mirror of
				git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
				synced 2025-10-31 08:44:41 +00:00 
			
		
		
		
	 aaf0594829
			
		
	
	
		aaf0594829
		
	
	
	
	
		
			
			Export group_cpus_evenly() so that some modules can make use of it to group CPUs evenly according to NUMA and CPU locality. Signed-off-by: Xie Yongji <xieyongji@bytedance.com> Acked-by: Jason Wang <jasowang@redhat.com> Message-Id: <20230323053043.35-2-xieyongji@bytedance.com> Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
		
			
				
	
	
		
			429 lines
		
	
	
	
		
			10 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			429 lines
		
	
	
	
		
			10 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0
 | |
| /*
 | |
|  * Copyright (C) 2016 Thomas Gleixner.
 | |
|  * Copyright (C) 2016-2017 Christoph Hellwig.
 | |
|  */
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/cpu.h>
 | |
| #include <linux/sort.h>
 | |
| #include <linux/group_cpus.h>
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| 
 | |
| static void grp_spread_init_one(struct cpumask *irqmsk, struct cpumask *nmsk,
 | |
| 				unsigned int cpus_per_grp)
 | |
| {
 | |
| 	const struct cpumask *siblmsk;
 | |
| 	int cpu, sibl;
 | |
| 
 | |
| 	for ( ; cpus_per_grp > 0; ) {
 | |
| 		cpu = cpumask_first(nmsk);
 | |
| 
 | |
| 		/* Should not happen, but I'm too lazy to think about it */
 | |
| 		if (cpu >= nr_cpu_ids)
 | |
| 			return;
 | |
| 
 | |
| 		cpumask_clear_cpu(cpu, nmsk);
 | |
| 		cpumask_set_cpu(cpu, irqmsk);
 | |
| 		cpus_per_grp--;
 | |
| 
 | |
| 		/* If the cpu has siblings, use them first */
 | |
| 		siblmsk = topology_sibling_cpumask(cpu);
 | |
| 		for (sibl = -1; cpus_per_grp > 0; ) {
 | |
| 			sibl = cpumask_next(sibl, siblmsk);
 | |
| 			if (sibl >= nr_cpu_ids)
 | |
| 				break;
 | |
| 			if (!cpumask_test_and_clear_cpu(sibl, nmsk))
 | |
| 				continue;
 | |
| 			cpumask_set_cpu(sibl, irqmsk);
 | |
| 			cpus_per_grp--;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static cpumask_var_t *alloc_node_to_cpumask(void)
 | |
| {
 | |
| 	cpumask_var_t *masks;
 | |
| 	int node;
 | |
| 
 | |
| 	masks = kcalloc(nr_node_ids, sizeof(cpumask_var_t), GFP_KERNEL);
 | |
| 	if (!masks)
 | |
| 		return NULL;
 | |
| 
 | |
| 	for (node = 0; node < nr_node_ids; node++) {
 | |
| 		if (!zalloc_cpumask_var(&masks[node], GFP_KERNEL))
 | |
| 			goto out_unwind;
 | |
| 	}
 | |
| 
 | |
| 	return masks;
 | |
| 
 | |
| out_unwind:
 | |
| 	while (--node >= 0)
 | |
| 		free_cpumask_var(masks[node]);
 | |
| 	kfree(masks);
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static void free_node_to_cpumask(cpumask_var_t *masks)
 | |
| {
 | |
| 	int node;
 | |
| 
 | |
| 	for (node = 0; node < nr_node_ids; node++)
 | |
| 		free_cpumask_var(masks[node]);
 | |
| 	kfree(masks);
 | |
| }
 | |
| 
 | |
| static void build_node_to_cpumask(cpumask_var_t *masks)
 | |
| {
 | |
| 	int cpu;
 | |
| 
 | |
| 	for_each_possible_cpu(cpu)
 | |
| 		cpumask_set_cpu(cpu, masks[cpu_to_node(cpu)]);
 | |
| }
 | |
| 
 | |
| static int get_nodes_in_cpumask(cpumask_var_t *node_to_cpumask,
 | |
| 				const struct cpumask *mask, nodemask_t *nodemsk)
 | |
| {
 | |
| 	int n, nodes = 0;
 | |
| 
 | |
| 	/* Calculate the number of nodes in the supplied affinity mask */
 | |
| 	for_each_node(n) {
 | |
| 		if (cpumask_intersects(mask, node_to_cpumask[n])) {
 | |
| 			node_set(n, *nodemsk);
 | |
| 			nodes++;
 | |
| 		}
 | |
| 	}
 | |
| 	return nodes;
 | |
| }
 | |
| 
 | |
| struct node_groups {
 | |
| 	unsigned id;
 | |
| 
 | |
| 	union {
 | |
| 		unsigned ngroups;
 | |
| 		unsigned ncpus;
 | |
| 	};
 | |
| };
 | |
| 
 | |
| static int ncpus_cmp_func(const void *l, const void *r)
 | |
| {
 | |
| 	const struct node_groups *ln = l;
 | |
| 	const struct node_groups *rn = r;
 | |
| 
 | |
| 	return ln->ncpus - rn->ncpus;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Allocate group number for each node, so that for each node:
 | |
|  *
 | |
|  * 1) the allocated number is >= 1
 | |
|  *
 | |
|  * 2) the allocated number is <= active CPU number of this node
 | |
|  *
 | |
|  * The actual allocated total groups may be less than @numgrps when
 | |
|  * active total CPU number is less than @numgrps.
 | |
|  *
 | |
|  * Active CPUs means the CPUs in '@cpu_mask AND @node_to_cpumask[]'
 | |
|  * for each node.
 | |
|  */
 | |
| static void alloc_nodes_groups(unsigned int numgrps,
 | |
| 			       cpumask_var_t *node_to_cpumask,
 | |
| 			       const struct cpumask *cpu_mask,
 | |
| 			       const nodemask_t nodemsk,
 | |
| 			       struct cpumask *nmsk,
 | |
| 			       struct node_groups *node_groups)
 | |
| {
 | |
| 	unsigned n, remaining_ncpus = 0;
 | |
| 
 | |
| 	for (n = 0; n < nr_node_ids; n++) {
 | |
| 		node_groups[n].id = n;
 | |
| 		node_groups[n].ncpus = UINT_MAX;
 | |
| 	}
 | |
| 
 | |
| 	for_each_node_mask(n, nodemsk) {
 | |
| 		unsigned ncpus;
 | |
| 
 | |
| 		cpumask_and(nmsk, cpu_mask, node_to_cpumask[n]);
 | |
| 		ncpus = cpumask_weight(nmsk);
 | |
| 
 | |
| 		if (!ncpus)
 | |
| 			continue;
 | |
| 		remaining_ncpus += ncpus;
 | |
| 		node_groups[n].ncpus = ncpus;
 | |
| 	}
 | |
| 
 | |
| 	numgrps = min_t(unsigned, remaining_ncpus, numgrps);
 | |
| 
 | |
| 	sort(node_groups, nr_node_ids, sizeof(node_groups[0]),
 | |
| 	     ncpus_cmp_func, NULL);
 | |
| 
 | |
| 	/*
 | |
| 	 * Allocate groups for each node according to the ratio of this
 | |
| 	 * node's nr_cpus to remaining un-assigned ncpus. 'numgrps' is
 | |
| 	 * bigger than number of active numa nodes. Always start the
 | |
| 	 * allocation from the node with minimized nr_cpus.
 | |
| 	 *
 | |
| 	 * This way guarantees that each active node gets allocated at
 | |
| 	 * least one group, and the theory is simple: over-allocation
 | |
| 	 * is only done when this node is assigned by one group, so
 | |
| 	 * other nodes will be allocated >= 1 groups, since 'numgrps' is
 | |
| 	 * bigger than number of numa nodes.
 | |
| 	 *
 | |
| 	 * One perfect invariant is that number of allocated groups for
 | |
| 	 * each node is <= CPU count of this node:
 | |
| 	 *
 | |
| 	 * 1) suppose there are two nodes: A and B
 | |
| 	 * 	ncpu(X) is CPU count of node X
 | |
| 	 * 	grps(X) is the group count allocated to node X via this
 | |
| 	 * 	algorithm
 | |
| 	 *
 | |
| 	 * 	ncpu(A) <= ncpu(B)
 | |
| 	 * 	ncpu(A) + ncpu(B) = N
 | |
| 	 * 	grps(A) + grps(B) = G
 | |
| 	 *
 | |
| 	 * 	grps(A) = max(1, round_down(G * ncpu(A) / N))
 | |
| 	 * 	grps(B) = G - grps(A)
 | |
| 	 *
 | |
| 	 * 	both N and G are integer, and 2 <= G <= N, suppose
 | |
| 	 * 	G = N - delta, and 0 <= delta <= N - 2
 | |
| 	 *
 | |
| 	 * 2) obviously grps(A) <= ncpu(A) because:
 | |
| 	 *
 | |
| 	 * 	if grps(A) is 1, then grps(A) <= ncpu(A) given
 | |
| 	 * 	ncpu(A) >= 1
 | |
| 	 *
 | |
| 	 * 	otherwise,
 | |
| 	 * 		grps(A) <= G * ncpu(A) / N <= ncpu(A), given G <= N
 | |
| 	 *
 | |
| 	 * 3) prove how grps(B) <= ncpu(B):
 | |
| 	 *
 | |
| 	 * 	if round_down(G * ncpu(A) / N) == 0, vecs(B) won't be
 | |
| 	 * 	over-allocated, so grps(B) <= ncpu(B),
 | |
| 	 *
 | |
| 	 * 	otherwise:
 | |
| 	 *
 | |
| 	 * 	grps(A) =
 | |
| 	 * 		round_down(G * ncpu(A) / N) =
 | |
| 	 * 		round_down((N - delta) * ncpu(A) / N) =
 | |
| 	 * 		round_down((N * ncpu(A) - delta * ncpu(A)) / N)	 >=
 | |
| 	 * 		round_down((N * ncpu(A) - delta * N) / N)	 =
 | |
| 	 * 		cpu(A) - delta
 | |
| 	 *
 | |
| 	 * 	then:
 | |
| 	 *
 | |
| 	 * 	grps(A) - G >= ncpu(A) - delta - G
 | |
| 	 * 	=>
 | |
| 	 * 	G - grps(A) <= G + delta - ncpu(A)
 | |
| 	 * 	=>
 | |
| 	 * 	grps(B) <= N - ncpu(A)
 | |
| 	 * 	=>
 | |
| 	 * 	grps(B) <= cpu(B)
 | |
| 	 *
 | |
| 	 * For nodes >= 3, it can be thought as one node and another big
 | |
| 	 * node given that is exactly what this algorithm is implemented,
 | |
| 	 * and we always re-calculate 'remaining_ncpus' & 'numgrps', and
 | |
| 	 * finally for each node X: grps(X) <= ncpu(X).
 | |
| 	 *
 | |
| 	 */
 | |
| 	for (n = 0; n < nr_node_ids; n++) {
 | |
| 		unsigned ngroups, ncpus;
 | |
| 
 | |
| 		if (node_groups[n].ncpus == UINT_MAX)
 | |
| 			continue;
 | |
| 
 | |
| 		WARN_ON_ONCE(numgrps == 0);
 | |
| 
 | |
| 		ncpus = node_groups[n].ncpus;
 | |
| 		ngroups = max_t(unsigned, 1,
 | |
| 				 numgrps * ncpus / remaining_ncpus);
 | |
| 		WARN_ON_ONCE(ngroups > ncpus);
 | |
| 
 | |
| 		node_groups[n].ngroups = ngroups;
 | |
| 
 | |
| 		remaining_ncpus -= ncpus;
 | |
| 		numgrps -= ngroups;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int __group_cpus_evenly(unsigned int startgrp, unsigned int numgrps,
 | |
| 			       cpumask_var_t *node_to_cpumask,
 | |
| 			       const struct cpumask *cpu_mask,
 | |
| 			       struct cpumask *nmsk, struct cpumask *masks)
 | |
| {
 | |
| 	unsigned int i, n, nodes, cpus_per_grp, extra_grps, done = 0;
 | |
| 	unsigned int last_grp = numgrps;
 | |
| 	unsigned int curgrp = startgrp;
 | |
| 	nodemask_t nodemsk = NODE_MASK_NONE;
 | |
| 	struct node_groups *node_groups;
 | |
| 
 | |
| 	if (cpumask_empty(cpu_mask))
 | |
| 		return 0;
 | |
| 
 | |
| 	nodes = get_nodes_in_cpumask(node_to_cpumask, cpu_mask, &nodemsk);
 | |
| 
 | |
| 	/*
 | |
| 	 * If the number of nodes in the mask is greater than or equal the
 | |
| 	 * number of groups we just spread the groups across the nodes.
 | |
| 	 */
 | |
| 	if (numgrps <= nodes) {
 | |
| 		for_each_node_mask(n, nodemsk) {
 | |
| 			/* Ensure that only CPUs which are in both masks are set */
 | |
| 			cpumask_and(nmsk, cpu_mask, node_to_cpumask[n]);
 | |
| 			cpumask_or(&masks[curgrp], &masks[curgrp], nmsk);
 | |
| 			if (++curgrp == last_grp)
 | |
| 				curgrp = 0;
 | |
| 		}
 | |
| 		return numgrps;
 | |
| 	}
 | |
| 
 | |
| 	node_groups = kcalloc(nr_node_ids,
 | |
| 			       sizeof(struct node_groups),
 | |
| 			       GFP_KERNEL);
 | |
| 	if (!node_groups)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	/* allocate group number for each node */
 | |
| 	alloc_nodes_groups(numgrps, node_to_cpumask, cpu_mask,
 | |
| 			   nodemsk, nmsk, node_groups);
 | |
| 	for (i = 0; i < nr_node_ids; i++) {
 | |
| 		unsigned int ncpus, v;
 | |
| 		struct node_groups *nv = &node_groups[i];
 | |
| 
 | |
| 		if (nv->ngroups == UINT_MAX)
 | |
| 			continue;
 | |
| 
 | |
| 		/* Get the cpus on this node which are in the mask */
 | |
| 		cpumask_and(nmsk, cpu_mask, node_to_cpumask[nv->id]);
 | |
| 		ncpus = cpumask_weight(nmsk);
 | |
| 		if (!ncpus)
 | |
| 			continue;
 | |
| 
 | |
| 		WARN_ON_ONCE(nv->ngroups > ncpus);
 | |
| 
 | |
| 		/* Account for rounding errors */
 | |
| 		extra_grps = ncpus - nv->ngroups * (ncpus / nv->ngroups);
 | |
| 
 | |
| 		/* Spread allocated groups on CPUs of the current node */
 | |
| 		for (v = 0; v < nv->ngroups; v++, curgrp++) {
 | |
| 			cpus_per_grp = ncpus / nv->ngroups;
 | |
| 
 | |
| 			/* Account for extra groups to compensate rounding errors */
 | |
| 			if (extra_grps) {
 | |
| 				cpus_per_grp++;
 | |
| 				--extra_grps;
 | |
| 			}
 | |
| 
 | |
| 			/*
 | |
| 			 * wrapping has to be considered given 'startgrp'
 | |
| 			 * may start anywhere
 | |
| 			 */
 | |
| 			if (curgrp >= last_grp)
 | |
| 				curgrp = 0;
 | |
| 			grp_spread_init_one(&masks[curgrp], nmsk,
 | |
| 						cpus_per_grp);
 | |
| 		}
 | |
| 		done += nv->ngroups;
 | |
| 	}
 | |
| 	kfree(node_groups);
 | |
| 	return done;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * group_cpus_evenly - Group all CPUs evenly per NUMA/CPU locality
 | |
|  * @numgrps: number of groups
 | |
|  *
 | |
|  * Return: cpumask array if successful, NULL otherwise. And each element
 | |
|  * includes CPUs assigned to this group
 | |
|  *
 | |
|  * Try to put close CPUs from viewpoint of CPU and NUMA locality into
 | |
|  * same group, and run two-stage grouping:
 | |
|  *	1) allocate present CPUs on these groups evenly first
 | |
|  *	2) allocate other possible CPUs on these groups evenly
 | |
|  *
 | |
|  * We guarantee in the resulted grouping that all CPUs are covered, and
 | |
|  * no same CPU is assigned to multiple groups
 | |
|  */
 | |
| struct cpumask *group_cpus_evenly(unsigned int numgrps)
 | |
| {
 | |
| 	unsigned int curgrp = 0, nr_present = 0, nr_others = 0;
 | |
| 	cpumask_var_t *node_to_cpumask;
 | |
| 	cpumask_var_t nmsk, npresmsk;
 | |
| 	int ret = -ENOMEM;
 | |
| 	struct cpumask *masks = NULL;
 | |
| 
 | |
| 	if (!zalloc_cpumask_var(&nmsk, GFP_KERNEL))
 | |
| 		return NULL;
 | |
| 
 | |
| 	if (!zalloc_cpumask_var(&npresmsk, GFP_KERNEL))
 | |
| 		goto fail_nmsk;
 | |
| 
 | |
| 	node_to_cpumask = alloc_node_to_cpumask();
 | |
| 	if (!node_to_cpumask)
 | |
| 		goto fail_npresmsk;
 | |
| 
 | |
| 	masks = kcalloc(numgrps, sizeof(*masks), GFP_KERNEL);
 | |
| 	if (!masks)
 | |
| 		goto fail_node_to_cpumask;
 | |
| 
 | |
| 	/* Stabilize the cpumasks */
 | |
| 	cpus_read_lock();
 | |
| 	build_node_to_cpumask(node_to_cpumask);
 | |
| 
 | |
| 	/* grouping present CPUs first */
 | |
| 	ret = __group_cpus_evenly(curgrp, numgrps, node_to_cpumask,
 | |
| 				  cpu_present_mask, nmsk, masks);
 | |
| 	if (ret < 0)
 | |
| 		goto fail_build_affinity;
 | |
| 	nr_present = ret;
 | |
| 
 | |
| 	/*
 | |
| 	 * Allocate non present CPUs starting from the next group to be
 | |
| 	 * handled. If the grouping of present CPUs already exhausted the
 | |
| 	 * group space, assign the non present CPUs to the already
 | |
| 	 * allocated out groups.
 | |
| 	 */
 | |
| 	if (nr_present >= numgrps)
 | |
| 		curgrp = 0;
 | |
| 	else
 | |
| 		curgrp = nr_present;
 | |
| 	cpumask_andnot(npresmsk, cpu_possible_mask, cpu_present_mask);
 | |
| 	ret = __group_cpus_evenly(curgrp, numgrps, node_to_cpumask,
 | |
| 				  npresmsk, nmsk, masks);
 | |
| 	if (ret >= 0)
 | |
| 		nr_others = ret;
 | |
| 
 | |
|  fail_build_affinity:
 | |
| 	cpus_read_unlock();
 | |
| 
 | |
| 	if (ret >= 0)
 | |
| 		WARN_ON(nr_present + nr_others < numgrps);
 | |
| 
 | |
|  fail_node_to_cpumask:
 | |
| 	free_node_to_cpumask(node_to_cpumask);
 | |
| 
 | |
|  fail_npresmsk:
 | |
| 	free_cpumask_var(npresmsk);
 | |
| 
 | |
|  fail_nmsk:
 | |
| 	free_cpumask_var(nmsk);
 | |
| 	if (ret < 0) {
 | |
| 		kfree(masks);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	return masks;
 | |
| }
 | |
| #else /* CONFIG_SMP */
 | |
| struct cpumask *group_cpus_evenly(unsigned int numgrps)
 | |
| {
 | |
| 	struct cpumask *masks = kcalloc(numgrps, sizeof(*masks), GFP_KERNEL);
 | |
| 
 | |
| 	if (!masks)
 | |
| 		return NULL;
 | |
| 
 | |
| 	/* assign all CPUs(cpu 0) to the 1st group only */
 | |
| 	cpumask_copy(&masks[0], cpu_possible_mask);
 | |
| 	return masks;
 | |
| }
 | |
| #endif /* CONFIG_SMP */
 | |
| EXPORT_SYMBOL_GPL(group_cpus_evenly);
 |