linux/arch/x86/kernel/fpu/core.c
Thomas Gleixner 2bd264bce2 x86/fpu: Move xstate size to fpu_*_cfg
Use the new kernel and user space config storage to store and retrieve the
XSTATE buffer sizes. The default and the maximum size are the same for now,
but will change when support for dynamically enabled features is added.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20211014230739.296830097@linutronix.de
2021-10-21 19:38:55 +02:00

644 lines
16 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (C) 1994 Linus Torvalds
*
* Pentium III FXSR, SSE support
* General FPU state handling cleanups
* Gareth Hughes <gareth@valinux.com>, May 2000
*/
#include <asm/fpu/api.h>
#include <asm/fpu/regset.h>
#include <asm/fpu/sched.h>
#include <asm/fpu/signal.h>
#include <asm/fpu/types.h>
#include <asm/traps.h>
#include <asm/irq_regs.h>
#include <linux/hardirq.h>
#include <linux/pkeys.h>
#include "context.h"
#include "internal.h"
#include "legacy.h"
#include "xstate.h"
#define CREATE_TRACE_POINTS
#include <asm/trace/fpu.h>
/* The FPU state configuration data for kernel and user space */
struct fpu_state_config fpu_kernel_cfg __ro_after_init;
struct fpu_state_config fpu_user_cfg __ro_after_init;
/*
* Represents the initial FPU state. It's mostly (but not completely) zeroes,
* depending on the FPU hardware format:
*/
struct fpstate init_fpstate __ro_after_init;
/*
* Track whether the kernel is using the FPU state
* currently.
*
* This flag is used:
*
* - by IRQ context code to potentially use the FPU
* if it's unused.
*
* - to debug kernel_fpu_begin()/end() correctness
*/
static DEFINE_PER_CPU(bool, in_kernel_fpu);
/*
* Track which context is using the FPU on the CPU:
*/
DEFINE_PER_CPU(struct fpu *, fpu_fpregs_owner_ctx);
static bool kernel_fpu_disabled(void)
{
return this_cpu_read(in_kernel_fpu);
}
static bool interrupted_kernel_fpu_idle(void)
{
return !kernel_fpu_disabled();
}
/*
* Were we in user mode (or vm86 mode) when we were
* interrupted?
*
* Doing kernel_fpu_begin/end() is ok if we are running
* in an interrupt context from user mode - we'll just
* save the FPU state as required.
*/
static bool interrupted_user_mode(void)
{
struct pt_regs *regs = get_irq_regs();
return regs && user_mode(regs);
}
/*
* Can we use the FPU in kernel mode with the
* whole "kernel_fpu_begin/end()" sequence?
*
* It's always ok in process context (ie "not interrupt")
* but it is sometimes ok even from an irq.
*/
bool irq_fpu_usable(void)
{
return !in_interrupt() ||
interrupted_user_mode() ||
interrupted_kernel_fpu_idle();
}
EXPORT_SYMBOL(irq_fpu_usable);
/*
* Save the FPU register state in fpu->fpstate->regs. The register state is
* preserved.
*
* Must be called with fpregs_lock() held.
*
* The legacy FNSAVE instruction clears all FPU state unconditionally, so
* register state has to be reloaded. That might be a pointless exercise
* when the FPU is going to be used by another task right after that. But
* this only affects 20+ years old 32bit systems and avoids conditionals all
* over the place.
*
* FXSAVE and all XSAVE variants preserve the FPU register state.
*/
void save_fpregs_to_fpstate(struct fpu *fpu)
{
if (likely(use_xsave())) {
os_xsave(fpu->fpstate);
/*
* AVX512 state is tracked here because its use is
* known to slow the max clock speed of the core.
*/
if (fpu->fpstate->regs.xsave.header.xfeatures & XFEATURE_MASK_AVX512)
fpu->avx512_timestamp = jiffies;
return;
}
if (likely(use_fxsr())) {
fxsave(&fpu->fpstate->regs.fxsave);
return;
}
/*
* Legacy FPU register saving, FNSAVE always clears FPU registers,
* so we have to reload them from the memory state.
*/
asm volatile("fnsave %[fp]; fwait" : [fp] "=m" (fpu->fpstate->regs.fsave));
frstor(&fpu->fpstate->regs.fsave);
}
void restore_fpregs_from_fpstate(struct fpstate *fpstate, u64 mask)
{
/*
* AMD K7/K8 and later CPUs up to Zen don't save/restore
* FDP/FIP/FOP unless an exception is pending. Clear the x87 state
* here by setting it to fixed values. "m" is a random variable
* that should be in L1.
*/
if (unlikely(static_cpu_has_bug(X86_BUG_FXSAVE_LEAK))) {
asm volatile(
"fnclex\n\t"
"emms\n\t"
"fildl %P[addr]" /* set F?P to defined value */
: : [addr] "m" (fpstate));
}
if (use_xsave()) {
os_xrstor(&fpstate->regs.xsave, mask);
} else {
if (use_fxsr())
fxrstor(&fpstate->regs.fxsave);
else
frstor(&fpstate->regs.fsave);
}
}
void fpu_reset_from_exception_fixup(void)
{
restore_fpregs_from_fpstate(&init_fpstate, xfeatures_mask_fpstate());
}
#if IS_ENABLED(CONFIG_KVM)
void fpu_swap_kvm_fpu(struct fpu *save, struct fpu *rstor, u64 restore_mask)
{
fpregs_lock();
if (save) {
struct fpstate *fpcur = current->thread.fpu.fpstate;
if (test_thread_flag(TIF_NEED_FPU_LOAD))
memcpy(&save->fpstate->regs, &fpcur->regs, fpcur->size);
else
save_fpregs_to_fpstate(save);
}
if (rstor) {
restore_mask &= xfeatures_mask_fpstate();
restore_fpregs_from_fpstate(rstor->fpstate, restore_mask);
}
fpregs_mark_activate();
fpregs_unlock();
}
EXPORT_SYMBOL_GPL(fpu_swap_kvm_fpu);
void fpu_copy_fpstate_to_kvm_uabi(struct fpu *fpu, void *buf,
unsigned int size, u32 pkru)
{
struct fpstate *kstate = fpu->fpstate;
union fpregs_state *ustate = buf;
struct membuf mb = { .p = buf, .left = size };
if (cpu_feature_enabled(X86_FEATURE_XSAVE)) {
__copy_xstate_to_uabi_buf(mb, kstate, pkru, XSTATE_COPY_XSAVE);
} else {
memcpy(&ustate->fxsave, &kstate->regs.fxsave,
sizeof(ustate->fxsave));
/* Make it restorable on a XSAVE enabled host */
ustate->xsave.header.xfeatures = XFEATURE_MASK_FPSSE;
}
}
EXPORT_SYMBOL_GPL(fpu_copy_fpstate_to_kvm_uabi);
int fpu_copy_kvm_uabi_to_fpstate(struct fpu *fpu, const void *buf, u64 xcr0,
u32 *vpkru)
{
struct fpstate *kstate = fpu->fpstate;
const union fpregs_state *ustate = buf;
struct pkru_state *xpkru;
int ret;
if (!cpu_feature_enabled(X86_FEATURE_XSAVE)) {
if (ustate->xsave.header.xfeatures & ~XFEATURE_MASK_FPSSE)
return -EINVAL;
if (ustate->fxsave.mxcsr & ~mxcsr_feature_mask)
return -EINVAL;
memcpy(&kstate->regs.fxsave, &ustate->fxsave, sizeof(ustate->fxsave));
return 0;
}
if (ustate->xsave.header.xfeatures & ~xcr0)
return -EINVAL;
ret = copy_uabi_from_kernel_to_xstate(kstate, ustate);
if (ret)
return ret;
/* Retrieve PKRU if not in init state */
if (kstate->regs.xsave.header.xfeatures & XFEATURE_MASK_PKRU) {
xpkru = get_xsave_addr(&kstate->regs.xsave, XFEATURE_PKRU);
*vpkru = xpkru->pkru;
}
/* Ensure that XCOMP_BV is set up for XSAVES */
xstate_init_xcomp_bv(&kstate->regs.xsave, xfeatures_mask_uabi());
return 0;
}
EXPORT_SYMBOL_GPL(fpu_copy_kvm_uabi_to_fpstate);
#endif /* CONFIG_KVM */
void kernel_fpu_begin_mask(unsigned int kfpu_mask)
{
preempt_disable();
WARN_ON_FPU(!irq_fpu_usable());
WARN_ON_FPU(this_cpu_read(in_kernel_fpu));
this_cpu_write(in_kernel_fpu, true);
if (!(current->flags & PF_KTHREAD) &&
!test_thread_flag(TIF_NEED_FPU_LOAD)) {
set_thread_flag(TIF_NEED_FPU_LOAD);
save_fpregs_to_fpstate(&current->thread.fpu);
}
__cpu_invalidate_fpregs_state();
/* Put sane initial values into the control registers. */
if (likely(kfpu_mask & KFPU_MXCSR) && boot_cpu_has(X86_FEATURE_XMM))
ldmxcsr(MXCSR_DEFAULT);
if (unlikely(kfpu_mask & KFPU_387) && boot_cpu_has(X86_FEATURE_FPU))
asm volatile ("fninit");
}
EXPORT_SYMBOL_GPL(kernel_fpu_begin_mask);
void kernel_fpu_end(void)
{
WARN_ON_FPU(!this_cpu_read(in_kernel_fpu));
this_cpu_write(in_kernel_fpu, false);
preempt_enable();
}
EXPORT_SYMBOL_GPL(kernel_fpu_end);
/*
* Sync the FPU register state to current's memory register state when the
* current task owns the FPU. The hardware register state is preserved.
*/
void fpu_sync_fpstate(struct fpu *fpu)
{
WARN_ON_FPU(fpu != &current->thread.fpu);
fpregs_lock();
trace_x86_fpu_before_save(fpu);
if (!test_thread_flag(TIF_NEED_FPU_LOAD))
save_fpregs_to_fpstate(fpu);
trace_x86_fpu_after_save(fpu);
fpregs_unlock();
}
static inline unsigned int init_fpstate_copy_size(void)
{
if (!use_xsave())
return fpu_kernel_cfg.default_size;
/* XSAVE(S) just needs the legacy and the xstate header part */
return sizeof(init_fpstate.regs.xsave);
}
static inline void fpstate_init_fxstate(struct fpstate *fpstate)
{
fpstate->regs.fxsave.cwd = 0x37f;
fpstate->regs.fxsave.mxcsr = MXCSR_DEFAULT;
}
/*
* Legacy x87 fpstate state init:
*/
static inline void fpstate_init_fstate(struct fpstate *fpstate)
{
fpstate->regs.fsave.cwd = 0xffff037fu;
fpstate->regs.fsave.swd = 0xffff0000u;
fpstate->regs.fsave.twd = 0xffffffffu;
fpstate->regs.fsave.fos = 0xffff0000u;
}
/*
* Used in two places:
* 1) Early boot to setup init_fpstate for non XSAVE systems
* 2) fpu_init_fpstate_user() which is invoked from KVM
*/
void fpstate_init_user(struct fpstate *fpstate)
{
if (!cpu_feature_enabled(X86_FEATURE_FPU)) {
fpstate_init_soft(&fpstate->regs.soft);
return;
}
xstate_init_xcomp_bv(&fpstate->regs.xsave, xfeatures_mask_uabi());
if (cpu_feature_enabled(X86_FEATURE_FXSR))
fpstate_init_fxstate(fpstate);
else
fpstate_init_fstate(fpstate);
}
void fpstate_reset(struct fpu *fpu)
{
/* Set the fpstate pointer to the default fpstate */
fpu->fpstate = &fpu->__fpstate;
/* Initialize sizes and feature masks */
fpu->fpstate->size = fpu_kernel_cfg.default_size;
fpu->fpstate->user_size = fpu_user_cfg.default_size;
fpu->fpstate->xfeatures = xfeatures_mask_all;
fpu->fpstate->user_xfeatures = xfeatures_mask_uabi();
}
#if IS_ENABLED(CONFIG_KVM)
void fpu_init_fpstate_user(struct fpu *fpu)
{
fpstate_reset(fpu);
fpstate_init_user(fpu->fpstate);
}
EXPORT_SYMBOL_GPL(fpu_init_fpstate_user);
#endif
/* Clone current's FPU state on fork */
int fpu_clone(struct task_struct *dst)
{
struct fpu *src_fpu = &current->thread.fpu;
struct fpu *dst_fpu = &dst->thread.fpu;
/* The new task's FPU state cannot be valid in the hardware. */
dst_fpu->last_cpu = -1;
fpstate_reset(dst_fpu);
if (!cpu_feature_enabled(X86_FEATURE_FPU))
return 0;
/*
* Enforce reload for user space tasks and prevent kernel threads
* from trying to save the FPU registers on context switch.
*/
set_tsk_thread_flag(dst, TIF_NEED_FPU_LOAD);
/*
* No FPU state inheritance for kernel threads and IO
* worker threads.
*/
if (dst->flags & (PF_KTHREAD | PF_IO_WORKER)) {
/* Clear out the minimal state */
memcpy(&dst_fpu->fpstate->regs, &init_fpstate.regs,
init_fpstate_copy_size());
return 0;
}
/*
* If the FPU registers are not owned by current just memcpy() the
* state. Otherwise save the FPU registers directly into the
* child's FPU context, without any memory-to-memory copying.
*/
fpregs_lock();
if (test_thread_flag(TIF_NEED_FPU_LOAD)) {
memcpy(&dst_fpu->fpstate->regs, &src_fpu->fpstate->regs,
dst_fpu->fpstate->size);
} else {
save_fpregs_to_fpstate(dst_fpu);
}
fpregs_unlock();
trace_x86_fpu_copy_src(src_fpu);
trace_x86_fpu_copy_dst(dst_fpu);
return 0;
}
/*
* Whitelist the FPU register state embedded into task_struct for hardened
* usercopy.
*/
void fpu_thread_struct_whitelist(unsigned long *offset, unsigned long *size)
{
*offset = offsetof(struct thread_struct, fpu.__fpstate.regs);
*size = fpu_kernel_cfg.default_size;
}
/*
* Drops current FPU state: deactivates the fpregs and
* the fpstate. NOTE: it still leaves previous contents
* in the fpregs in the eager-FPU case.
*
* This function can be used in cases where we know that
* a state-restore is coming: either an explicit one,
* or a reschedule.
*/
void fpu__drop(struct fpu *fpu)
{
preempt_disable();
if (fpu == &current->thread.fpu) {
/* Ignore delayed exceptions from user space */
asm volatile("1: fwait\n"
"2:\n"
_ASM_EXTABLE(1b, 2b));
fpregs_deactivate(fpu);
}
trace_x86_fpu_dropped(fpu);
preempt_enable();
}
/*
* Clear FPU registers by setting them up from the init fpstate.
* Caller must do fpregs_[un]lock() around it.
*/
static inline void restore_fpregs_from_init_fpstate(u64 features_mask)
{
if (use_xsave())
os_xrstor(&init_fpstate.regs.xsave, features_mask);
else if (use_fxsr())
fxrstor(&init_fpstate.regs.fxsave);
else
frstor(&init_fpstate.regs.fsave);
pkru_write_default();
}
/*
* Reset current->fpu memory state to the init values.
*/
static void fpu_reset_fpstate(void)
{
struct fpu *fpu = &current->thread.fpu;
fpregs_lock();
fpu__drop(fpu);
/*
* This does not change the actual hardware registers. It just
* resets the memory image and sets TIF_NEED_FPU_LOAD so a
* subsequent return to usermode will reload the registers from the
* task's memory image.
*
* Do not use fpstate_init() here. Just copy init_fpstate which has
* the correct content already except for PKRU.
*
* PKRU handling does not rely on the xstate when restoring for
* user space as PKRU is eagerly written in switch_to() and
* flush_thread().
*/
memcpy(&fpu->fpstate->regs, &init_fpstate.regs, init_fpstate_copy_size());
set_thread_flag(TIF_NEED_FPU_LOAD);
fpregs_unlock();
}
/*
* Reset current's user FPU states to the init states. current's
* supervisor states, if any, are not modified by this function. The
* caller guarantees that the XSTATE header in memory is intact.
*/
void fpu__clear_user_states(struct fpu *fpu)
{
WARN_ON_FPU(fpu != &current->thread.fpu);
fpregs_lock();
if (!cpu_feature_enabled(X86_FEATURE_FPU)) {
fpu_reset_fpstate();
fpregs_unlock();
return;
}
/*
* Ensure that current's supervisor states are loaded into their
* corresponding registers.
*/
if (xfeatures_mask_supervisor() &&
!fpregs_state_valid(fpu, smp_processor_id())) {
os_xrstor(&fpu->fpstate->regs.xsave, xfeatures_mask_supervisor());
}
/* Reset user states in registers. */
restore_fpregs_from_init_fpstate(xfeatures_mask_restore_user());
/*
* Now all FPU registers have their desired values. Inform the FPU
* state machine that current's FPU registers are in the hardware
* registers. The memory image does not need to be updated because
* any operation relying on it has to save the registers first when
* current's FPU is marked active.
*/
fpregs_mark_activate();
fpregs_unlock();
}
void fpu_flush_thread(void)
{
fpu_reset_fpstate();
}
/*
* Load FPU context before returning to userspace.
*/
void switch_fpu_return(void)
{
if (!static_cpu_has(X86_FEATURE_FPU))
return;
fpregs_restore_userregs();
}
EXPORT_SYMBOL_GPL(switch_fpu_return);
#ifdef CONFIG_X86_DEBUG_FPU
/*
* If current FPU state according to its tracking (loaded FPU context on this
* CPU) is not valid then we must have TIF_NEED_FPU_LOAD set so the context is
* loaded on return to userland.
*/
void fpregs_assert_state_consistent(void)
{
struct fpu *fpu = &current->thread.fpu;
if (test_thread_flag(TIF_NEED_FPU_LOAD))
return;
WARN_ON_FPU(!fpregs_state_valid(fpu, smp_processor_id()));
}
EXPORT_SYMBOL_GPL(fpregs_assert_state_consistent);
#endif
void fpregs_mark_activate(void)
{
struct fpu *fpu = &current->thread.fpu;
fpregs_activate(fpu);
fpu->last_cpu = smp_processor_id();
clear_thread_flag(TIF_NEED_FPU_LOAD);
}
/*
* x87 math exception handling:
*/
int fpu__exception_code(struct fpu *fpu, int trap_nr)
{
int err;
if (trap_nr == X86_TRAP_MF) {
unsigned short cwd, swd;
/*
* (~cwd & swd) will mask out exceptions that are not set to unmasked
* status. 0x3f is the exception bits in these regs, 0x200 is the
* C1 reg you need in case of a stack fault, 0x040 is the stack
* fault bit. We should only be taking one exception at a time,
* so if this combination doesn't produce any single exception,
* then we have a bad program that isn't synchronizing its FPU usage
* and it will suffer the consequences since we won't be able to
* fully reproduce the context of the exception.
*/
if (boot_cpu_has(X86_FEATURE_FXSR)) {
cwd = fpu->fpstate->regs.fxsave.cwd;
swd = fpu->fpstate->regs.fxsave.swd;
} else {
cwd = (unsigned short)fpu->fpstate->regs.fsave.cwd;
swd = (unsigned short)fpu->fpstate->regs.fsave.swd;
}
err = swd & ~cwd;
} else {
/*
* The SIMD FPU exceptions are handled a little differently, as there
* is only a single status/control register. Thus, to determine which
* unmasked exception was caught we must mask the exception mask bits
* at 0x1f80, and then use these to mask the exception bits at 0x3f.
*/
unsigned short mxcsr = MXCSR_DEFAULT;
if (boot_cpu_has(X86_FEATURE_XMM))
mxcsr = fpu->fpstate->regs.fxsave.mxcsr;
err = ~(mxcsr >> 7) & mxcsr;
}
if (err & 0x001) { /* Invalid op */
/*
* swd & 0x240 == 0x040: Stack Underflow
* swd & 0x240 == 0x240: Stack Overflow
* User must clear the SF bit (0x40) if set
*/
return FPE_FLTINV;
} else if (err & 0x004) { /* Divide by Zero */
return FPE_FLTDIV;
} else if (err & 0x008) { /* Overflow */
return FPE_FLTOVF;
} else if (err & 0x012) { /* Denormal, Underflow */
return FPE_FLTUND;
} else if (err & 0x020) { /* Precision */
return FPE_FLTRES;
}
/*
* If we're using IRQ 13, or supposedly even some trap
* X86_TRAP_MF implementations, it's possible
* we get a spurious trap, which is not an error.
*/
return 0;
}