mirror of
				git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
				synced 2025-11-01 09:13:37 +00:00 
			
		
		
		
	If blk_crypto_evict_key() sees that the key is still in-use (due to a
bug) or that ->keyslot_evict failed, it currently just returns while
leaving the key linked into the keyslot management structures.
However, blk_crypto_evict_key() is only called in contexts such as inode
eviction where failure is not an option.  So actually the caller
proceeds with freeing the blk_crypto_key regardless of the return value
of blk_crypto_evict_key().
These two assumptions don't match, and the result is that there can be a
use-after-free in blk_crypto_reprogram_all_keys() after one of these
errors occurs.  (Note, these errors *shouldn't* happen; we're just
talking about what happens if they do anyway.)
Fix this by making blk_crypto_evict_key() unlink the key from the
keyslot management structures even on failure.
Also improve some comments.
Fixes: 1b26283970 ("block: Keyslot Manager for Inline Encryption")
Cc: stable@vger.kernel.org
Signed-off-by: Eric Biggers <ebiggers@google.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Link: https://lore.kernel.org/r/20230315183907.53675-2-ebiggers@kernel.org
Signed-off-by: Jens Axboe <axboe@kernel.dk>
		
	
			
		
			
				
	
	
		
			438 lines
		
	
	
	
		
			13 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			438 lines
		
	
	
	
		
			13 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
// SPDX-License-Identifier: GPL-2.0
 | 
						|
/*
 | 
						|
 * Copyright 2019 Google LLC
 | 
						|
 */
 | 
						|
 | 
						|
/*
 | 
						|
 * Refer to Documentation/block/inline-encryption.rst for detailed explanation.
 | 
						|
 */
 | 
						|
 | 
						|
#define pr_fmt(fmt) "blk-crypto: " fmt
 | 
						|
 | 
						|
#include <linux/bio.h>
 | 
						|
#include <linux/blkdev.h>
 | 
						|
#include <linux/blk-crypto-profile.h>
 | 
						|
#include <linux/module.h>
 | 
						|
#include <linux/ratelimit.h>
 | 
						|
#include <linux/slab.h>
 | 
						|
 | 
						|
#include "blk-crypto-internal.h"
 | 
						|
 | 
						|
const struct blk_crypto_mode blk_crypto_modes[] = {
 | 
						|
	[BLK_ENCRYPTION_MODE_AES_256_XTS] = {
 | 
						|
		.name = "AES-256-XTS",
 | 
						|
		.cipher_str = "xts(aes)",
 | 
						|
		.keysize = 64,
 | 
						|
		.ivsize = 16,
 | 
						|
	},
 | 
						|
	[BLK_ENCRYPTION_MODE_AES_128_CBC_ESSIV] = {
 | 
						|
		.name = "AES-128-CBC-ESSIV",
 | 
						|
		.cipher_str = "essiv(cbc(aes),sha256)",
 | 
						|
		.keysize = 16,
 | 
						|
		.ivsize = 16,
 | 
						|
	},
 | 
						|
	[BLK_ENCRYPTION_MODE_ADIANTUM] = {
 | 
						|
		.name = "Adiantum",
 | 
						|
		.cipher_str = "adiantum(xchacha12,aes)",
 | 
						|
		.keysize = 32,
 | 
						|
		.ivsize = 32,
 | 
						|
	},
 | 
						|
	[BLK_ENCRYPTION_MODE_SM4_XTS] = {
 | 
						|
		.name = "SM4-XTS",
 | 
						|
		.cipher_str = "xts(sm4)",
 | 
						|
		.keysize = 32,
 | 
						|
		.ivsize = 16,
 | 
						|
	},
 | 
						|
};
 | 
						|
 | 
						|
/*
 | 
						|
 * This number needs to be at least (the number of threads doing IO
 | 
						|
 * concurrently) * (maximum recursive depth of a bio), so that we don't
 | 
						|
 * deadlock on crypt_ctx allocations. The default is chosen to be the same
 | 
						|
 * as the default number of post read contexts in both EXT4 and F2FS.
 | 
						|
 */
 | 
						|
static int num_prealloc_crypt_ctxs = 128;
 | 
						|
 | 
						|
module_param(num_prealloc_crypt_ctxs, int, 0444);
 | 
						|
MODULE_PARM_DESC(num_prealloc_crypt_ctxs,
 | 
						|
		"Number of bio crypto contexts to preallocate");
 | 
						|
 | 
						|
static struct kmem_cache *bio_crypt_ctx_cache;
 | 
						|
static mempool_t *bio_crypt_ctx_pool;
 | 
						|
 | 
						|
static int __init bio_crypt_ctx_init(void)
 | 
						|
{
 | 
						|
	size_t i;
 | 
						|
 | 
						|
	bio_crypt_ctx_cache = KMEM_CACHE(bio_crypt_ctx, 0);
 | 
						|
	if (!bio_crypt_ctx_cache)
 | 
						|
		goto out_no_mem;
 | 
						|
 | 
						|
	bio_crypt_ctx_pool = mempool_create_slab_pool(num_prealloc_crypt_ctxs,
 | 
						|
						      bio_crypt_ctx_cache);
 | 
						|
	if (!bio_crypt_ctx_pool)
 | 
						|
		goto out_no_mem;
 | 
						|
 | 
						|
	/* This is assumed in various places. */
 | 
						|
	BUILD_BUG_ON(BLK_ENCRYPTION_MODE_INVALID != 0);
 | 
						|
 | 
						|
	/* Sanity check that no algorithm exceeds the defined limits. */
 | 
						|
	for (i = 0; i < BLK_ENCRYPTION_MODE_MAX; i++) {
 | 
						|
		BUG_ON(blk_crypto_modes[i].keysize > BLK_CRYPTO_MAX_KEY_SIZE);
 | 
						|
		BUG_ON(blk_crypto_modes[i].ivsize > BLK_CRYPTO_MAX_IV_SIZE);
 | 
						|
	}
 | 
						|
 | 
						|
	return 0;
 | 
						|
out_no_mem:
 | 
						|
	panic("Failed to allocate mem for bio crypt ctxs\n");
 | 
						|
}
 | 
						|
subsys_initcall(bio_crypt_ctx_init);
 | 
						|
 | 
						|
void bio_crypt_set_ctx(struct bio *bio, const struct blk_crypto_key *key,
 | 
						|
		       const u64 dun[BLK_CRYPTO_DUN_ARRAY_SIZE], gfp_t gfp_mask)
 | 
						|
{
 | 
						|
	struct bio_crypt_ctx *bc;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * The caller must use a gfp_mask that contains __GFP_DIRECT_RECLAIM so
 | 
						|
	 * that the mempool_alloc() can't fail.
 | 
						|
	 */
 | 
						|
	WARN_ON_ONCE(!(gfp_mask & __GFP_DIRECT_RECLAIM));
 | 
						|
 | 
						|
	bc = mempool_alloc(bio_crypt_ctx_pool, gfp_mask);
 | 
						|
 | 
						|
	bc->bc_key = key;
 | 
						|
	memcpy(bc->bc_dun, dun, sizeof(bc->bc_dun));
 | 
						|
 | 
						|
	bio->bi_crypt_context = bc;
 | 
						|
}
 | 
						|
 | 
						|
void __bio_crypt_free_ctx(struct bio *bio)
 | 
						|
{
 | 
						|
	mempool_free(bio->bi_crypt_context, bio_crypt_ctx_pool);
 | 
						|
	bio->bi_crypt_context = NULL;
 | 
						|
}
 | 
						|
 | 
						|
int __bio_crypt_clone(struct bio *dst, struct bio *src, gfp_t gfp_mask)
 | 
						|
{
 | 
						|
	dst->bi_crypt_context = mempool_alloc(bio_crypt_ctx_pool, gfp_mask);
 | 
						|
	if (!dst->bi_crypt_context)
 | 
						|
		return -ENOMEM;
 | 
						|
	*dst->bi_crypt_context = *src->bi_crypt_context;
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/* Increments @dun by @inc, treating @dun as a multi-limb integer. */
 | 
						|
void bio_crypt_dun_increment(u64 dun[BLK_CRYPTO_DUN_ARRAY_SIZE],
 | 
						|
			     unsigned int inc)
 | 
						|
{
 | 
						|
	int i;
 | 
						|
 | 
						|
	for (i = 0; inc && i < BLK_CRYPTO_DUN_ARRAY_SIZE; i++) {
 | 
						|
		dun[i] += inc;
 | 
						|
		/*
 | 
						|
		 * If the addition in this limb overflowed, then we need to
 | 
						|
		 * carry 1 into the next limb. Else the carry is 0.
 | 
						|
		 */
 | 
						|
		if (dun[i] < inc)
 | 
						|
			inc = 1;
 | 
						|
		else
 | 
						|
			inc = 0;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
void __bio_crypt_advance(struct bio *bio, unsigned int bytes)
 | 
						|
{
 | 
						|
	struct bio_crypt_ctx *bc = bio->bi_crypt_context;
 | 
						|
 | 
						|
	bio_crypt_dun_increment(bc->bc_dun,
 | 
						|
				bytes >> bc->bc_key->data_unit_size_bits);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Returns true if @bc->bc_dun plus @bytes converted to data units is equal to
 | 
						|
 * @next_dun, treating the DUNs as multi-limb integers.
 | 
						|
 */
 | 
						|
bool bio_crypt_dun_is_contiguous(const struct bio_crypt_ctx *bc,
 | 
						|
				 unsigned int bytes,
 | 
						|
				 const u64 next_dun[BLK_CRYPTO_DUN_ARRAY_SIZE])
 | 
						|
{
 | 
						|
	int i;
 | 
						|
	unsigned int carry = bytes >> bc->bc_key->data_unit_size_bits;
 | 
						|
 | 
						|
	for (i = 0; i < BLK_CRYPTO_DUN_ARRAY_SIZE; i++) {
 | 
						|
		if (bc->bc_dun[i] + carry != next_dun[i])
 | 
						|
			return false;
 | 
						|
		/*
 | 
						|
		 * If the addition in this limb overflowed, then we need to
 | 
						|
		 * carry 1 into the next limb. Else the carry is 0.
 | 
						|
		 */
 | 
						|
		if ((bc->bc_dun[i] + carry) < carry)
 | 
						|
			carry = 1;
 | 
						|
		else
 | 
						|
			carry = 0;
 | 
						|
	}
 | 
						|
 | 
						|
	/* If the DUN wrapped through 0, don't treat it as contiguous. */
 | 
						|
	return carry == 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Checks that two bio crypt contexts are compatible - i.e. that
 | 
						|
 * they are mergeable except for data_unit_num continuity.
 | 
						|
 */
 | 
						|
static bool bio_crypt_ctx_compatible(struct bio_crypt_ctx *bc1,
 | 
						|
				     struct bio_crypt_ctx *bc2)
 | 
						|
{
 | 
						|
	if (!bc1)
 | 
						|
		return !bc2;
 | 
						|
 | 
						|
	return bc2 && bc1->bc_key == bc2->bc_key;
 | 
						|
}
 | 
						|
 | 
						|
bool bio_crypt_rq_ctx_compatible(struct request *rq, struct bio *bio)
 | 
						|
{
 | 
						|
	return bio_crypt_ctx_compatible(rq->crypt_ctx, bio->bi_crypt_context);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Checks that two bio crypt contexts are compatible, and also
 | 
						|
 * that their data_unit_nums are continuous (and can hence be merged)
 | 
						|
 * in the order @bc1 followed by @bc2.
 | 
						|
 */
 | 
						|
bool bio_crypt_ctx_mergeable(struct bio_crypt_ctx *bc1, unsigned int bc1_bytes,
 | 
						|
			     struct bio_crypt_ctx *bc2)
 | 
						|
{
 | 
						|
	if (!bio_crypt_ctx_compatible(bc1, bc2))
 | 
						|
		return false;
 | 
						|
 | 
						|
	return !bc1 || bio_crypt_dun_is_contiguous(bc1, bc1_bytes, bc2->bc_dun);
 | 
						|
}
 | 
						|
 | 
						|
/* Check that all I/O segments are data unit aligned. */
 | 
						|
static bool bio_crypt_check_alignment(struct bio *bio)
 | 
						|
{
 | 
						|
	const unsigned int data_unit_size =
 | 
						|
		bio->bi_crypt_context->bc_key->crypto_cfg.data_unit_size;
 | 
						|
	struct bvec_iter iter;
 | 
						|
	struct bio_vec bv;
 | 
						|
 | 
						|
	bio_for_each_segment(bv, bio, iter) {
 | 
						|
		if (!IS_ALIGNED(bv.bv_len | bv.bv_offset, data_unit_size))
 | 
						|
			return false;
 | 
						|
	}
 | 
						|
 | 
						|
	return true;
 | 
						|
}
 | 
						|
 | 
						|
blk_status_t __blk_crypto_rq_get_keyslot(struct request *rq)
 | 
						|
{
 | 
						|
	return blk_crypto_get_keyslot(rq->q->crypto_profile,
 | 
						|
				      rq->crypt_ctx->bc_key,
 | 
						|
				      &rq->crypt_keyslot);
 | 
						|
}
 | 
						|
 | 
						|
void __blk_crypto_rq_put_keyslot(struct request *rq)
 | 
						|
{
 | 
						|
	blk_crypto_put_keyslot(rq->crypt_keyslot);
 | 
						|
	rq->crypt_keyslot = NULL;
 | 
						|
}
 | 
						|
 | 
						|
void __blk_crypto_free_request(struct request *rq)
 | 
						|
{
 | 
						|
	/* The keyslot, if one was needed, should have been released earlier. */
 | 
						|
	if (WARN_ON_ONCE(rq->crypt_keyslot))
 | 
						|
		__blk_crypto_rq_put_keyslot(rq);
 | 
						|
 | 
						|
	mempool_free(rq->crypt_ctx, bio_crypt_ctx_pool);
 | 
						|
	rq->crypt_ctx = NULL;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * __blk_crypto_bio_prep - Prepare bio for inline encryption
 | 
						|
 *
 | 
						|
 * @bio_ptr: pointer to original bio pointer
 | 
						|
 *
 | 
						|
 * If the bio crypt context provided for the bio is supported by the underlying
 | 
						|
 * device's inline encryption hardware, do nothing.
 | 
						|
 *
 | 
						|
 * Otherwise, try to perform en/decryption for this bio by falling back to the
 | 
						|
 * kernel crypto API. When the crypto API fallback is used for encryption,
 | 
						|
 * blk-crypto may choose to split the bio into 2 - the first one that will
 | 
						|
 * continue to be processed and the second one that will be resubmitted via
 | 
						|
 * submit_bio_noacct. A bounce bio will be allocated to encrypt the contents
 | 
						|
 * of the aforementioned "first one", and *bio_ptr will be updated to this
 | 
						|
 * bounce bio.
 | 
						|
 *
 | 
						|
 * Caller must ensure bio has bio_crypt_ctx.
 | 
						|
 *
 | 
						|
 * Return: true on success; false on error (and bio->bi_status will be set
 | 
						|
 *	   appropriately, and bio_endio() will have been called so bio
 | 
						|
 *	   submission should abort).
 | 
						|
 */
 | 
						|
bool __blk_crypto_bio_prep(struct bio **bio_ptr)
 | 
						|
{
 | 
						|
	struct bio *bio = *bio_ptr;
 | 
						|
	const struct blk_crypto_key *bc_key = bio->bi_crypt_context->bc_key;
 | 
						|
 | 
						|
	/* Error if bio has no data. */
 | 
						|
	if (WARN_ON_ONCE(!bio_has_data(bio))) {
 | 
						|
		bio->bi_status = BLK_STS_IOERR;
 | 
						|
		goto fail;
 | 
						|
	}
 | 
						|
 | 
						|
	if (!bio_crypt_check_alignment(bio)) {
 | 
						|
		bio->bi_status = BLK_STS_IOERR;
 | 
						|
		goto fail;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Success if device supports the encryption context, or if we succeeded
 | 
						|
	 * in falling back to the crypto API.
 | 
						|
	 */
 | 
						|
	if (blk_crypto_config_supported_natively(bio->bi_bdev,
 | 
						|
						 &bc_key->crypto_cfg))
 | 
						|
		return true;
 | 
						|
	if (blk_crypto_fallback_bio_prep(bio_ptr))
 | 
						|
		return true;
 | 
						|
fail:
 | 
						|
	bio_endio(*bio_ptr);
 | 
						|
	return false;
 | 
						|
}
 | 
						|
 | 
						|
int __blk_crypto_rq_bio_prep(struct request *rq, struct bio *bio,
 | 
						|
			     gfp_t gfp_mask)
 | 
						|
{
 | 
						|
	if (!rq->crypt_ctx) {
 | 
						|
		rq->crypt_ctx = mempool_alloc(bio_crypt_ctx_pool, gfp_mask);
 | 
						|
		if (!rq->crypt_ctx)
 | 
						|
			return -ENOMEM;
 | 
						|
	}
 | 
						|
	*rq->crypt_ctx = *bio->bi_crypt_context;
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * blk_crypto_init_key() - Prepare a key for use with blk-crypto
 | 
						|
 * @blk_key: Pointer to the blk_crypto_key to initialize.
 | 
						|
 * @raw_key: Pointer to the raw key. Must be the correct length for the chosen
 | 
						|
 *	     @crypto_mode; see blk_crypto_modes[].
 | 
						|
 * @crypto_mode: identifier for the encryption algorithm to use
 | 
						|
 * @dun_bytes: number of bytes that will be used to specify the DUN when this
 | 
						|
 *	       key is used
 | 
						|
 * @data_unit_size: the data unit size to use for en/decryption
 | 
						|
 *
 | 
						|
 * Return: 0 on success, -errno on failure.  The caller is responsible for
 | 
						|
 *	   zeroizing both blk_key and raw_key when done with them.
 | 
						|
 */
 | 
						|
int blk_crypto_init_key(struct blk_crypto_key *blk_key, const u8 *raw_key,
 | 
						|
			enum blk_crypto_mode_num crypto_mode,
 | 
						|
			unsigned int dun_bytes,
 | 
						|
			unsigned int data_unit_size)
 | 
						|
{
 | 
						|
	const struct blk_crypto_mode *mode;
 | 
						|
 | 
						|
	memset(blk_key, 0, sizeof(*blk_key));
 | 
						|
 | 
						|
	if (crypto_mode >= ARRAY_SIZE(blk_crypto_modes))
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	mode = &blk_crypto_modes[crypto_mode];
 | 
						|
	if (mode->keysize == 0)
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	if (dun_bytes == 0 || dun_bytes > mode->ivsize)
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	if (!is_power_of_2(data_unit_size))
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	blk_key->crypto_cfg.crypto_mode = crypto_mode;
 | 
						|
	blk_key->crypto_cfg.dun_bytes = dun_bytes;
 | 
						|
	blk_key->crypto_cfg.data_unit_size = data_unit_size;
 | 
						|
	blk_key->data_unit_size_bits = ilog2(data_unit_size);
 | 
						|
	blk_key->size = mode->keysize;
 | 
						|
	memcpy(blk_key->raw, raw_key, mode->keysize);
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
bool blk_crypto_config_supported_natively(struct block_device *bdev,
 | 
						|
					  const struct blk_crypto_config *cfg)
 | 
						|
{
 | 
						|
	return __blk_crypto_cfg_supported(bdev_get_queue(bdev)->crypto_profile,
 | 
						|
					  cfg);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Check if bios with @cfg can be en/decrypted by blk-crypto (i.e. either the
 | 
						|
 * block_device it's submitted to supports inline crypto, or the
 | 
						|
 * blk-crypto-fallback is enabled and supports the cfg).
 | 
						|
 */
 | 
						|
bool blk_crypto_config_supported(struct block_device *bdev,
 | 
						|
				 const struct blk_crypto_config *cfg)
 | 
						|
{
 | 
						|
	return IS_ENABLED(CONFIG_BLK_INLINE_ENCRYPTION_FALLBACK) ||
 | 
						|
	       blk_crypto_config_supported_natively(bdev, cfg);
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * blk_crypto_start_using_key() - Start using a blk_crypto_key on a device
 | 
						|
 * @bdev: block device to operate on
 | 
						|
 * @key: A key to use on the device
 | 
						|
 *
 | 
						|
 * Upper layers must call this function to ensure that either the hardware
 | 
						|
 * supports the key's crypto settings, or the crypto API fallback has transforms
 | 
						|
 * for the needed mode allocated and ready to go. This function may allocate
 | 
						|
 * an skcipher, and *should not* be called from the data path, since that might
 | 
						|
 * cause a deadlock
 | 
						|
 *
 | 
						|
 * Return: 0 on success; -ENOPKG if the hardware doesn't support the key and
 | 
						|
 *	   blk-crypto-fallback is either disabled or the needed algorithm
 | 
						|
 *	   is disabled in the crypto API; or another -errno code.
 | 
						|
 */
 | 
						|
int blk_crypto_start_using_key(struct block_device *bdev,
 | 
						|
			       const struct blk_crypto_key *key)
 | 
						|
{
 | 
						|
	if (blk_crypto_config_supported_natively(bdev, &key->crypto_cfg))
 | 
						|
		return 0;
 | 
						|
	return blk_crypto_fallback_start_using_mode(key->crypto_cfg.crypto_mode);
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * blk_crypto_evict_key() - Evict a blk_crypto_key from a block_device
 | 
						|
 * @bdev: a block_device on which I/O using the key may have been done
 | 
						|
 * @key: the key to evict
 | 
						|
 *
 | 
						|
 * For a given block_device, this function removes the given blk_crypto_key from
 | 
						|
 * the keyslot management structures and evicts it from any underlying hardware
 | 
						|
 * keyslot(s) or blk-crypto-fallback keyslot it may have been programmed into.
 | 
						|
 *
 | 
						|
 * Upper layers must call this before freeing the blk_crypto_key.  It must be
 | 
						|
 * called for every block_device the key may have been used on.  The key must no
 | 
						|
 * longer be in use by any I/O when this function is called.
 | 
						|
 *
 | 
						|
 * Context: May sleep.
 | 
						|
 */
 | 
						|
void blk_crypto_evict_key(struct block_device *bdev,
 | 
						|
			  const struct blk_crypto_key *key)
 | 
						|
{
 | 
						|
	struct request_queue *q = bdev_get_queue(bdev);
 | 
						|
	int err;
 | 
						|
 | 
						|
	if (blk_crypto_config_supported_natively(bdev, &key->crypto_cfg))
 | 
						|
		err = __blk_crypto_evict_key(q->crypto_profile, key);
 | 
						|
	else
 | 
						|
		err = blk_crypto_fallback_evict_key(key);
 | 
						|
	/*
 | 
						|
	 * An error can only occur here if the key failed to be evicted from a
 | 
						|
	 * keyslot (due to a hardware or driver issue) or is allegedly still in
 | 
						|
	 * use by I/O (due to a kernel bug).  Even in these cases, the key is
 | 
						|
	 * still unlinked from the keyslot management structures, and the caller
 | 
						|
	 * is allowed and expected to free it right away.  There's nothing
 | 
						|
	 * callers can do to handle errors, so just log them and return void.
 | 
						|
	 */
 | 
						|
	if (err)
 | 
						|
		pr_warn_ratelimited("%pg: error %d evicting key\n", bdev, err);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(blk_crypto_evict_key);
 |