mirror of
				git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
				synced 2025-09-18 22:14:16 +00:00 
			
		
		
		
	 39e88ca2c9
			
		
	
	
		39e88ca2c9
		
	
	
	
	
		
			
			When __generic_file_aio_read() hits an error during reading, it reports the
error iff nothing has successfully been read yet.  This is condition - when
an error occurs, if nothing has been read/written, report the error code;
otherwise, report the amount of bytes successfully transferred upto that
point.
This corner case can be exposed by performing readv(2) with the following
iov.
 iov[0] = len0 @ ptr0
 iov[1] = len1 @ NULL (or any other invalid pointer)
 iov[2] = len2 @ ptr2
When file size is enough, performing above readv(2) results in
 len0 bytes from file_pos @ ptr0
 len2 bytes from file_pos + len0 @ ptr2
And the return value is len0 + len2.  Test program is attached to this
mail.
This patch makes __generic_file_aio_read()'s error handling identical to
other functions.
#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
#include <sys/uio.h>
#include <errno.h>
#include <string.h>
int main(int argc, char **argv)
{
	const char *path;
	struct stat stbuf;
	size_t len0, len1;
	void *buf0, *buf1;
	struct iovec iov[3];
	int fd, i;
	ssize_t ret;
	if (argc < 2) {
		fprintf(stderr, "Usage: testreadv path (better be a "
			"small text file)\n");
		return 1;
	}
	path = argv[1];
	if (stat(path, &stbuf) < 0) {
		perror("stat");
		return 1;
	}
	len0 = stbuf.st_size / 2;
	len1 = stbuf.st_size - len0;
	if (!len0 || !len1) {
		fprintf(stderr, "Dude, file is too small\n");
		return 1;
	}
	if ((fd = open(path, O_RDONLY)) < 0) {
		perror("open");
		return 1;
	}
	if (!(buf0 = malloc(len0)) || !(buf1 = malloc(len1))) {
		perror("malloc");
		return 1;
	}
	memset(buf0, 0, len0);
	memset(buf1, 0, len1);
	iov[0].iov_base = buf0;
	iov[0].iov_len = len0;
	iov[1].iov_base = NULL;
	iov[1].iov_len = len1;
	iov[2].iov_base = buf1;
	iov[2].iov_len = len1;
	printf("vector ");
	for (i = 0; i < 3; i++)
		printf("%p:%zu ", iov[i].iov_base, iov[i].iov_len);
	printf("\n");
	ret = readv(fd, iov, 3);
	if (ret < 0)
		perror("readv");
	printf("readv returned %zd\nbuf0 = [%s]\nbuf1 = [%s]\n",
	       ret, (char *)buf0, (char *)buf1);
	return 0;
}
Signed-off-by: Tejun Heo <htejun@gmail.com>
Cc: Benjamin LaHaise <bcrl@kvack.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
		
	
			
		
			
				
	
	
		
			2270 lines
		
	
	
	
		
			56 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2270 lines
		
	
	
	
		
			56 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  *	linux/mm/filemap.c
 | |
|  *
 | |
|  * Copyright (C) 1994-1999  Linus Torvalds
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * This file handles the generic file mmap semantics used by
 | |
|  * most "normal" filesystems (but you don't /have/ to use this:
 | |
|  * the NFS filesystem used to do this differently, for example)
 | |
|  */
 | |
| #include <linux/config.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/compiler.h>
 | |
| #include <linux/fs.h>
 | |
| #include <linux/aio.h>
 | |
| #include <linux/kernel_stat.h>
 | |
| #include <linux/mm.h>
 | |
| #include <linux/swap.h>
 | |
| #include <linux/mman.h>
 | |
| #include <linux/pagemap.h>
 | |
| #include <linux/file.h>
 | |
| #include <linux/uio.h>
 | |
| #include <linux/hash.h>
 | |
| #include <linux/writeback.h>
 | |
| #include <linux/pagevec.h>
 | |
| #include <linux/blkdev.h>
 | |
| #include <linux/security.h>
 | |
| #include <linux/syscalls.h>
 | |
| #include "filemap.h"
 | |
| /*
 | |
|  * FIXME: remove all knowledge of the buffer layer from the core VM
 | |
|  */
 | |
| #include <linux/buffer_head.h> /* for generic_osync_inode */
 | |
| 
 | |
| #include <asm/uaccess.h>
 | |
| #include <asm/mman.h>
 | |
| 
 | |
| static ssize_t
 | |
| generic_file_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
 | |
| 	loff_t offset, unsigned long nr_segs);
 | |
| 
 | |
| /*
 | |
|  * Shared mappings implemented 30.11.1994. It's not fully working yet,
 | |
|  * though.
 | |
|  *
 | |
|  * Shared mappings now work. 15.8.1995  Bruno.
 | |
|  *
 | |
|  * finished 'unifying' the page and buffer cache and SMP-threaded the
 | |
|  * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
 | |
|  *
 | |
|  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * Lock ordering:
 | |
|  *
 | |
|  *  ->i_mmap_lock		(vmtruncate)
 | |
|  *    ->private_lock		(__free_pte->__set_page_dirty_buffers)
 | |
|  *      ->swap_lock		(exclusive_swap_page, others)
 | |
|  *        ->mapping->tree_lock
 | |
|  *
 | |
|  *  ->i_sem
 | |
|  *    ->i_mmap_lock		(truncate->unmap_mapping_range)
 | |
|  *
 | |
|  *  ->mmap_sem
 | |
|  *    ->i_mmap_lock
 | |
|  *      ->page_table_lock or pte_lock	(various, mainly in memory.c)
 | |
|  *        ->mapping->tree_lock	(arch-dependent flush_dcache_mmap_lock)
 | |
|  *
 | |
|  *  ->mmap_sem
 | |
|  *    ->lock_page		(access_process_vm)
 | |
|  *
 | |
|  *  ->mmap_sem
 | |
|  *    ->i_sem			(msync)
 | |
|  *
 | |
|  *  ->i_sem
 | |
|  *    ->i_alloc_sem             (various)
 | |
|  *
 | |
|  *  ->inode_lock
 | |
|  *    ->sb_lock			(fs/fs-writeback.c)
 | |
|  *    ->mapping->tree_lock	(__sync_single_inode)
 | |
|  *
 | |
|  *  ->i_mmap_lock
 | |
|  *    ->anon_vma.lock		(vma_adjust)
 | |
|  *
 | |
|  *  ->anon_vma.lock
 | |
|  *    ->page_table_lock or pte_lock	(anon_vma_prepare and various)
 | |
|  *
 | |
|  *  ->page_table_lock or pte_lock
 | |
|  *    ->swap_lock		(try_to_unmap_one)
 | |
|  *    ->private_lock		(try_to_unmap_one)
 | |
|  *    ->tree_lock		(try_to_unmap_one)
 | |
|  *    ->zone.lru_lock		(follow_page->mark_page_accessed)
 | |
|  *    ->private_lock		(page_remove_rmap->set_page_dirty)
 | |
|  *    ->tree_lock		(page_remove_rmap->set_page_dirty)
 | |
|  *    ->inode_lock		(page_remove_rmap->set_page_dirty)
 | |
|  *    ->inode_lock		(zap_pte_range->set_page_dirty)
 | |
|  *    ->private_lock		(zap_pte_range->__set_page_dirty_buffers)
 | |
|  *
 | |
|  *  ->task->proc_lock
 | |
|  *    ->dcache_lock		(proc_pid_lookup)
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * Remove a page from the page cache and free it. Caller has to make
 | |
|  * sure the page is locked and that nobody else uses it - or that usage
 | |
|  * is safe.  The caller must hold a write_lock on the mapping's tree_lock.
 | |
|  */
 | |
| void __remove_from_page_cache(struct page *page)
 | |
| {
 | |
| 	struct address_space *mapping = page->mapping;
 | |
| 
 | |
| 	radix_tree_delete(&mapping->page_tree, page->index);
 | |
| 	page->mapping = NULL;
 | |
| 	mapping->nrpages--;
 | |
| 	pagecache_acct(-1);
 | |
| }
 | |
| 
 | |
| void remove_from_page_cache(struct page *page)
 | |
| {
 | |
| 	struct address_space *mapping = page->mapping;
 | |
| 
 | |
| 	BUG_ON(!PageLocked(page));
 | |
| 
 | |
| 	write_lock_irq(&mapping->tree_lock);
 | |
| 	__remove_from_page_cache(page);
 | |
| 	write_unlock_irq(&mapping->tree_lock);
 | |
| }
 | |
| 
 | |
| static int sync_page(void *word)
 | |
| {
 | |
| 	struct address_space *mapping;
 | |
| 	struct page *page;
 | |
| 
 | |
| 	page = container_of((page_flags_t *)word, struct page, flags);
 | |
| 
 | |
| 	/*
 | |
| 	 * page_mapping() is being called without PG_locked held.
 | |
| 	 * Some knowledge of the state and use of the page is used to
 | |
| 	 * reduce the requirements down to a memory barrier.
 | |
| 	 * The danger here is of a stale page_mapping() return value
 | |
| 	 * indicating a struct address_space different from the one it's
 | |
| 	 * associated with when it is associated with one.
 | |
| 	 * After smp_mb(), it's either the correct page_mapping() for
 | |
| 	 * the page, or an old page_mapping() and the page's own
 | |
| 	 * page_mapping() has gone NULL.
 | |
| 	 * The ->sync_page() address_space operation must tolerate
 | |
| 	 * page_mapping() going NULL. By an amazing coincidence,
 | |
| 	 * this comes about because none of the users of the page
 | |
| 	 * in the ->sync_page() methods make essential use of the
 | |
| 	 * page_mapping(), merely passing the page down to the backing
 | |
| 	 * device's unplug functions when it's non-NULL, which in turn
 | |
| 	 * ignore it for all cases but swap, where only page_private(page) is
 | |
| 	 * of interest. When page_mapping() does go NULL, the entire
 | |
| 	 * call stack gracefully ignores the page and returns.
 | |
| 	 * -- wli
 | |
| 	 */
 | |
| 	smp_mb();
 | |
| 	mapping = page_mapping(page);
 | |
| 	if (mapping && mapping->a_ops && mapping->a_ops->sync_page)
 | |
| 		mapping->a_ops->sync_page(page);
 | |
| 	io_schedule();
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * filemap_fdatawrite_range - start writeback against all of a mapping's
 | |
|  * dirty pages that lie within the byte offsets <start, end>
 | |
|  * @mapping:	address space structure to write
 | |
|  * @start:	offset in bytes where the range starts
 | |
|  * @end:	offset in bytes where the range ends
 | |
|  * @sync_mode:	enable synchronous operation
 | |
|  *
 | |
|  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
 | |
|  * opposed to a regular memory * cleansing writeback.  The difference between
 | |
|  * these two operations is that if a dirty page/buffer is encountered, it must
 | |
|  * be waited upon, and not just skipped over.
 | |
|  */
 | |
| static int __filemap_fdatawrite_range(struct address_space *mapping,
 | |
| 	loff_t start, loff_t end, int sync_mode)
 | |
| {
 | |
| 	int ret;
 | |
| 	struct writeback_control wbc = {
 | |
| 		.sync_mode = sync_mode,
 | |
| 		.nr_to_write = mapping->nrpages * 2,
 | |
| 		.start = start,
 | |
| 		.end = end,
 | |
| 	};
 | |
| 
 | |
| 	if (!mapping_cap_writeback_dirty(mapping))
 | |
| 		return 0;
 | |
| 
 | |
| 	ret = do_writepages(mapping, &wbc);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static inline int __filemap_fdatawrite(struct address_space *mapping,
 | |
| 	int sync_mode)
 | |
| {
 | |
| 	return __filemap_fdatawrite_range(mapping, 0, 0, sync_mode);
 | |
| }
 | |
| 
 | |
| int filemap_fdatawrite(struct address_space *mapping)
 | |
| {
 | |
| 	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
 | |
| }
 | |
| EXPORT_SYMBOL(filemap_fdatawrite);
 | |
| 
 | |
| static int filemap_fdatawrite_range(struct address_space *mapping,
 | |
| 	loff_t start, loff_t end)
 | |
| {
 | |
| 	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This is a mostly non-blocking flush.  Not suitable for data-integrity
 | |
|  * purposes - I/O may not be started against all dirty pages.
 | |
|  */
 | |
| int filemap_flush(struct address_space *mapping)
 | |
| {
 | |
| 	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
 | |
| }
 | |
| EXPORT_SYMBOL(filemap_flush);
 | |
| 
 | |
| /*
 | |
|  * Wait for writeback to complete against pages indexed by start->end
 | |
|  * inclusive
 | |
|  */
 | |
| static int wait_on_page_writeback_range(struct address_space *mapping,
 | |
| 				pgoff_t start, pgoff_t end)
 | |
| {
 | |
| 	struct pagevec pvec;
 | |
| 	int nr_pages;
 | |
| 	int ret = 0;
 | |
| 	pgoff_t index;
 | |
| 
 | |
| 	if (end < start)
 | |
| 		return 0;
 | |
| 
 | |
| 	pagevec_init(&pvec, 0);
 | |
| 	index = start;
 | |
| 	while ((index <= end) &&
 | |
| 			(nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
 | |
| 			PAGECACHE_TAG_WRITEBACK,
 | |
| 			min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
 | |
| 		unsigned i;
 | |
| 
 | |
| 		for (i = 0; i < nr_pages; i++) {
 | |
| 			struct page *page = pvec.pages[i];
 | |
| 
 | |
| 			/* until radix tree lookup accepts end_index */
 | |
| 			if (page->index > end)
 | |
| 				continue;
 | |
| 
 | |
| 			wait_on_page_writeback(page);
 | |
| 			if (PageError(page))
 | |
| 				ret = -EIO;
 | |
| 		}
 | |
| 		pagevec_release(&pvec);
 | |
| 		cond_resched();
 | |
| 	}
 | |
| 
 | |
| 	/* Check for outstanding write errors */
 | |
| 	if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
 | |
| 		ret = -ENOSPC;
 | |
| 	if (test_and_clear_bit(AS_EIO, &mapping->flags))
 | |
| 		ret = -EIO;
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Write and wait upon all the pages in the passed range.  This is a "data
 | |
|  * integrity" operation.  It waits upon in-flight writeout before starting and
 | |
|  * waiting upon new writeout.  If there was an IO error, return it.
 | |
|  *
 | |
|  * We need to re-take i_sem during the generic_osync_inode list walk because
 | |
|  * it is otherwise livelockable.
 | |
|  */
 | |
| int sync_page_range(struct inode *inode, struct address_space *mapping,
 | |
| 			loff_t pos, size_t count)
 | |
| {
 | |
| 	pgoff_t start = pos >> PAGE_CACHE_SHIFT;
 | |
| 	pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (!mapping_cap_writeback_dirty(mapping) || !count)
 | |
| 		return 0;
 | |
| 	ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
 | |
| 	if (ret == 0) {
 | |
| 		down(&inode->i_sem);
 | |
| 		ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
 | |
| 		up(&inode->i_sem);
 | |
| 	}
 | |
| 	if (ret == 0)
 | |
| 		ret = wait_on_page_writeback_range(mapping, start, end);
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL(sync_page_range);
 | |
| 
 | |
| /*
 | |
|  * Note: Holding i_sem across sync_page_range_nolock is not a good idea
 | |
|  * as it forces O_SYNC writers to different parts of the same file
 | |
|  * to be serialised right until io completion.
 | |
|  */
 | |
| static int sync_page_range_nolock(struct inode *inode,
 | |
| 				  struct address_space *mapping,
 | |
| 				  loff_t pos, size_t count)
 | |
| {
 | |
| 	pgoff_t start = pos >> PAGE_CACHE_SHIFT;
 | |
| 	pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (!mapping_cap_writeback_dirty(mapping) || !count)
 | |
| 		return 0;
 | |
| 	ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
 | |
| 	if (ret == 0)
 | |
| 		ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
 | |
| 	if (ret == 0)
 | |
| 		ret = wait_on_page_writeback_range(mapping, start, end);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * filemap_fdatawait - walk the list of under-writeback pages of the given
 | |
|  *     address space and wait for all of them.
 | |
|  *
 | |
|  * @mapping: address space structure to wait for
 | |
|  */
 | |
| int filemap_fdatawait(struct address_space *mapping)
 | |
| {
 | |
| 	loff_t i_size = i_size_read(mapping->host);
 | |
| 
 | |
| 	if (i_size == 0)
 | |
| 		return 0;
 | |
| 
 | |
| 	return wait_on_page_writeback_range(mapping, 0,
 | |
| 				(i_size - 1) >> PAGE_CACHE_SHIFT);
 | |
| }
 | |
| EXPORT_SYMBOL(filemap_fdatawait);
 | |
| 
 | |
| int filemap_write_and_wait(struct address_space *mapping)
 | |
| {
 | |
| 	int retval = 0;
 | |
| 
 | |
| 	if (mapping->nrpages) {
 | |
| 		retval = filemap_fdatawrite(mapping);
 | |
| 		if (retval == 0)
 | |
| 			retval = filemap_fdatawait(mapping);
 | |
| 	}
 | |
| 	return retval;
 | |
| }
 | |
| 
 | |
| int filemap_write_and_wait_range(struct address_space *mapping,
 | |
| 				 loff_t lstart, loff_t lend)
 | |
| {
 | |
| 	int retval = 0;
 | |
| 
 | |
| 	if (mapping->nrpages) {
 | |
| 		retval = __filemap_fdatawrite_range(mapping, lstart, lend,
 | |
| 						    WB_SYNC_ALL);
 | |
| 		if (retval == 0)
 | |
| 			retval = wait_on_page_writeback_range(mapping,
 | |
| 						    lstart >> PAGE_CACHE_SHIFT,
 | |
| 						    lend >> PAGE_CACHE_SHIFT);
 | |
| 	}
 | |
| 	return retval;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This function is used to add newly allocated pagecache pages:
 | |
|  * the page is new, so we can just run SetPageLocked() against it.
 | |
|  * The other page state flags were set by rmqueue().
 | |
|  *
 | |
|  * This function does not add the page to the LRU.  The caller must do that.
 | |
|  */
 | |
| int add_to_page_cache(struct page *page, struct address_space *mapping,
 | |
| 		pgoff_t offset, gfp_t gfp_mask)
 | |
| {
 | |
| 	int error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
 | |
| 
 | |
| 	if (error == 0) {
 | |
| 		write_lock_irq(&mapping->tree_lock);
 | |
| 		error = radix_tree_insert(&mapping->page_tree, offset, page);
 | |
| 		if (!error) {
 | |
| 			page_cache_get(page);
 | |
| 			SetPageLocked(page);
 | |
| 			page->mapping = mapping;
 | |
| 			page->index = offset;
 | |
| 			mapping->nrpages++;
 | |
| 			pagecache_acct(1);
 | |
| 		}
 | |
| 		write_unlock_irq(&mapping->tree_lock);
 | |
| 		radix_tree_preload_end();
 | |
| 	}
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| EXPORT_SYMBOL(add_to_page_cache);
 | |
| 
 | |
| int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
 | |
| 				pgoff_t offset, gfp_t gfp_mask)
 | |
| {
 | |
| 	int ret = add_to_page_cache(page, mapping, offset, gfp_mask);
 | |
| 	if (ret == 0)
 | |
| 		lru_cache_add(page);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * In order to wait for pages to become available there must be
 | |
|  * waitqueues associated with pages. By using a hash table of
 | |
|  * waitqueues where the bucket discipline is to maintain all
 | |
|  * waiters on the same queue and wake all when any of the pages
 | |
|  * become available, and for the woken contexts to check to be
 | |
|  * sure the appropriate page became available, this saves space
 | |
|  * at a cost of "thundering herd" phenomena during rare hash
 | |
|  * collisions.
 | |
|  */
 | |
| static wait_queue_head_t *page_waitqueue(struct page *page)
 | |
| {
 | |
| 	const struct zone *zone = page_zone(page);
 | |
| 
 | |
| 	return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
 | |
| }
 | |
| 
 | |
| static inline void wake_up_page(struct page *page, int bit)
 | |
| {
 | |
| 	__wake_up_bit(page_waitqueue(page), &page->flags, bit);
 | |
| }
 | |
| 
 | |
| void fastcall wait_on_page_bit(struct page *page, int bit_nr)
 | |
| {
 | |
| 	DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
 | |
| 
 | |
| 	if (test_bit(bit_nr, &page->flags))
 | |
| 		__wait_on_bit(page_waitqueue(page), &wait, sync_page,
 | |
| 							TASK_UNINTERRUPTIBLE);
 | |
| }
 | |
| EXPORT_SYMBOL(wait_on_page_bit);
 | |
| 
 | |
| /**
 | |
|  * unlock_page() - unlock a locked page
 | |
|  *
 | |
|  * @page: the page
 | |
|  *
 | |
|  * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
 | |
|  * Also wakes sleepers in wait_on_page_writeback() because the wakeup
 | |
|  * mechananism between PageLocked pages and PageWriteback pages is shared.
 | |
|  * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
 | |
|  *
 | |
|  * The first mb is necessary to safely close the critical section opened by the
 | |
|  * TestSetPageLocked(), the second mb is necessary to enforce ordering between
 | |
|  * the clear_bit and the read of the waitqueue (to avoid SMP races with a
 | |
|  * parallel wait_on_page_locked()).
 | |
|  */
 | |
| void fastcall unlock_page(struct page *page)
 | |
| {
 | |
| 	smp_mb__before_clear_bit();
 | |
| 	if (!TestClearPageLocked(page))
 | |
| 		BUG();
 | |
| 	smp_mb__after_clear_bit(); 
 | |
| 	wake_up_page(page, PG_locked);
 | |
| }
 | |
| EXPORT_SYMBOL(unlock_page);
 | |
| 
 | |
| /*
 | |
|  * End writeback against a page.
 | |
|  */
 | |
| void end_page_writeback(struct page *page)
 | |
| {
 | |
| 	if (!TestClearPageReclaim(page) || rotate_reclaimable_page(page)) {
 | |
| 		if (!test_clear_page_writeback(page))
 | |
| 			BUG();
 | |
| 	}
 | |
| 	smp_mb__after_clear_bit();
 | |
| 	wake_up_page(page, PG_writeback);
 | |
| }
 | |
| EXPORT_SYMBOL(end_page_writeback);
 | |
| 
 | |
| /*
 | |
|  * Get a lock on the page, assuming we need to sleep to get it.
 | |
|  *
 | |
|  * Ugly: running sync_page() in state TASK_UNINTERRUPTIBLE is scary.  If some
 | |
|  * random driver's requestfn sets TASK_RUNNING, we could busywait.  However
 | |
|  * chances are that on the second loop, the block layer's plug list is empty,
 | |
|  * so sync_page() will then return in state TASK_UNINTERRUPTIBLE.
 | |
|  */
 | |
| void fastcall __lock_page(struct page *page)
 | |
| {
 | |
| 	DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
 | |
| 
 | |
| 	__wait_on_bit_lock(page_waitqueue(page), &wait, sync_page,
 | |
| 							TASK_UNINTERRUPTIBLE);
 | |
| }
 | |
| EXPORT_SYMBOL(__lock_page);
 | |
| 
 | |
| /*
 | |
|  * a rather lightweight function, finding and getting a reference to a
 | |
|  * hashed page atomically.
 | |
|  */
 | |
| struct page * find_get_page(struct address_space *mapping, unsigned long offset)
 | |
| {
 | |
| 	struct page *page;
 | |
| 
 | |
| 	read_lock_irq(&mapping->tree_lock);
 | |
| 	page = radix_tree_lookup(&mapping->page_tree, offset);
 | |
| 	if (page)
 | |
| 		page_cache_get(page);
 | |
| 	read_unlock_irq(&mapping->tree_lock);
 | |
| 	return page;
 | |
| }
 | |
| 
 | |
| EXPORT_SYMBOL(find_get_page);
 | |
| 
 | |
| /*
 | |
|  * Same as above, but trylock it instead of incrementing the count.
 | |
|  */
 | |
| struct page *find_trylock_page(struct address_space *mapping, unsigned long offset)
 | |
| {
 | |
| 	struct page *page;
 | |
| 
 | |
| 	read_lock_irq(&mapping->tree_lock);
 | |
| 	page = radix_tree_lookup(&mapping->page_tree, offset);
 | |
| 	if (page && TestSetPageLocked(page))
 | |
| 		page = NULL;
 | |
| 	read_unlock_irq(&mapping->tree_lock);
 | |
| 	return page;
 | |
| }
 | |
| 
 | |
| EXPORT_SYMBOL(find_trylock_page);
 | |
| 
 | |
| /**
 | |
|  * find_lock_page - locate, pin and lock a pagecache page
 | |
|  *
 | |
|  * @mapping: the address_space to search
 | |
|  * @offset: the page index
 | |
|  *
 | |
|  * Locates the desired pagecache page, locks it, increments its reference
 | |
|  * count and returns its address.
 | |
|  *
 | |
|  * Returns zero if the page was not present. find_lock_page() may sleep.
 | |
|  */
 | |
| struct page *find_lock_page(struct address_space *mapping,
 | |
| 				unsigned long offset)
 | |
| {
 | |
| 	struct page *page;
 | |
| 
 | |
| 	read_lock_irq(&mapping->tree_lock);
 | |
| repeat:
 | |
| 	page = radix_tree_lookup(&mapping->page_tree, offset);
 | |
| 	if (page) {
 | |
| 		page_cache_get(page);
 | |
| 		if (TestSetPageLocked(page)) {
 | |
| 			read_unlock_irq(&mapping->tree_lock);
 | |
| 			lock_page(page);
 | |
| 			read_lock_irq(&mapping->tree_lock);
 | |
| 
 | |
| 			/* Has the page been truncated while we slept? */
 | |
| 			if (page->mapping != mapping || page->index != offset) {
 | |
| 				unlock_page(page);
 | |
| 				page_cache_release(page);
 | |
| 				goto repeat;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	read_unlock_irq(&mapping->tree_lock);
 | |
| 	return page;
 | |
| }
 | |
| 
 | |
| EXPORT_SYMBOL(find_lock_page);
 | |
| 
 | |
| /**
 | |
|  * find_or_create_page - locate or add a pagecache page
 | |
|  *
 | |
|  * @mapping: the page's address_space
 | |
|  * @index: the page's index into the mapping
 | |
|  * @gfp_mask: page allocation mode
 | |
|  *
 | |
|  * Locates a page in the pagecache.  If the page is not present, a new page
 | |
|  * is allocated using @gfp_mask and is added to the pagecache and to the VM's
 | |
|  * LRU list.  The returned page is locked and has its reference count
 | |
|  * incremented.
 | |
|  *
 | |
|  * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
 | |
|  * allocation!
 | |
|  *
 | |
|  * find_or_create_page() returns the desired page's address, or zero on
 | |
|  * memory exhaustion.
 | |
|  */
 | |
| struct page *find_or_create_page(struct address_space *mapping,
 | |
| 		unsigned long index, gfp_t gfp_mask)
 | |
| {
 | |
| 	struct page *page, *cached_page = NULL;
 | |
| 	int err;
 | |
| repeat:
 | |
| 	page = find_lock_page(mapping, index);
 | |
| 	if (!page) {
 | |
| 		if (!cached_page) {
 | |
| 			cached_page = alloc_page(gfp_mask);
 | |
| 			if (!cached_page)
 | |
| 				return NULL;
 | |
| 		}
 | |
| 		err = add_to_page_cache_lru(cached_page, mapping,
 | |
| 					index, gfp_mask);
 | |
| 		if (!err) {
 | |
| 			page = cached_page;
 | |
| 			cached_page = NULL;
 | |
| 		} else if (err == -EEXIST)
 | |
| 			goto repeat;
 | |
| 	}
 | |
| 	if (cached_page)
 | |
| 		page_cache_release(cached_page);
 | |
| 	return page;
 | |
| }
 | |
| 
 | |
| EXPORT_SYMBOL(find_or_create_page);
 | |
| 
 | |
| /**
 | |
|  * find_get_pages - gang pagecache lookup
 | |
|  * @mapping:	The address_space to search
 | |
|  * @start:	The starting page index
 | |
|  * @nr_pages:	The maximum number of pages
 | |
|  * @pages:	Where the resulting pages are placed
 | |
|  *
 | |
|  * find_get_pages() will search for and return a group of up to
 | |
|  * @nr_pages pages in the mapping.  The pages are placed at @pages.
 | |
|  * find_get_pages() takes a reference against the returned pages.
 | |
|  *
 | |
|  * The search returns a group of mapping-contiguous pages with ascending
 | |
|  * indexes.  There may be holes in the indices due to not-present pages.
 | |
|  *
 | |
|  * find_get_pages() returns the number of pages which were found.
 | |
|  */
 | |
| unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
 | |
| 			    unsigned int nr_pages, struct page **pages)
 | |
| {
 | |
| 	unsigned int i;
 | |
| 	unsigned int ret;
 | |
| 
 | |
| 	read_lock_irq(&mapping->tree_lock);
 | |
| 	ret = radix_tree_gang_lookup(&mapping->page_tree,
 | |
| 				(void **)pages, start, nr_pages);
 | |
| 	for (i = 0; i < ret; i++)
 | |
| 		page_cache_get(pages[i]);
 | |
| 	read_unlock_irq(&mapping->tree_lock);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Like find_get_pages, except we only return pages which are tagged with
 | |
|  * `tag'.   We update *index to index the next page for the traversal.
 | |
|  */
 | |
| unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
 | |
| 			int tag, unsigned int nr_pages, struct page **pages)
 | |
| {
 | |
| 	unsigned int i;
 | |
| 	unsigned int ret;
 | |
| 
 | |
| 	read_lock_irq(&mapping->tree_lock);
 | |
| 	ret = radix_tree_gang_lookup_tag(&mapping->page_tree,
 | |
| 				(void **)pages, *index, nr_pages, tag);
 | |
| 	for (i = 0; i < ret; i++)
 | |
| 		page_cache_get(pages[i]);
 | |
| 	if (ret)
 | |
| 		*index = pages[ret - 1]->index + 1;
 | |
| 	read_unlock_irq(&mapping->tree_lock);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Same as grab_cache_page, but do not wait if the page is unavailable.
 | |
|  * This is intended for speculative data generators, where the data can
 | |
|  * be regenerated if the page couldn't be grabbed.  This routine should
 | |
|  * be safe to call while holding the lock for another page.
 | |
|  *
 | |
|  * Clear __GFP_FS when allocating the page to avoid recursion into the fs
 | |
|  * and deadlock against the caller's locked page.
 | |
|  */
 | |
| struct page *
 | |
| grab_cache_page_nowait(struct address_space *mapping, unsigned long index)
 | |
| {
 | |
| 	struct page *page = find_get_page(mapping, index);
 | |
| 	gfp_t gfp_mask;
 | |
| 
 | |
| 	if (page) {
 | |
| 		if (!TestSetPageLocked(page))
 | |
| 			return page;
 | |
| 		page_cache_release(page);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	gfp_mask = mapping_gfp_mask(mapping) & ~__GFP_FS;
 | |
| 	page = alloc_pages(gfp_mask, 0);
 | |
| 	if (page && add_to_page_cache_lru(page, mapping, index, gfp_mask)) {
 | |
| 		page_cache_release(page);
 | |
| 		page = NULL;
 | |
| 	}
 | |
| 	return page;
 | |
| }
 | |
| 
 | |
| EXPORT_SYMBOL(grab_cache_page_nowait);
 | |
| 
 | |
| /*
 | |
|  * This is a generic file read routine, and uses the
 | |
|  * mapping->a_ops->readpage() function for the actual low-level
 | |
|  * stuff.
 | |
|  *
 | |
|  * This is really ugly. But the goto's actually try to clarify some
 | |
|  * of the logic when it comes to error handling etc.
 | |
|  *
 | |
|  * Note the struct file* is only passed for the use of readpage.  It may be
 | |
|  * NULL.
 | |
|  */
 | |
| void do_generic_mapping_read(struct address_space *mapping,
 | |
| 			     struct file_ra_state *_ra,
 | |
| 			     struct file *filp,
 | |
| 			     loff_t *ppos,
 | |
| 			     read_descriptor_t *desc,
 | |
| 			     read_actor_t actor)
 | |
| {
 | |
| 	struct inode *inode = mapping->host;
 | |
| 	unsigned long index;
 | |
| 	unsigned long end_index;
 | |
| 	unsigned long offset;
 | |
| 	unsigned long last_index;
 | |
| 	unsigned long next_index;
 | |
| 	unsigned long prev_index;
 | |
| 	loff_t isize;
 | |
| 	struct page *cached_page;
 | |
| 	int error;
 | |
| 	struct file_ra_state ra = *_ra;
 | |
| 
 | |
| 	cached_page = NULL;
 | |
| 	index = *ppos >> PAGE_CACHE_SHIFT;
 | |
| 	next_index = index;
 | |
| 	prev_index = ra.prev_page;
 | |
| 	last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
 | |
| 	offset = *ppos & ~PAGE_CACHE_MASK;
 | |
| 
 | |
| 	isize = i_size_read(inode);
 | |
| 	if (!isize)
 | |
| 		goto out;
 | |
| 
 | |
| 	end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
 | |
| 	for (;;) {
 | |
| 		struct page *page;
 | |
| 		unsigned long nr, ret;
 | |
| 
 | |
| 		/* nr is the maximum number of bytes to copy from this page */
 | |
| 		nr = PAGE_CACHE_SIZE;
 | |
| 		if (index >= end_index) {
 | |
| 			if (index > end_index)
 | |
| 				goto out;
 | |
| 			nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
 | |
| 			if (nr <= offset) {
 | |
| 				goto out;
 | |
| 			}
 | |
| 		}
 | |
| 		nr = nr - offset;
 | |
| 
 | |
| 		cond_resched();
 | |
| 		if (index == next_index)
 | |
| 			next_index = page_cache_readahead(mapping, &ra, filp,
 | |
| 					index, last_index - index);
 | |
| 
 | |
| find_page:
 | |
| 		page = find_get_page(mapping, index);
 | |
| 		if (unlikely(page == NULL)) {
 | |
| 			handle_ra_miss(mapping, &ra, index);
 | |
| 			goto no_cached_page;
 | |
| 		}
 | |
| 		if (!PageUptodate(page))
 | |
| 			goto page_not_up_to_date;
 | |
| page_ok:
 | |
| 
 | |
| 		/* If users can be writing to this page using arbitrary
 | |
| 		 * virtual addresses, take care about potential aliasing
 | |
| 		 * before reading the page on the kernel side.
 | |
| 		 */
 | |
| 		if (mapping_writably_mapped(mapping))
 | |
| 			flush_dcache_page(page);
 | |
| 
 | |
| 		/*
 | |
| 		 * When (part of) the same page is read multiple times
 | |
| 		 * in succession, only mark it as accessed the first time.
 | |
| 		 */
 | |
| 		if (prev_index != index)
 | |
| 			mark_page_accessed(page);
 | |
| 		prev_index = index;
 | |
| 
 | |
| 		/*
 | |
| 		 * Ok, we have the page, and it's up-to-date, so
 | |
| 		 * now we can copy it to user space...
 | |
| 		 *
 | |
| 		 * The actor routine returns how many bytes were actually used..
 | |
| 		 * NOTE! This may not be the same as how much of a user buffer
 | |
| 		 * we filled up (we may be padding etc), so we can only update
 | |
| 		 * "pos" here (the actor routine has to update the user buffer
 | |
| 		 * pointers and the remaining count).
 | |
| 		 */
 | |
| 		ret = actor(desc, page, offset, nr);
 | |
| 		offset += ret;
 | |
| 		index += offset >> PAGE_CACHE_SHIFT;
 | |
| 		offset &= ~PAGE_CACHE_MASK;
 | |
| 
 | |
| 		page_cache_release(page);
 | |
| 		if (ret == nr && desc->count)
 | |
| 			continue;
 | |
| 		goto out;
 | |
| 
 | |
| page_not_up_to_date:
 | |
| 		/* Get exclusive access to the page ... */
 | |
| 		lock_page(page);
 | |
| 
 | |
| 		/* Did it get unhashed before we got the lock? */
 | |
| 		if (!page->mapping) {
 | |
| 			unlock_page(page);
 | |
| 			page_cache_release(page);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		/* Did somebody else fill it already? */
 | |
| 		if (PageUptodate(page)) {
 | |
| 			unlock_page(page);
 | |
| 			goto page_ok;
 | |
| 		}
 | |
| 
 | |
| readpage:
 | |
| 		/* Start the actual read. The read will unlock the page. */
 | |
| 		error = mapping->a_ops->readpage(filp, page);
 | |
| 
 | |
| 		if (unlikely(error))
 | |
| 			goto readpage_error;
 | |
| 
 | |
| 		if (!PageUptodate(page)) {
 | |
| 			lock_page(page);
 | |
| 			if (!PageUptodate(page)) {
 | |
| 				if (page->mapping == NULL) {
 | |
| 					/*
 | |
| 					 * invalidate_inode_pages got it
 | |
| 					 */
 | |
| 					unlock_page(page);
 | |
| 					page_cache_release(page);
 | |
| 					goto find_page;
 | |
| 				}
 | |
| 				unlock_page(page);
 | |
| 				error = -EIO;
 | |
| 				goto readpage_error;
 | |
| 			}
 | |
| 			unlock_page(page);
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * i_size must be checked after we have done ->readpage.
 | |
| 		 *
 | |
| 		 * Checking i_size after the readpage allows us to calculate
 | |
| 		 * the correct value for "nr", which means the zero-filled
 | |
| 		 * part of the page is not copied back to userspace (unless
 | |
| 		 * another truncate extends the file - this is desired though).
 | |
| 		 */
 | |
| 		isize = i_size_read(inode);
 | |
| 		end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
 | |
| 		if (unlikely(!isize || index > end_index)) {
 | |
| 			page_cache_release(page);
 | |
| 			goto out;
 | |
| 		}
 | |
| 
 | |
| 		/* nr is the maximum number of bytes to copy from this page */
 | |
| 		nr = PAGE_CACHE_SIZE;
 | |
| 		if (index == end_index) {
 | |
| 			nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
 | |
| 			if (nr <= offset) {
 | |
| 				page_cache_release(page);
 | |
| 				goto out;
 | |
| 			}
 | |
| 		}
 | |
| 		nr = nr - offset;
 | |
| 		goto page_ok;
 | |
| 
 | |
| readpage_error:
 | |
| 		/* UHHUH! A synchronous read error occurred. Report it */
 | |
| 		desc->error = error;
 | |
| 		page_cache_release(page);
 | |
| 		goto out;
 | |
| 
 | |
| no_cached_page:
 | |
| 		/*
 | |
| 		 * Ok, it wasn't cached, so we need to create a new
 | |
| 		 * page..
 | |
| 		 */
 | |
| 		if (!cached_page) {
 | |
| 			cached_page = page_cache_alloc_cold(mapping);
 | |
| 			if (!cached_page) {
 | |
| 				desc->error = -ENOMEM;
 | |
| 				goto out;
 | |
| 			}
 | |
| 		}
 | |
| 		error = add_to_page_cache_lru(cached_page, mapping,
 | |
| 						index, GFP_KERNEL);
 | |
| 		if (error) {
 | |
| 			if (error == -EEXIST)
 | |
| 				goto find_page;
 | |
| 			desc->error = error;
 | |
| 			goto out;
 | |
| 		}
 | |
| 		page = cached_page;
 | |
| 		cached_page = NULL;
 | |
| 		goto readpage;
 | |
| 	}
 | |
| 
 | |
| out:
 | |
| 	*_ra = ra;
 | |
| 
 | |
| 	*ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
 | |
| 	if (cached_page)
 | |
| 		page_cache_release(cached_page);
 | |
| 	if (filp)
 | |
| 		file_accessed(filp);
 | |
| }
 | |
| 
 | |
| EXPORT_SYMBOL(do_generic_mapping_read);
 | |
| 
 | |
| int file_read_actor(read_descriptor_t *desc, struct page *page,
 | |
| 			unsigned long offset, unsigned long size)
 | |
| {
 | |
| 	char *kaddr;
 | |
| 	unsigned long left, count = desc->count;
 | |
| 
 | |
| 	if (size > count)
 | |
| 		size = count;
 | |
| 
 | |
| 	/*
 | |
| 	 * Faults on the destination of a read are common, so do it before
 | |
| 	 * taking the kmap.
 | |
| 	 */
 | |
| 	if (!fault_in_pages_writeable(desc->arg.buf, size)) {
 | |
| 		kaddr = kmap_atomic(page, KM_USER0);
 | |
| 		left = __copy_to_user_inatomic(desc->arg.buf,
 | |
| 						kaddr + offset, size);
 | |
| 		kunmap_atomic(kaddr, KM_USER0);
 | |
| 		if (left == 0)
 | |
| 			goto success;
 | |
| 	}
 | |
| 
 | |
| 	/* Do it the slow way */
 | |
| 	kaddr = kmap(page);
 | |
| 	left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
 | |
| 	kunmap(page);
 | |
| 
 | |
| 	if (left) {
 | |
| 		size -= left;
 | |
| 		desc->error = -EFAULT;
 | |
| 	}
 | |
| success:
 | |
| 	desc->count = count - size;
 | |
| 	desc->written += size;
 | |
| 	desc->arg.buf += size;
 | |
| 	return size;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This is the "read()" routine for all filesystems
 | |
|  * that can use the page cache directly.
 | |
|  */
 | |
| ssize_t
 | |
| __generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
 | |
| 		unsigned long nr_segs, loff_t *ppos)
 | |
| {
 | |
| 	struct file *filp = iocb->ki_filp;
 | |
| 	ssize_t retval;
 | |
| 	unsigned long seg;
 | |
| 	size_t count;
 | |
| 
 | |
| 	count = 0;
 | |
| 	for (seg = 0; seg < nr_segs; seg++) {
 | |
| 		const struct iovec *iv = &iov[seg];
 | |
| 
 | |
| 		/*
 | |
| 		 * If any segment has a negative length, or the cumulative
 | |
| 		 * length ever wraps negative then return -EINVAL.
 | |
| 		 */
 | |
| 		count += iv->iov_len;
 | |
| 		if (unlikely((ssize_t)(count|iv->iov_len) < 0))
 | |
| 			return -EINVAL;
 | |
| 		if (access_ok(VERIFY_WRITE, iv->iov_base, iv->iov_len))
 | |
| 			continue;
 | |
| 		if (seg == 0)
 | |
| 			return -EFAULT;
 | |
| 		nr_segs = seg;
 | |
| 		count -= iv->iov_len;	/* This segment is no good */
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	/* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
 | |
| 	if (filp->f_flags & O_DIRECT) {
 | |
| 		loff_t pos = *ppos, size;
 | |
| 		struct address_space *mapping;
 | |
| 		struct inode *inode;
 | |
| 
 | |
| 		mapping = filp->f_mapping;
 | |
| 		inode = mapping->host;
 | |
| 		retval = 0;
 | |
| 		if (!count)
 | |
| 			goto out; /* skip atime */
 | |
| 		size = i_size_read(inode);
 | |
| 		if (pos < size) {
 | |
| 			retval = generic_file_direct_IO(READ, iocb,
 | |
| 						iov, pos, nr_segs);
 | |
| 			if (retval > 0 && !is_sync_kiocb(iocb))
 | |
| 				retval = -EIOCBQUEUED;
 | |
| 			if (retval > 0)
 | |
| 				*ppos = pos + retval;
 | |
| 		}
 | |
| 		file_accessed(filp);
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	retval = 0;
 | |
| 	if (count) {
 | |
| 		for (seg = 0; seg < nr_segs; seg++) {
 | |
| 			read_descriptor_t desc;
 | |
| 
 | |
| 			desc.written = 0;
 | |
| 			desc.arg.buf = iov[seg].iov_base;
 | |
| 			desc.count = iov[seg].iov_len;
 | |
| 			if (desc.count == 0)
 | |
| 				continue;
 | |
| 			desc.error = 0;
 | |
| 			do_generic_file_read(filp,ppos,&desc,file_read_actor);
 | |
| 			retval += desc.written;
 | |
| 			if (desc.error) {
 | |
| 				retval = retval ?: desc.error;
 | |
| 				break;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| out:
 | |
| 	return retval;
 | |
| }
 | |
| 
 | |
| EXPORT_SYMBOL(__generic_file_aio_read);
 | |
| 
 | |
| ssize_t
 | |
| generic_file_aio_read(struct kiocb *iocb, char __user *buf, size_t count, loff_t pos)
 | |
| {
 | |
| 	struct iovec local_iov = { .iov_base = buf, .iov_len = count };
 | |
| 
 | |
| 	BUG_ON(iocb->ki_pos != pos);
 | |
| 	return __generic_file_aio_read(iocb, &local_iov, 1, &iocb->ki_pos);
 | |
| }
 | |
| 
 | |
| EXPORT_SYMBOL(generic_file_aio_read);
 | |
| 
 | |
| ssize_t
 | |
| generic_file_read(struct file *filp, char __user *buf, size_t count, loff_t *ppos)
 | |
| {
 | |
| 	struct iovec local_iov = { .iov_base = buf, .iov_len = count };
 | |
| 	struct kiocb kiocb;
 | |
| 	ssize_t ret;
 | |
| 
 | |
| 	init_sync_kiocb(&kiocb, filp);
 | |
| 	ret = __generic_file_aio_read(&kiocb, &local_iov, 1, ppos);
 | |
| 	if (-EIOCBQUEUED == ret)
 | |
| 		ret = wait_on_sync_kiocb(&kiocb);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| EXPORT_SYMBOL(generic_file_read);
 | |
| 
 | |
| int file_send_actor(read_descriptor_t * desc, struct page *page, unsigned long offset, unsigned long size)
 | |
| {
 | |
| 	ssize_t written;
 | |
| 	unsigned long count = desc->count;
 | |
| 	struct file *file = desc->arg.data;
 | |
| 
 | |
| 	if (size > count)
 | |
| 		size = count;
 | |
| 
 | |
| 	written = file->f_op->sendpage(file, page, offset,
 | |
| 				       size, &file->f_pos, size<count);
 | |
| 	if (written < 0) {
 | |
| 		desc->error = written;
 | |
| 		written = 0;
 | |
| 	}
 | |
| 	desc->count = count - written;
 | |
| 	desc->written += written;
 | |
| 	return written;
 | |
| }
 | |
| 
 | |
| ssize_t generic_file_sendfile(struct file *in_file, loff_t *ppos,
 | |
| 			 size_t count, read_actor_t actor, void *target)
 | |
| {
 | |
| 	read_descriptor_t desc;
 | |
| 
 | |
| 	if (!count)
 | |
| 		return 0;
 | |
| 
 | |
| 	desc.written = 0;
 | |
| 	desc.count = count;
 | |
| 	desc.arg.data = target;
 | |
| 	desc.error = 0;
 | |
| 
 | |
| 	do_generic_file_read(in_file, ppos, &desc, actor);
 | |
| 	if (desc.written)
 | |
| 		return desc.written;
 | |
| 	return desc.error;
 | |
| }
 | |
| 
 | |
| EXPORT_SYMBOL(generic_file_sendfile);
 | |
| 
 | |
| static ssize_t
 | |
| do_readahead(struct address_space *mapping, struct file *filp,
 | |
| 	     unsigned long index, unsigned long nr)
 | |
| {
 | |
| 	if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	force_page_cache_readahead(mapping, filp, index,
 | |
| 					max_sane_readahead(nr));
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| asmlinkage ssize_t sys_readahead(int fd, loff_t offset, size_t count)
 | |
| {
 | |
| 	ssize_t ret;
 | |
| 	struct file *file;
 | |
| 
 | |
| 	ret = -EBADF;
 | |
| 	file = fget(fd);
 | |
| 	if (file) {
 | |
| 		if (file->f_mode & FMODE_READ) {
 | |
| 			struct address_space *mapping = file->f_mapping;
 | |
| 			unsigned long start = offset >> PAGE_CACHE_SHIFT;
 | |
| 			unsigned long end = (offset + count - 1) >> PAGE_CACHE_SHIFT;
 | |
| 			unsigned long len = end - start + 1;
 | |
| 			ret = do_readahead(mapping, file, start, len);
 | |
| 		}
 | |
| 		fput(file);
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_MMU
 | |
| /*
 | |
|  * This adds the requested page to the page cache if it isn't already there,
 | |
|  * and schedules an I/O to read in its contents from disk.
 | |
|  */
 | |
| static int FASTCALL(page_cache_read(struct file * file, unsigned long offset));
 | |
| static int fastcall page_cache_read(struct file * file, unsigned long offset)
 | |
| {
 | |
| 	struct address_space *mapping = file->f_mapping;
 | |
| 	struct page *page; 
 | |
| 	int error;
 | |
| 
 | |
| 	page = page_cache_alloc_cold(mapping);
 | |
| 	if (!page)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	error = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
 | |
| 	if (!error) {
 | |
| 		error = mapping->a_ops->readpage(file, page);
 | |
| 		page_cache_release(page);
 | |
| 		return error;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * We arrive here in the unlikely event that someone 
 | |
| 	 * raced with us and added our page to the cache first
 | |
| 	 * or we are out of memory for radix-tree nodes.
 | |
| 	 */
 | |
| 	page_cache_release(page);
 | |
| 	return error == -EEXIST ? 0 : error;
 | |
| }
 | |
| 
 | |
| #define MMAP_LOTSAMISS  (100)
 | |
| 
 | |
| /*
 | |
|  * filemap_nopage() is invoked via the vma operations vector for a
 | |
|  * mapped memory region to read in file data during a page fault.
 | |
|  *
 | |
|  * The goto's are kind of ugly, but this streamlines the normal case of having
 | |
|  * it in the page cache, and handles the special cases reasonably without
 | |
|  * having a lot of duplicated code.
 | |
|  */
 | |
| struct page *filemap_nopage(struct vm_area_struct *area,
 | |
| 				unsigned long address, int *type)
 | |
| {
 | |
| 	int error;
 | |
| 	struct file *file = area->vm_file;
 | |
| 	struct address_space *mapping = file->f_mapping;
 | |
| 	struct file_ra_state *ra = &file->f_ra;
 | |
| 	struct inode *inode = mapping->host;
 | |
| 	struct page *page;
 | |
| 	unsigned long size, pgoff;
 | |
| 	int did_readaround = 0, majmin = VM_FAULT_MINOR;
 | |
| 
 | |
| 	pgoff = ((address-area->vm_start) >> PAGE_CACHE_SHIFT) + area->vm_pgoff;
 | |
| 
 | |
| retry_all:
 | |
| 	size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
 | |
| 	if (pgoff >= size)
 | |
| 		goto outside_data_content;
 | |
| 
 | |
| 	/* If we don't want any read-ahead, don't bother */
 | |
| 	if (VM_RandomReadHint(area))
 | |
| 		goto no_cached_page;
 | |
| 
 | |
| 	/*
 | |
| 	 * The readahead code wants to be told about each and every page
 | |
| 	 * so it can build and shrink its windows appropriately
 | |
| 	 *
 | |
| 	 * For sequential accesses, we use the generic readahead logic.
 | |
| 	 */
 | |
| 	if (VM_SequentialReadHint(area))
 | |
| 		page_cache_readahead(mapping, ra, file, pgoff, 1);
 | |
| 
 | |
| 	/*
 | |
| 	 * Do we have something in the page cache already?
 | |
| 	 */
 | |
| retry_find:
 | |
| 	page = find_get_page(mapping, pgoff);
 | |
| 	if (!page) {
 | |
| 		unsigned long ra_pages;
 | |
| 
 | |
| 		if (VM_SequentialReadHint(area)) {
 | |
| 			handle_ra_miss(mapping, ra, pgoff);
 | |
| 			goto no_cached_page;
 | |
| 		}
 | |
| 		ra->mmap_miss++;
 | |
| 
 | |
| 		/*
 | |
| 		 * Do we miss much more than hit in this file? If so,
 | |
| 		 * stop bothering with read-ahead. It will only hurt.
 | |
| 		 */
 | |
| 		if (ra->mmap_miss > ra->mmap_hit + MMAP_LOTSAMISS)
 | |
| 			goto no_cached_page;
 | |
| 
 | |
| 		/*
 | |
| 		 * To keep the pgmajfault counter straight, we need to
 | |
| 		 * check did_readaround, as this is an inner loop.
 | |
| 		 */
 | |
| 		if (!did_readaround) {
 | |
| 			majmin = VM_FAULT_MAJOR;
 | |
| 			inc_page_state(pgmajfault);
 | |
| 		}
 | |
| 		did_readaround = 1;
 | |
| 		ra_pages = max_sane_readahead(file->f_ra.ra_pages);
 | |
| 		if (ra_pages) {
 | |
| 			pgoff_t start = 0;
 | |
| 
 | |
| 			if (pgoff > ra_pages / 2)
 | |
| 				start = pgoff - ra_pages / 2;
 | |
| 			do_page_cache_readahead(mapping, file, start, ra_pages);
 | |
| 		}
 | |
| 		page = find_get_page(mapping, pgoff);
 | |
| 		if (!page)
 | |
| 			goto no_cached_page;
 | |
| 	}
 | |
| 
 | |
| 	if (!did_readaround)
 | |
| 		ra->mmap_hit++;
 | |
| 
 | |
| 	/*
 | |
| 	 * Ok, found a page in the page cache, now we need to check
 | |
| 	 * that it's up-to-date.
 | |
| 	 */
 | |
| 	if (!PageUptodate(page))
 | |
| 		goto page_not_uptodate;
 | |
| 
 | |
| success:
 | |
| 	/*
 | |
| 	 * Found the page and have a reference on it.
 | |
| 	 */
 | |
| 	mark_page_accessed(page);
 | |
| 	if (type)
 | |
| 		*type = majmin;
 | |
| 	return page;
 | |
| 
 | |
| outside_data_content:
 | |
| 	/*
 | |
| 	 * An external ptracer can access pages that normally aren't
 | |
| 	 * accessible..
 | |
| 	 */
 | |
| 	if (area->vm_mm == current->mm)
 | |
| 		return NULL;
 | |
| 	/* Fall through to the non-read-ahead case */
 | |
| no_cached_page:
 | |
| 	/*
 | |
| 	 * We're only likely to ever get here if MADV_RANDOM is in
 | |
| 	 * effect.
 | |
| 	 */
 | |
| 	error = page_cache_read(file, pgoff);
 | |
| 	grab_swap_token();
 | |
| 
 | |
| 	/*
 | |
| 	 * The page we want has now been added to the page cache.
 | |
| 	 * In the unlikely event that someone removed it in the
 | |
| 	 * meantime, we'll just come back here and read it again.
 | |
| 	 */
 | |
| 	if (error >= 0)
 | |
| 		goto retry_find;
 | |
| 
 | |
| 	/*
 | |
| 	 * An error return from page_cache_read can result if the
 | |
| 	 * system is low on memory, or a problem occurs while trying
 | |
| 	 * to schedule I/O.
 | |
| 	 */
 | |
| 	if (error == -ENOMEM)
 | |
| 		return NOPAGE_OOM;
 | |
| 	return NULL;
 | |
| 
 | |
| page_not_uptodate:
 | |
| 	if (!did_readaround) {
 | |
| 		majmin = VM_FAULT_MAJOR;
 | |
| 		inc_page_state(pgmajfault);
 | |
| 	}
 | |
| 	lock_page(page);
 | |
| 
 | |
| 	/* Did it get unhashed while we waited for it? */
 | |
| 	if (!page->mapping) {
 | |
| 		unlock_page(page);
 | |
| 		page_cache_release(page);
 | |
| 		goto retry_all;
 | |
| 	}
 | |
| 
 | |
| 	/* Did somebody else get it up-to-date? */
 | |
| 	if (PageUptodate(page)) {
 | |
| 		unlock_page(page);
 | |
| 		goto success;
 | |
| 	}
 | |
| 
 | |
| 	if (!mapping->a_ops->readpage(file, page)) {
 | |
| 		wait_on_page_locked(page);
 | |
| 		if (PageUptodate(page))
 | |
| 			goto success;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Umm, take care of errors if the page isn't up-to-date.
 | |
| 	 * Try to re-read it _once_. We do this synchronously,
 | |
| 	 * because there really aren't any performance issues here
 | |
| 	 * and we need to check for errors.
 | |
| 	 */
 | |
| 	lock_page(page);
 | |
| 
 | |
| 	/* Somebody truncated the page on us? */
 | |
| 	if (!page->mapping) {
 | |
| 		unlock_page(page);
 | |
| 		page_cache_release(page);
 | |
| 		goto retry_all;
 | |
| 	}
 | |
| 
 | |
| 	/* Somebody else successfully read it in? */
 | |
| 	if (PageUptodate(page)) {
 | |
| 		unlock_page(page);
 | |
| 		goto success;
 | |
| 	}
 | |
| 	ClearPageError(page);
 | |
| 	if (!mapping->a_ops->readpage(file, page)) {
 | |
| 		wait_on_page_locked(page);
 | |
| 		if (PageUptodate(page))
 | |
| 			goto success;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Things didn't work out. Return zero to tell the
 | |
| 	 * mm layer so, possibly freeing the page cache page first.
 | |
| 	 */
 | |
| 	page_cache_release(page);
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| EXPORT_SYMBOL(filemap_nopage);
 | |
| 
 | |
| static struct page * filemap_getpage(struct file *file, unsigned long pgoff,
 | |
| 					int nonblock)
 | |
| {
 | |
| 	struct address_space *mapping = file->f_mapping;
 | |
| 	struct page *page;
 | |
| 	int error;
 | |
| 
 | |
| 	/*
 | |
| 	 * Do we have something in the page cache already?
 | |
| 	 */
 | |
| retry_find:
 | |
| 	page = find_get_page(mapping, pgoff);
 | |
| 	if (!page) {
 | |
| 		if (nonblock)
 | |
| 			return NULL;
 | |
| 		goto no_cached_page;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Ok, found a page in the page cache, now we need to check
 | |
| 	 * that it's up-to-date.
 | |
| 	 */
 | |
| 	if (!PageUptodate(page)) {
 | |
| 		if (nonblock) {
 | |
| 			page_cache_release(page);
 | |
| 			return NULL;
 | |
| 		}
 | |
| 		goto page_not_uptodate;
 | |
| 	}
 | |
| 
 | |
| success:
 | |
| 	/*
 | |
| 	 * Found the page and have a reference on it.
 | |
| 	 */
 | |
| 	mark_page_accessed(page);
 | |
| 	return page;
 | |
| 
 | |
| no_cached_page:
 | |
| 	error = page_cache_read(file, pgoff);
 | |
| 
 | |
| 	/*
 | |
| 	 * The page we want has now been added to the page cache.
 | |
| 	 * In the unlikely event that someone removed it in the
 | |
| 	 * meantime, we'll just come back here and read it again.
 | |
| 	 */
 | |
| 	if (error >= 0)
 | |
| 		goto retry_find;
 | |
| 
 | |
| 	/*
 | |
| 	 * An error return from page_cache_read can result if the
 | |
| 	 * system is low on memory, or a problem occurs while trying
 | |
| 	 * to schedule I/O.
 | |
| 	 */
 | |
| 	return NULL;
 | |
| 
 | |
| page_not_uptodate:
 | |
| 	lock_page(page);
 | |
| 
 | |
| 	/* Did it get unhashed while we waited for it? */
 | |
| 	if (!page->mapping) {
 | |
| 		unlock_page(page);
 | |
| 		goto err;
 | |
| 	}
 | |
| 
 | |
| 	/* Did somebody else get it up-to-date? */
 | |
| 	if (PageUptodate(page)) {
 | |
| 		unlock_page(page);
 | |
| 		goto success;
 | |
| 	}
 | |
| 
 | |
| 	if (!mapping->a_ops->readpage(file, page)) {
 | |
| 		wait_on_page_locked(page);
 | |
| 		if (PageUptodate(page))
 | |
| 			goto success;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Umm, take care of errors if the page isn't up-to-date.
 | |
| 	 * Try to re-read it _once_. We do this synchronously,
 | |
| 	 * because there really aren't any performance issues here
 | |
| 	 * and we need to check for errors.
 | |
| 	 */
 | |
| 	lock_page(page);
 | |
| 
 | |
| 	/* Somebody truncated the page on us? */
 | |
| 	if (!page->mapping) {
 | |
| 		unlock_page(page);
 | |
| 		goto err;
 | |
| 	}
 | |
| 	/* Somebody else successfully read it in? */
 | |
| 	if (PageUptodate(page)) {
 | |
| 		unlock_page(page);
 | |
| 		goto success;
 | |
| 	}
 | |
| 
 | |
| 	ClearPageError(page);
 | |
| 	if (!mapping->a_ops->readpage(file, page)) {
 | |
| 		wait_on_page_locked(page);
 | |
| 		if (PageUptodate(page))
 | |
| 			goto success;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Things didn't work out. Return zero to tell the
 | |
| 	 * mm layer so, possibly freeing the page cache page first.
 | |
| 	 */
 | |
| err:
 | |
| 	page_cache_release(page);
 | |
| 
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| int filemap_populate(struct vm_area_struct *vma, unsigned long addr,
 | |
| 		unsigned long len, pgprot_t prot, unsigned long pgoff,
 | |
| 		int nonblock)
 | |
| {
 | |
| 	struct file *file = vma->vm_file;
 | |
| 	struct address_space *mapping = file->f_mapping;
 | |
| 	struct inode *inode = mapping->host;
 | |
| 	unsigned long size;
 | |
| 	struct mm_struct *mm = vma->vm_mm;
 | |
| 	struct page *page;
 | |
| 	int err;
 | |
| 
 | |
| 	if (!nonblock)
 | |
| 		force_page_cache_readahead(mapping, vma->vm_file,
 | |
| 					pgoff, len >> PAGE_CACHE_SHIFT);
 | |
| 
 | |
| repeat:
 | |
| 	size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
 | |
| 	if (pgoff + (len >> PAGE_CACHE_SHIFT) > size)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	page = filemap_getpage(file, pgoff, nonblock);
 | |
| 
 | |
| 	/* XXX: This is wrong, a filesystem I/O error may have happened. Fix that as
 | |
| 	 * done in shmem_populate calling shmem_getpage */
 | |
| 	if (!page && !nonblock)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	if (page) {
 | |
| 		err = install_page(mm, vma, addr, page, prot);
 | |
| 		if (err) {
 | |
| 			page_cache_release(page);
 | |
| 			return err;
 | |
| 		}
 | |
| 	} else if (vma->vm_flags & VM_NONLINEAR) {
 | |
| 		/* No page was found just because we can't read it in now (being
 | |
| 		 * here implies nonblock != 0), but the page may exist, so set
 | |
| 		 * the PTE to fault it in later. */
 | |
| 		err = install_file_pte(mm, vma, addr, pgoff, prot);
 | |
| 		if (err)
 | |
| 			return err;
 | |
| 	}
 | |
| 
 | |
| 	len -= PAGE_SIZE;
 | |
| 	addr += PAGE_SIZE;
 | |
| 	pgoff++;
 | |
| 	if (len)
 | |
| 		goto repeat;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL(filemap_populate);
 | |
| 
 | |
| struct vm_operations_struct generic_file_vm_ops = {
 | |
| 	.nopage		= filemap_nopage,
 | |
| 	.populate	= filemap_populate,
 | |
| };
 | |
| 
 | |
| /* This is used for a general mmap of a disk file */
 | |
| 
 | |
| int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
 | |
| {
 | |
| 	struct address_space *mapping = file->f_mapping;
 | |
| 
 | |
| 	if (!mapping->a_ops->readpage)
 | |
| 		return -ENOEXEC;
 | |
| 	file_accessed(file);
 | |
| 	vma->vm_ops = &generic_file_vm_ops;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This is for filesystems which do not implement ->writepage.
 | |
|  */
 | |
| int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
 | |
| {
 | |
| 	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
 | |
| 		return -EINVAL;
 | |
| 	return generic_file_mmap(file, vma);
 | |
| }
 | |
| #else
 | |
| int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
 | |
| {
 | |
| 	return -ENOSYS;
 | |
| }
 | |
| int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
 | |
| {
 | |
| 	return -ENOSYS;
 | |
| }
 | |
| #endif /* CONFIG_MMU */
 | |
| 
 | |
| EXPORT_SYMBOL(generic_file_mmap);
 | |
| EXPORT_SYMBOL(generic_file_readonly_mmap);
 | |
| 
 | |
| static inline struct page *__read_cache_page(struct address_space *mapping,
 | |
| 				unsigned long index,
 | |
| 				int (*filler)(void *,struct page*),
 | |
| 				void *data)
 | |
| {
 | |
| 	struct page *page, *cached_page = NULL;
 | |
| 	int err;
 | |
| repeat:
 | |
| 	page = find_get_page(mapping, index);
 | |
| 	if (!page) {
 | |
| 		if (!cached_page) {
 | |
| 			cached_page = page_cache_alloc_cold(mapping);
 | |
| 			if (!cached_page)
 | |
| 				return ERR_PTR(-ENOMEM);
 | |
| 		}
 | |
| 		err = add_to_page_cache_lru(cached_page, mapping,
 | |
| 					index, GFP_KERNEL);
 | |
| 		if (err == -EEXIST)
 | |
| 			goto repeat;
 | |
| 		if (err < 0) {
 | |
| 			/* Presumably ENOMEM for radix tree node */
 | |
| 			page_cache_release(cached_page);
 | |
| 			return ERR_PTR(err);
 | |
| 		}
 | |
| 		page = cached_page;
 | |
| 		cached_page = NULL;
 | |
| 		err = filler(data, page);
 | |
| 		if (err < 0) {
 | |
| 			page_cache_release(page);
 | |
| 			page = ERR_PTR(err);
 | |
| 		}
 | |
| 	}
 | |
| 	if (cached_page)
 | |
| 		page_cache_release(cached_page);
 | |
| 	return page;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Read into the page cache. If a page already exists,
 | |
|  * and PageUptodate() is not set, try to fill the page.
 | |
|  */
 | |
| struct page *read_cache_page(struct address_space *mapping,
 | |
| 				unsigned long index,
 | |
| 				int (*filler)(void *,struct page*),
 | |
| 				void *data)
 | |
| {
 | |
| 	struct page *page;
 | |
| 	int err;
 | |
| 
 | |
| retry:
 | |
| 	page = __read_cache_page(mapping, index, filler, data);
 | |
| 	if (IS_ERR(page))
 | |
| 		goto out;
 | |
| 	mark_page_accessed(page);
 | |
| 	if (PageUptodate(page))
 | |
| 		goto out;
 | |
| 
 | |
| 	lock_page(page);
 | |
| 	if (!page->mapping) {
 | |
| 		unlock_page(page);
 | |
| 		page_cache_release(page);
 | |
| 		goto retry;
 | |
| 	}
 | |
| 	if (PageUptodate(page)) {
 | |
| 		unlock_page(page);
 | |
| 		goto out;
 | |
| 	}
 | |
| 	err = filler(data, page);
 | |
| 	if (err < 0) {
 | |
| 		page_cache_release(page);
 | |
| 		page = ERR_PTR(err);
 | |
| 	}
 | |
|  out:
 | |
| 	return page;
 | |
| }
 | |
| 
 | |
| EXPORT_SYMBOL(read_cache_page);
 | |
| 
 | |
| /*
 | |
|  * If the page was newly created, increment its refcount and add it to the
 | |
|  * caller's lru-buffering pagevec.  This function is specifically for
 | |
|  * generic_file_write().
 | |
|  */
 | |
| static inline struct page *
 | |
| __grab_cache_page(struct address_space *mapping, unsigned long index,
 | |
| 			struct page **cached_page, struct pagevec *lru_pvec)
 | |
| {
 | |
| 	int err;
 | |
| 	struct page *page;
 | |
| repeat:
 | |
| 	page = find_lock_page(mapping, index);
 | |
| 	if (!page) {
 | |
| 		if (!*cached_page) {
 | |
| 			*cached_page = page_cache_alloc(mapping);
 | |
| 			if (!*cached_page)
 | |
| 				return NULL;
 | |
| 		}
 | |
| 		err = add_to_page_cache(*cached_page, mapping,
 | |
| 					index, GFP_KERNEL);
 | |
| 		if (err == -EEXIST)
 | |
| 			goto repeat;
 | |
| 		if (err == 0) {
 | |
| 			page = *cached_page;
 | |
| 			page_cache_get(page);
 | |
| 			if (!pagevec_add(lru_pvec, page))
 | |
| 				__pagevec_lru_add(lru_pvec);
 | |
| 			*cached_page = NULL;
 | |
| 		}
 | |
| 	}
 | |
| 	return page;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The logic we want is
 | |
|  *
 | |
|  *	if suid or (sgid and xgrp)
 | |
|  *		remove privs
 | |
|  */
 | |
| int remove_suid(struct dentry *dentry)
 | |
| {
 | |
| 	mode_t mode = dentry->d_inode->i_mode;
 | |
| 	int kill = 0;
 | |
| 	int result = 0;
 | |
| 
 | |
| 	/* suid always must be killed */
 | |
| 	if (unlikely(mode & S_ISUID))
 | |
| 		kill = ATTR_KILL_SUID;
 | |
| 
 | |
| 	/*
 | |
| 	 * sgid without any exec bits is just a mandatory locking mark; leave
 | |
| 	 * it alone.  If some exec bits are set, it's a real sgid; kill it.
 | |
| 	 */
 | |
| 	if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
 | |
| 		kill |= ATTR_KILL_SGID;
 | |
| 
 | |
| 	if (unlikely(kill && !capable(CAP_FSETID))) {
 | |
| 		struct iattr newattrs;
 | |
| 
 | |
| 		newattrs.ia_valid = ATTR_FORCE | kill;
 | |
| 		result = notify_change(dentry, &newattrs);
 | |
| 	}
 | |
| 	return result;
 | |
| }
 | |
| EXPORT_SYMBOL(remove_suid);
 | |
| 
 | |
| size_t
 | |
| __filemap_copy_from_user_iovec(char *vaddr, 
 | |
| 			const struct iovec *iov, size_t base, size_t bytes)
 | |
| {
 | |
| 	size_t copied = 0, left = 0;
 | |
| 
 | |
| 	while (bytes) {
 | |
| 		char __user *buf = iov->iov_base + base;
 | |
| 		int copy = min(bytes, iov->iov_len - base);
 | |
| 
 | |
| 		base = 0;
 | |
| 		left = __copy_from_user_inatomic(vaddr, buf, copy);
 | |
| 		copied += copy;
 | |
| 		bytes -= copy;
 | |
| 		vaddr += copy;
 | |
| 		iov++;
 | |
| 
 | |
| 		if (unlikely(left)) {
 | |
| 			/* zero the rest of the target like __copy_from_user */
 | |
| 			if (bytes)
 | |
| 				memset(vaddr, 0, bytes);
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 	return copied - left;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Performs necessary checks before doing a write
 | |
|  *
 | |
|  * Can adjust writing position aor amount of bytes to write.
 | |
|  * Returns appropriate error code that caller should return or
 | |
|  * zero in case that write should be allowed.
 | |
|  */
 | |
| inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
 | |
| {
 | |
| 	struct inode *inode = file->f_mapping->host;
 | |
| 	unsigned long limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
 | |
| 
 | |
|         if (unlikely(*pos < 0))
 | |
|                 return -EINVAL;
 | |
| 
 | |
| 	if (!isblk) {
 | |
| 		/* FIXME: this is for backwards compatibility with 2.4 */
 | |
| 		if (file->f_flags & O_APPEND)
 | |
|                         *pos = i_size_read(inode);
 | |
| 
 | |
| 		if (limit != RLIM_INFINITY) {
 | |
| 			if (*pos >= limit) {
 | |
| 				send_sig(SIGXFSZ, current, 0);
 | |
| 				return -EFBIG;
 | |
| 			}
 | |
| 			if (*count > limit - (typeof(limit))*pos) {
 | |
| 				*count = limit - (typeof(limit))*pos;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * LFS rule
 | |
| 	 */
 | |
| 	if (unlikely(*pos + *count > MAX_NON_LFS &&
 | |
| 				!(file->f_flags & O_LARGEFILE))) {
 | |
| 		if (*pos >= MAX_NON_LFS) {
 | |
| 			send_sig(SIGXFSZ, current, 0);
 | |
| 			return -EFBIG;
 | |
| 		}
 | |
| 		if (*count > MAX_NON_LFS - (unsigned long)*pos) {
 | |
| 			*count = MAX_NON_LFS - (unsigned long)*pos;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Are we about to exceed the fs block limit ?
 | |
| 	 *
 | |
| 	 * If we have written data it becomes a short write.  If we have
 | |
| 	 * exceeded without writing data we send a signal and return EFBIG.
 | |
| 	 * Linus frestrict idea will clean these up nicely..
 | |
| 	 */
 | |
| 	if (likely(!isblk)) {
 | |
| 		if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
 | |
| 			if (*count || *pos > inode->i_sb->s_maxbytes) {
 | |
| 				send_sig(SIGXFSZ, current, 0);
 | |
| 				return -EFBIG;
 | |
| 			}
 | |
| 			/* zero-length writes at ->s_maxbytes are OK */
 | |
| 		}
 | |
| 
 | |
| 		if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
 | |
| 			*count = inode->i_sb->s_maxbytes - *pos;
 | |
| 	} else {
 | |
| 		loff_t isize;
 | |
| 		if (bdev_read_only(I_BDEV(inode)))
 | |
| 			return -EPERM;
 | |
| 		isize = i_size_read(inode);
 | |
| 		if (*pos >= isize) {
 | |
| 			if (*count || *pos > isize)
 | |
| 				return -ENOSPC;
 | |
| 		}
 | |
| 
 | |
| 		if (*pos + *count > isize)
 | |
| 			*count = isize - *pos;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL(generic_write_checks);
 | |
| 
 | |
| ssize_t
 | |
| generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
 | |
| 		unsigned long *nr_segs, loff_t pos, loff_t *ppos,
 | |
| 		size_t count, size_t ocount)
 | |
| {
 | |
| 	struct file	*file = iocb->ki_filp;
 | |
| 	struct address_space *mapping = file->f_mapping;
 | |
| 	struct inode	*inode = mapping->host;
 | |
| 	ssize_t		written;
 | |
| 
 | |
| 	if (count != ocount)
 | |
| 		*nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
 | |
| 
 | |
| 	written = generic_file_direct_IO(WRITE, iocb, iov, pos, *nr_segs);
 | |
| 	if (written > 0) {
 | |
| 		loff_t end = pos + written;
 | |
| 		if (end > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
 | |
| 			i_size_write(inode,  end);
 | |
| 			mark_inode_dirty(inode);
 | |
| 		}
 | |
| 		*ppos = end;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Sync the fs metadata but not the minor inode changes and
 | |
| 	 * of course not the data as we did direct DMA for the IO.
 | |
| 	 * i_sem is held, which protects generic_osync_inode() from
 | |
| 	 * livelocking.
 | |
| 	 */
 | |
| 	if (written >= 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
 | |
| 		int err = generic_osync_inode(inode, mapping, OSYNC_METADATA);
 | |
| 		if (err < 0)
 | |
| 			written = err;
 | |
| 	}
 | |
| 	if (written == count && !is_sync_kiocb(iocb))
 | |
| 		written = -EIOCBQUEUED;
 | |
| 	return written;
 | |
| }
 | |
| EXPORT_SYMBOL(generic_file_direct_write);
 | |
| 
 | |
| ssize_t
 | |
| generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
 | |
| 		unsigned long nr_segs, loff_t pos, loff_t *ppos,
 | |
| 		size_t count, ssize_t written)
 | |
| {
 | |
| 	struct file *file = iocb->ki_filp;
 | |
| 	struct address_space * mapping = file->f_mapping;
 | |
| 	struct address_space_operations *a_ops = mapping->a_ops;
 | |
| 	struct inode 	*inode = mapping->host;
 | |
| 	long		status = 0;
 | |
| 	struct page	*page;
 | |
| 	struct page	*cached_page = NULL;
 | |
| 	size_t		bytes;
 | |
| 	struct pagevec	lru_pvec;
 | |
| 	const struct iovec *cur_iov = iov; /* current iovec */
 | |
| 	size_t		iov_base = 0;	   /* offset in the current iovec */
 | |
| 	char __user	*buf;
 | |
| 
 | |
| 	pagevec_init(&lru_pvec, 0);
 | |
| 
 | |
| 	/*
 | |
| 	 * handle partial DIO write.  Adjust cur_iov if needed.
 | |
| 	 */
 | |
| 	if (likely(nr_segs == 1))
 | |
| 		buf = iov->iov_base + written;
 | |
| 	else {
 | |
| 		filemap_set_next_iovec(&cur_iov, &iov_base, written);
 | |
| 		buf = cur_iov->iov_base + iov_base;
 | |
| 	}
 | |
| 
 | |
| 	do {
 | |
| 		unsigned long index;
 | |
| 		unsigned long offset;
 | |
| 		unsigned long maxlen;
 | |
| 		size_t copied;
 | |
| 
 | |
| 		offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */
 | |
| 		index = pos >> PAGE_CACHE_SHIFT;
 | |
| 		bytes = PAGE_CACHE_SIZE - offset;
 | |
| 		if (bytes > count)
 | |
| 			bytes = count;
 | |
| 
 | |
| 		/*
 | |
| 		 * Bring in the user page that we will copy from _first_.
 | |
| 		 * Otherwise there's a nasty deadlock on copying from the
 | |
| 		 * same page as we're writing to, without it being marked
 | |
| 		 * up-to-date.
 | |
| 		 */
 | |
| 		maxlen = cur_iov->iov_len - iov_base;
 | |
| 		if (maxlen > bytes)
 | |
| 			maxlen = bytes;
 | |
| 		fault_in_pages_readable(buf, maxlen);
 | |
| 
 | |
| 		page = __grab_cache_page(mapping,index,&cached_page,&lru_pvec);
 | |
| 		if (!page) {
 | |
| 			status = -ENOMEM;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		status = a_ops->prepare_write(file, page, offset, offset+bytes);
 | |
| 		if (unlikely(status)) {
 | |
| 			loff_t isize = i_size_read(inode);
 | |
| 			/*
 | |
| 			 * prepare_write() may have instantiated a few blocks
 | |
| 			 * outside i_size.  Trim these off again.
 | |
| 			 */
 | |
| 			unlock_page(page);
 | |
| 			page_cache_release(page);
 | |
| 			if (pos + bytes > isize)
 | |
| 				vmtruncate(inode, isize);
 | |
| 			break;
 | |
| 		}
 | |
| 		if (likely(nr_segs == 1))
 | |
| 			copied = filemap_copy_from_user(page, offset,
 | |
| 							buf, bytes);
 | |
| 		else
 | |
| 			copied = filemap_copy_from_user_iovec(page, offset,
 | |
| 						cur_iov, iov_base, bytes);
 | |
| 		flush_dcache_page(page);
 | |
| 		status = a_ops->commit_write(file, page, offset, offset+bytes);
 | |
| 		if (likely(copied > 0)) {
 | |
| 			if (!status)
 | |
| 				status = copied;
 | |
| 
 | |
| 			if (status >= 0) {
 | |
| 				written += status;
 | |
| 				count -= status;
 | |
| 				pos += status;
 | |
| 				buf += status;
 | |
| 				if (unlikely(nr_segs > 1)) {
 | |
| 					filemap_set_next_iovec(&cur_iov,
 | |
| 							&iov_base, status);
 | |
| 					if (count)
 | |
| 						buf = cur_iov->iov_base +
 | |
| 							iov_base;
 | |
| 				} else {
 | |
| 					iov_base += status;
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 		if (unlikely(copied != bytes))
 | |
| 			if (status >= 0)
 | |
| 				status = -EFAULT;
 | |
| 		unlock_page(page);
 | |
| 		mark_page_accessed(page);
 | |
| 		page_cache_release(page);
 | |
| 		if (status < 0)
 | |
| 			break;
 | |
| 		balance_dirty_pages_ratelimited(mapping);
 | |
| 		cond_resched();
 | |
| 	} while (count);
 | |
| 	*ppos = pos;
 | |
| 
 | |
| 	if (cached_page)
 | |
| 		page_cache_release(cached_page);
 | |
| 
 | |
| 	/*
 | |
| 	 * For now, when the user asks for O_SYNC, we'll actually give O_DSYNC
 | |
| 	 */
 | |
| 	if (likely(status >= 0)) {
 | |
| 		if (unlikely((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
 | |
| 			if (!a_ops->writepage || !is_sync_kiocb(iocb))
 | |
| 				status = generic_osync_inode(inode, mapping,
 | |
| 						OSYNC_METADATA|OSYNC_DATA);
 | |
| 		}
 | |
|   	}
 | |
| 	
 | |
| 	/*
 | |
| 	 * If we get here for O_DIRECT writes then we must have fallen through
 | |
| 	 * to buffered writes (block instantiation inside i_size).  So we sync
 | |
| 	 * the file data here, to try to honour O_DIRECT expectations.
 | |
| 	 */
 | |
| 	if (unlikely(file->f_flags & O_DIRECT) && written)
 | |
| 		status = filemap_write_and_wait(mapping);
 | |
| 
 | |
| 	pagevec_lru_add(&lru_pvec);
 | |
| 	return written ? written : status;
 | |
| }
 | |
| EXPORT_SYMBOL(generic_file_buffered_write);
 | |
| 
 | |
| static ssize_t
 | |
| __generic_file_aio_write_nolock(struct kiocb *iocb, const struct iovec *iov,
 | |
| 				unsigned long nr_segs, loff_t *ppos)
 | |
| {
 | |
| 	struct file *file = iocb->ki_filp;
 | |
| 	struct address_space * mapping = file->f_mapping;
 | |
| 	size_t ocount;		/* original count */
 | |
| 	size_t count;		/* after file limit checks */
 | |
| 	struct inode 	*inode = mapping->host;
 | |
| 	unsigned long	seg;
 | |
| 	loff_t		pos;
 | |
| 	ssize_t		written;
 | |
| 	ssize_t		err;
 | |
| 
 | |
| 	ocount = 0;
 | |
| 	for (seg = 0; seg < nr_segs; seg++) {
 | |
| 		const struct iovec *iv = &iov[seg];
 | |
| 
 | |
| 		/*
 | |
| 		 * If any segment has a negative length, or the cumulative
 | |
| 		 * length ever wraps negative then return -EINVAL.
 | |
| 		 */
 | |
| 		ocount += iv->iov_len;
 | |
| 		if (unlikely((ssize_t)(ocount|iv->iov_len) < 0))
 | |
| 			return -EINVAL;
 | |
| 		if (access_ok(VERIFY_READ, iv->iov_base, iv->iov_len))
 | |
| 			continue;
 | |
| 		if (seg == 0)
 | |
| 			return -EFAULT;
 | |
| 		nr_segs = seg;
 | |
| 		ocount -= iv->iov_len;	/* This segment is no good */
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	count = ocount;
 | |
| 	pos = *ppos;
 | |
| 
 | |
| 	vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
 | |
| 
 | |
| 	/* We can write back this queue in page reclaim */
 | |
| 	current->backing_dev_info = mapping->backing_dev_info;
 | |
| 	written = 0;
 | |
| 
 | |
| 	err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
 | |
| 	if (err)
 | |
| 		goto out;
 | |
| 
 | |
| 	if (count == 0)
 | |
| 		goto out;
 | |
| 
 | |
| 	err = remove_suid(file->f_dentry);
 | |
| 	if (err)
 | |
| 		goto out;
 | |
| 
 | |
| 	inode_update_time(inode, 1);
 | |
| 
 | |
| 	/* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
 | |
| 	if (unlikely(file->f_flags & O_DIRECT)) {
 | |
| 		written = generic_file_direct_write(iocb, iov,
 | |
| 				&nr_segs, pos, ppos, count, ocount);
 | |
| 		if (written < 0 || written == count)
 | |
| 			goto out;
 | |
| 		/*
 | |
| 		 * direct-io write to a hole: fall through to buffered I/O
 | |
| 		 * for completing the rest of the request.
 | |
| 		 */
 | |
| 		pos += written;
 | |
| 		count -= written;
 | |
| 	}
 | |
| 
 | |
| 	written = generic_file_buffered_write(iocb, iov, nr_segs,
 | |
| 			pos, ppos, count, written);
 | |
| out:
 | |
| 	current->backing_dev_info = NULL;
 | |
| 	return written ? written : err;
 | |
| }
 | |
| EXPORT_SYMBOL(generic_file_aio_write_nolock);
 | |
| 
 | |
| ssize_t
 | |
| generic_file_aio_write_nolock(struct kiocb *iocb, const struct iovec *iov,
 | |
| 				unsigned long nr_segs, loff_t *ppos)
 | |
| {
 | |
| 	struct file *file = iocb->ki_filp;
 | |
| 	struct address_space *mapping = file->f_mapping;
 | |
| 	struct inode *inode = mapping->host;
 | |
| 	ssize_t ret;
 | |
| 	loff_t pos = *ppos;
 | |
| 
 | |
| 	ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs, ppos);
 | |
| 
 | |
| 	if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
 | |
| 		int err;
 | |
| 
 | |
| 		err = sync_page_range_nolock(inode, mapping, pos, ret);
 | |
| 		if (err < 0)
 | |
| 			ret = err;
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static ssize_t
 | |
| __generic_file_write_nolock(struct file *file, const struct iovec *iov,
 | |
| 				unsigned long nr_segs, loff_t *ppos)
 | |
| {
 | |
| 	struct kiocb kiocb;
 | |
| 	ssize_t ret;
 | |
| 
 | |
| 	init_sync_kiocb(&kiocb, file);
 | |
| 	ret = __generic_file_aio_write_nolock(&kiocb, iov, nr_segs, ppos);
 | |
| 	if (ret == -EIOCBQUEUED)
 | |
| 		ret = wait_on_sync_kiocb(&kiocb);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| ssize_t
 | |
| generic_file_write_nolock(struct file *file, const struct iovec *iov,
 | |
| 				unsigned long nr_segs, loff_t *ppos)
 | |
| {
 | |
| 	struct kiocb kiocb;
 | |
| 	ssize_t ret;
 | |
| 
 | |
| 	init_sync_kiocb(&kiocb, file);
 | |
| 	ret = generic_file_aio_write_nolock(&kiocb, iov, nr_segs, ppos);
 | |
| 	if (-EIOCBQUEUED == ret)
 | |
| 		ret = wait_on_sync_kiocb(&kiocb);
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL(generic_file_write_nolock);
 | |
| 
 | |
| ssize_t generic_file_aio_write(struct kiocb *iocb, const char __user *buf,
 | |
| 			       size_t count, loff_t pos)
 | |
| {
 | |
| 	struct file *file = iocb->ki_filp;
 | |
| 	struct address_space *mapping = file->f_mapping;
 | |
| 	struct inode *inode = mapping->host;
 | |
| 	ssize_t ret;
 | |
| 	struct iovec local_iov = { .iov_base = (void __user *)buf,
 | |
| 					.iov_len = count };
 | |
| 
 | |
| 	BUG_ON(iocb->ki_pos != pos);
 | |
| 
 | |
| 	down(&inode->i_sem);
 | |
| 	ret = __generic_file_aio_write_nolock(iocb, &local_iov, 1,
 | |
| 						&iocb->ki_pos);
 | |
| 	up(&inode->i_sem);
 | |
| 
 | |
| 	if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
 | |
| 		ssize_t err;
 | |
| 
 | |
| 		err = sync_page_range(inode, mapping, pos, ret);
 | |
| 		if (err < 0)
 | |
| 			ret = err;
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL(generic_file_aio_write);
 | |
| 
 | |
| ssize_t generic_file_write(struct file *file, const char __user *buf,
 | |
| 			   size_t count, loff_t *ppos)
 | |
| {
 | |
| 	struct address_space *mapping = file->f_mapping;
 | |
| 	struct inode *inode = mapping->host;
 | |
| 	ssize_t	ret;
 | |
| 	struct iovec local_iov = { .iov_base = (void __user *)buf,
 | |
| 					.iov_len = count };
 | |
| 
 | |
| 	down(&inode->i_sem);
 | |
| 	ret = __generic_file_write_nolock(file, &local_iov, 1, ppos);
 | |
| 	up(&inode->i_sem);
 | |
| 
 | |
| 	if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
 | |
| 		ssize_t err;
 | |
| 
 | |
| 		err = sync_page_range(inode, mapping, *ppos - ret, ret);
 | |
| 		if (err < 0)
 | |
| 			ret = err;
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL(generic_file_write);
 | |
| 
 | |
| ssize_t generic_file_readv(struct file *filp, const struct iovec *iov,
 | |
| 			unsigned long nr_segs, loff_t *ppos)
 | |
| {
 | |
| 	struct kiocb kiocb;
 | |
| 	ssize_t ret;
 | |
| 
 | |
| 	init_sync_kiocb(&kiocb, filp);
 | |
| 	ret = __generic_file_aio_read(&kiocb, iov, nr_segs, ppos);
 | |
| 	if (-EIOCBQUEUED == ret)
 | |
| 		ret = wait_on_sync_kiocb(&kiocb);
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL(generic_file_readv);
 | |
| 
 | |
| ssize_t generic_file_writev(struct file *file, const struct iovec *iov,
 | |
| 			unsigned long nr_segs, loff_t *ppos)
 | |
| {
 | |
| 	struct address_space *mapping = file->f_mapping;
 | |
| 	struct inode *inode = mapping->host;
 | |
| 	ssize_t ret;
 | |
| 
 | |
| 	down(&inode->i_sem);
 | |
| 	ret = __generic_file_write_nolock(file, iov, nr_segs, ppos);
 | |
| 	up(&inode->i_sem);
 | |
| 
 | |
| 	if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
 | |
| 		int err;
 | |
| 
 | |
| 		err = sync_page_range(inode, mapping, *ppos - ret, ret);
 | |
| 		if (err < 0)
 | |
| 			ret = err;
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL(generic_file_writev);
 | |
| 
 | |
| /*
 | |
|  * Called under i_sem for writes to S_ISREG files.   Returns -EIO if something
 | |
|  * went wrong during pagecache shootdown.
 | |
|  */
 | |
| static ssize_t
 | |
| generic_file_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
 | |
| 	loff_t offset, unsigned long nr_segs)
 | |
| {
 | |
| 	struct file *file = iocb->ki_filp;
 | |
| 	struct address_space *mapping = file->f_mapping;
 | |
| 	ssize_t retval;
 | |
| 	size_t write_len = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * If it's a write, unmap all mmappings of the file up-front.  This
 | |
| 	 * will cause any pte dirty bits to be propagated into the pageframes
 | |
| 	 * for the subsequent filemap_write_and_wait().
 | |
| 	 */
 | |
| 	if (rw == WRITE) {
 | |
| 		write_len = iov_length(iov, nr_segs);
 | |
| 	       	if (mapping_mapped(mapping))
 | |
| 			unmap_mapping_range(mapping, offset, write_len, 0);
 | |
| 	}
 | |
| 
 | |
| 	retval = filemap_write_and_wait(mapping);
 | |
| 	if (retval == 0) {
 | |
| 		retval = mapping->a_ops->direct_IO(rw, iocb, iov,
 | |
| 						offset, nr_segs);
 | |
| 		if (rw == WRITE && mapping->nrpages) {
 | |
| 			pgoff_t end = (offset + write_len - 1)
 | |
| 						>> PAGE_CACHE_SHIFT;
 | |
| 			int err = invalidate_inode_pages2_range(mapping,
 | |
| 					offset >> PAGE_CACHE_SHIFT, end);
 | |
| 			if (err)
 | |
| 				retval = err;
 | |
| 		}
 | |
| 	}
 | |
| 	return retval;
 | |
| }
 |