSYNC:
 | |
| 		ret = -EINVAL;
 | |
| 		if (file->f_op->aio_fsync)
 | |
| 			kiocb->ki_retry = aio_fdsync;
 | |
| 		break;
 | |
| 	case IOCB_CMD_FSYNC:
 | |
| 		ret = -EINVAL;
 | |
| 		if (file->f_op->aio_fsync)
 | |
| 			kiocb->ki_retry = aio_fsync;
 | |
| 		break;
 | |
| 	default:
 | |
| 		dprintk("EINVAL: io_submit: no operation provided\n");
 | |
| 		ret = -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if (!kiocb->ki_retry)
 | |
| 		return ret;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * aio_wake_function:
 | |
|  * 	wait queue callback function for aio notification,
 | |
|  * 	Simply triggers a retry of the operation via kick_iocb.
 | |
|  *
 | |
|  * 	This callback is specified in the wait queue entry in
 | |
|  *	a kiocb	(current->io_wait points to this wait queue
 | |
|  *	entry when an aio operation executes; it is used
 | |
|  * 	instead of a synchronous wait when an i/o blocking
 | |
|  *	condition is encountered during aio).
 | |
|  *
 | |
|  * Note:
 | |
|  * This routine is executed with the wait queue lock held.
 | |
|  * Since kick_iocb acquires iocb->ctx->ctx_lock, it nests
 | |
|  * the ioctx lock inside the wait queue lock. This is safe
 | |
|  * because this callback isn't used for wait queues which
 | |
|  * are nested inside ioctx lock (i.e. ctx->wait)
 | |
|  */
 | |
| static int aio_wake_function(wait_queue_t *wait, unsigned mode,
 | |
| 			     int sync, void *key)
 | |
| {
 | |
| 	struct kiocb *iocb = container_of(wait, struct kiocb, ki_wait);
 | |
| 
 | |
| 	list_del_init(&wait->task_list);
 | |
| 	kick_iocb(iocb);
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| int fastcall io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
 | |
| 			 struct iocb *iocb)
 | |
| {
 | |
| 	struct kiocb *req;
 | |
| 	struct file *file;
 | |
| 	ssize_t ret;
 | |
| 
 | |
| 	/* enforce forwards compatibility on users */
 | |
| 	if (unlikely(iocb->aio_reserved1 || iocb->aio_reserved2 ||
 | |
| 		     iocb->aio_reserved3)) {
 | |
| 		pr_debug("EINVAL: io_submit: reserve field set\n");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	/* prevent overflows */
 | |
| 	if (unlikely(
 | |
| 	    (iocb->aio_buf != (unsigned long)iocb->aio_buf) ||
 | |
| 	    (iocb->aio_nbytes != (size_t)iocb->aio_nbytes) ||
 | |
| 	    ((ssize_t)iocb->aio_nbytes < 0)
 | |
| 	   )) {
 | |
| 		pr_debug("EINVAL: io_submit: overflow check\n");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	file = fget(iocb->aio_fildes);
 | |
| 	if (unlikely(!file))
 | |
| 		return -EBADF;
 | |
| 
 | |
| 	req = aio_get_req(ctx);		/* returns with 2 references to req */
 | |
| 	if (unlikely(!req)) {
 | |
| 		fput(file);
 | |
| 		return -EAGAIN;
 | |
| 	}
 | |
| 
 | |
| 	req->ki_filp = file;
 | |
| 	ret = put_user(req->ki_key, &user_iocb->aio_key);
 | |
| 	if (unlikely(ret)) {
 | |
| 		dprintk("EFAULT: aio_key\n");
 | |
| 		goto out_put_req;
 | |
| 	}
 | |
| 
 | |
| 	req->ki_obj.user = user_iocb;
 | |
| 	req->ki_user_data = iocb->aio_data;
 | |
| 	req->ki_pos = iocb->aio_offset;
 | |
| 
 | |
| 	req->ki_buf = (char __user *)(unsigned long)iocb->aio_buf;
 | |
| 	req->ki_left = req->ki_nbytes = iocb->aio_nbytes;
 | |
| 	req->ki_opcode = iocb->aio_lio_opcode;
 | |
| 	init_waitqueue_func_entry(&req->ki_wait, aio_wake_function);
 | |
| 	INIT_LIST_HEAD(&req->ki_wait.task_list);
 | |
| 
 | |
| 	ret = aio_setup_iocb(req);
 | |
| 
 | |
| 	if (ret)
 | |
| 		goto out_put_req;
 | |
| 
 | |
| 	spin_lock_irq(&ctx->ctx_lock);
 | |
| 	aio_run_iocb(req);
 | |
| 	if (!list_empty(&ctx->run_list)) {
 | |
| 		/* drain the run list */
 | |
| 		while (__aio_run_iocbs(ctx))
 | |
| 			;
 | |
| 	}
 | |
| 	spin_unlock_irq(&ctx->ctx_lock);
 | |
| 	aio_put_req(req);	/* drop extra ref to req */
 | |
| 	return 0;
 | |
| 
 | |
| out_put_req:
 | |
| 	aio_put_req(req);	/* drop extra ref to req */
 | |
| 	aio_put_req(req);	/* drop i/o ref to req */
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /* sys_io_submit:
 | |
|  *	Queue the nr iocbs pointed to by iocbpp for processing.  Returns
 | |
|  *	the number of iocbs queued.  May return -EINVAL if the aio_context
 | |
|  *	specified by ctx_id is invalid, if nr is < 0, if the iocb at
 | |
|  *	*iocbpp[0] is not properly initialized, if the operation specified
 | |
|  *	is invalid for the file descriptor in the iocb.  May fail with
 | |
|  *	-EFAULT if any of the data structures point to invalid data.  May
 | |
|  *	fail with -EBADF if the file descriptor specified in the first
 | |
|  *	iocb is invalid.  May fail with -EAGAIN if insufficient resources
 | |
|  *	are available to queue any iocbs.  Will return 0 if nr is 0.  Will
 | |
|  *	fail with -ENOSYS if not implemented.
 | |
|  */
 | |
| asmlinkage long sys_io_submit(aio_context_t ctx_id, long nr,
 | |
| 			      struct iocb __user * __user *iocbpp)
 | |
| {
 | |
| 	struct kioctx *ctx;
 | |
| 	long ret = 0;
 | |
| 	int i;
 | |
| 
 | |
| 	if (unlikely(nr < 0))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (unlikely(!access_ok(VERIFY_READ, iocbpp, (nr*sizeof(*iocbpp)))))
 | |
| 		return -EFAULT;
 | |
| 
 | |
| 	ctx = lookup_ioctx(ctx_id);
 | |
| 	if (unlikely(!ctx)) {
 | |
| 		pr_debug("EINVAL: io_submit: invalid context id\n");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * AKPM: should this return a partial result if some of the IOs were
 | |
| 	 * successfully submitted?
 | |
| 	 */
 | |
| 	for (i=0; i<nr; i++) {
 | |
| 		struct iocb __user *user_iocb;
 | |
| 		struct iocb tmp;
 | |
| 
 | |
| 		if (unlikely(__get_user(user_iocb, iocbpp + i))) {
 | |
| 			ret = -EFAULT;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		if (unlikely(copy_from_user(&tmp, user_iocb, sizeof(tmp)))) {
 | |
| 			ret = -EFAULT;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		ret = io_submit_one(ctx, user_iocb, &tmp);
 | |
| 		if (ret)
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	put_ioctx(ctx);
 | |
| 	return i ? i : ret;
 | |
| }
 | |
| 
 | |
| /* lookup_kiocb
 | |
|  *	Finds a given iocb for cancellation.
 | |
|  */
 | |
| static struct kiocb *lookup_kiocb(struct kioctx *ctx, struct iocb __user *iocb,
 | |
| 				  u32 key)
 | |
| {
 | |
| 	struct list_head *pos;
 | |
| 
 | |
| 	assert_spin_locked(&ctx->ctx_lock);
 | |
| 
 | |
| 	/* TODO: use a hash or array, this sucks. */
 | |
| 	list_for_each(pos, &ctx->active_reqs) {
 | |
| 		struct kiocb *kiocb = list_kiocb(pos);
 | |
| 		if (kiocb->ki_obj.user == iocb && kiocb->ki_key == key)
 | |
| 			return kiocb;
 | |
| 	}
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /* sys_io_cancel:
 | |
|  *	Attempts to cancel an iocb previously passed to io_submit.  If
 | |
|  *	the operation is successfully cancelled, the resulting event is
 | |
|  *	copied into the memory pointed to by result without being placed
 | |
|  *	into the completion queue and 0 is returned.  May fail with
 | |
|  *	-EFAULT if any of the data structures pointed to are invalid.
 | |
|  *	May fail with -EINVAL if aio_context specified by ctx_id is
 | |
|  *	invalid.  May fail with -EAGAIN if the iocb specified was not
 | |
|  *	cancelled.  Will fail with -ENOSYS if not implemented.
 | |
|  */
 | |
| asmlinkage long sys_io_cancel(aio_context_t ctx_id, struct iocb __user *iocb,
 | |
| 			      struct io_event __user *result)
 | |
| {
 | |
| 	int (*cancel)(struct kiocb *iocb, struct io_event *res);
 | |
| 	struct kioctx *ctx;
 | |
| 	struct kiocb *kiocb;
 | |
| 	u32 key;
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = get_user(key, &iocb->aio_key);
 | |
| 	if (unlikely(ret))
 | |
| 		return -EFAULT;
 | |
| 
 | |
| 	ctx = lookup_ioctx(ctx_id);
 | |
| 	if (unlikely(!ctx))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	spin_lock_irq(&ctx->ctx_lock);
 | |
| 	ret = -EAGAIN;
 | |
| 	kiocb = lookup_kiocb(ctx, iocb, key);
 | |
| 	if (kiocb && kiocb->ki_cancel) {
 | |
| 		cancel = kiocb->ki_cancel;
 | |
| 		kiocb->ki_users ++;
 | |
| 		kiocbSetCancelled(kiocb);
 | |
| 	} else
 | |
| 		cancel = NULL;
 | |
| 	spin_unlock_irq(&ctx->ctx_lock);
 | |
| 
 | |
| 	if (NULL != cancel) {
 | |
| 		struct io_event tmp;
 | |
| 		pr_debug("calling cancel\n");
 | |
| 		memset(&tmp, 0, sizeof(tmp));
 | |
| 		tmp.obj = (u64)(unsigned long)kiocb->ki_obj.user;
 | |
| 		tmp.data = kiocb->ki_user_data;
 | |
| 		ret = cancel(kiocb, &tmp);
 | |
| 		if (!ret) {
 | |
| 			/* Cancellation succeeded -- copy the result
 | |
| 			 * into the user's buffer.
 | |
| 			 */
 | |
| 			if (copy_to_user(result, &tmp, sizeof(tmp)))
 | |
| 				ret = -EFAULT;
 | |
| 		}
 | |
| 	} else
 | |
| 		ret = -EINVAL;
 | |
| 
 | |
| 	put_ioctx(ctx);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /* io_getevents:
 | |
|  *	Attempts to read at least min_nr events and up to nr events from
 | |
|  *	the completion queue for the aio_context specified by ctx_id.  May
 | |
|  *	fail with -EINVAL if ctx_id is invalid, if min_nr is out of range,
 | |
|  *	if nr is out of range, if when is out of range.  May fail with
 | |
|  *	-EFAULT if any of the memory specified to is invalid.  May return
 | |
|  *	0 or < min_nr if no events are available and the timeout specified
 | |
|  *	by when	has elapsed, where when == NULL specifies an infinite
 | |
|  *	timeout.  Note that the timeout pointed to by when is relative and
 | |
|  *	will be updated if not NULL and the operation blocks.  Will fail
 | |
|  *	with -ENOSYS if not implemented.
 | |
|  */
 | |
| asmlinkage long sys_io_getevents(aio_context_t ctx_id,
 | |
| 				 long min_nr,
 | |
| 				 long nr,
 | |
| 				 struct io_event __user *events,
 | |
| 				 struct timespec __user *timeout)
 | |
| {
 | |
| 	struct kioctx *ioctx = lookup_ioctx(ctx_id);
 | |
| 	long ret = -EINVAL;
 | |
| 
 | |
| 	if (likely(ioctx)) {
 | |
| 		if (likely(min_nr <= nr && min_nr >= 0 && nr >= 0))
 | |
| 			ret = read_events(ioctx, min_nr, nr, events, timeout);
 | |
| 		put_ioctx(ioctx);
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| __initcall(aio_setup);
 | |
| 
 | |
| EXPORT_SYMBOL(aio_complete);
 | |
| EXPORT_SYMBOL(aio_put_req);
 | |
| EXPORT_SYMBOL(wait_on_sync_kiocb);
 |