mirror of
				git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
				synced 2025-10-31 16:54:21 +00:00 
			
		
		
		
	 f759784cb6
			
		
	
	
		f759784cb6
		
	
	
	
	
		
			
			Per reviewer request, use an OPSTATE flag (+ helpers) to decide if logged xattrs are enabled, instead of querying the xfs_sb. Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Christoph Hellwig <hch@lst.de>
		
			
				
	
	
		
			1444 lines
		
	
	
	
		
			38 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1444 lines
		
	
	
	
		
			38 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0
 | |
| /*
 | |
|  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
 | |
|  * All Rights Reserved.
 | |
|  */
 | |
| #include "xfs.h"
 | |
| #include "xfs_fs.h"
 | |
| #include "xfs_shared.h"
 | |
| #include "xfs_format.h"
 | |
| #include "xfs_log_format.h"
 | |
| #include "xfs_trans_resv.h"
 | |
| #include "xfs_bit.h"
 | |
| #include "xfs_sb.h"
 | |
| #include "xfs_mount.h"
 | |
| #include "xfs_inode.h"
 | |
| #include "xfs_dir2.h"
 | |
| #include "xfs_ialloc.h"
 | |
| #include "xfs_alloc.h"
 | |
| #include "xfs_rtalloc.h"
 | |
| #include "xfs_bmap.h"
 | |
| #include "xfs_trans.h"
 | |
| #include "xfs_trans_priv.h"
 | |
| #include "xfs_log.h"
 | |
| #include "xfs_log_priv.h"
 | |
| #include "xfs_error.h"
 | |
| #include "xfs_quota.h"
 | |
| #include "xfs_fsops.h"
 | |
| #include "xfs_icache.h"
 | |
| #include "xfs_sysfs.h"
 | |
| #include "xfs_rmap_btree.h"
 | |
| #include "xfs_refcount_btree.h"
 | |
| #include "xfs_reflink.h"
 | |
| #include "xfs_extent_busy.h"
 | |
| #include "xfs_health.h"
 | |
| #include "xfs_trace.h"
 | |
| #include "xfs_ag.h"
 | |
| #include "xfs_rtbitmap.h"
 | |
| #include "scrub/stats.h"
 | |
| 
 | |
| static DEFINE_MUTEX(xfs_uuid_table_mutex);
 | |
| static int xfs_uuid_table_size;
 | |
| static uuid_t *xfs_uuid_table;
 | |
| 
 | |
| void
 | |
| xfs_uuid_table_free(void)
 | |
| {
 | |
| 	if (xfs_uuid_table_size == 0)
 | |
| 		return;
 | |
| 	kfree(xfs_uuid_table);
 | |
| 	xfs_uuid_table = NULL;
 | |
| 	xfs_uuid_table_size = 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * See if the UUID is unique among mounted XFS filesystems.
 | |
|  * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
 | |
|  */
 | |
| STATIC int
 | |
| xfs_uuid_mount(
 | |
| 	struct xfs_mount	*mp)
 | |
| {
 | |
| 	uuid_t			*uuid = &mp->m_sb.sb_uuid;
 | |
| 	int			hole, i;
 | |
| 
 | |
| 	/* Publish UUID in struct super_block */
 | |
| 	super_set_uuid(mp->m_super, uuid->b, sizeof(*uuid));
 | |
| 
 | |
| 	if (xfs_has_nouuid(mp))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (uuid_is_null(uuid)) {
 | |
| 		xfs_warn(mp, "Filesystem has null UUID - can't mount");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	mutex_lock(&xfs_uuid_table_mutex);
 | |
| 	for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) {
 | |
| 		if (uuid_is_null(&xfs_uuid_table[i])) {
 | |
| 			hole = i;
 | |
| 			continue;
 | |
| 		}
 | |
| 		if (uuid_equal(uuid, &xfs_uuid_table[i]))
 | |
| 			goto out_duplicate;
 | |
| 	}
 | |
| 
 | |
| 	if (hole < 0) {
 | |
| 		xfs_uuid_table = krealloc(xfs_uuid_table,
 | |
| 			(xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table),
 | |
| 			GFP_KERNEL | __GFP_NOFAIL);
 | |
| 		hole = xfs_uuid_table_size++;
 | |
| 	}
 | |
| 	xfs_uuid_table[hole] = *uuid;
 | |
| 	mutex_unlock(&xfs_uuid_table_mutex);
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
|  out_duplicate:
 | |
| 	mutex_unlock(&xfs_uuid_table_mutex);
 | |
| 	xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid);
 | |
| 	return -EINVAL;
 | |
| }
 | |
| 
 | |
| STATIC void
 | |
| xfs_uuid_unmount(
 | |
| 	struct xfs_mount	*mp)
 | |
| {
 | |
| 	uuid_t			*uuid = &mp->m_sb.sb_uuid;
 | |
| 	int			i;
 | |
| 
 | |
| 	if (xfs_has_nouuid(mp))
 | |
| 		return;
 | |
| 
 | |
| 	mutex_lock(&xfs_uuid_table_mutex);
 | |
| 	for (i = 0; i < xfs_uuid_table_size; i++) {
 | |
| 		if (uuid_is_null(&xfs_uuid_table[i]))
 | |
| 			continue;
 | |
| 		if (!uuid_equal(uuid, &xfs_uuid_table[i]))
 | |
| 			continue;
 | |
| 		memset(&xfs_uuid_table[i], 0, sizeof(uuid_t));
 | |
| 		break;
 | |
| 	}
 | |
| 	ASSERT(i < xfs_uuid_table_size);
 | |
| 	mutex_unlock(&xfs_uuid_table_mutex);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Check size of device based on the (data/realtime) block count.
 | |
|  * Note: this check is used by the growfs code as well as mount.
 | |
|  */
 | |
| int
 | |
| xfs_sb_validate_fsb_count(
 | |
| 	xfs_sb_t	*sbp,
 | |
| 	uint64_t	nblocks)
 | |
| {
 | |
| 	ASSERT(PAGE_SHIFT >= sbp->sb_blocklog);
 | |
| 	ASSERT(sbp->sb_blocklog >= BBSHIFT);
 | |
| 
 | |
| 	/* Limited by ULONG_MAX of page cache index */
 | |
| 	if (nblocks >> (PAGE_SHIFT - sbp->sb_blocklog) > ULONG_MAX)
 | |
| 		return -EFBIG;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * xfs_readsb
 | |
|  *
 | |
|  * Does the initial read of the superblock.
 | |
|  */
 | |
| int
 | |
| xfs_readsb(
 | |
| 	struct xfs_mount *mp,
 | |
| 	int		flags)
 | |
| {
 | |
| 	unsigned int	sector_size;
 | |
| 	struct xfs_buf	*bp;
 | |
| 	struct xfs_sb	*sbp = &mp->m_sb;
 | |
| 	int		error;
 | |
| 	int		loud = !(flags & XFS_MFSI_QUIET);
 | |
| 	const struct xfs_buf_ops *buf_ops;
 | |
| 
 | |
| 	ASSERT(mp->m_sb_bp == NULL);
 | |
| 	ASSERT(mp->m_ddev_targp != NULL);
 | |
| 
 | |
| 	/*
 | |
| 	 * For the initial read, we must guess at the sector
 | |
| 	 * size based on the block device.  It's enough to
 | |
| 	 * get the sb_sectsize out of the superblock and
 | |
| 	 * then reread with the proper length.
 | |
| 	 * We don't verify it yet, because it may not be complete.
 | |
| 	 */
 | |
| 	sector_size = xfs_getsize_buftarg(mp->m_ddev_targp);
 | |
| 	buf_ops = NULL;
 | |
| 
 | |
| 	/*
 | |
| 	 * Allocate a (locked) buffer to hold the superblock. This will be kept
 | |
| 	 * around at all times to optimize access to the superblock. Therefore,
 | |
| 	 * set XBF_NO_IOACCT to make sure it doesn't hold the buftarg count
 | |
| 	 * elevated.
 | |
| 	 */
 | |
| reread:
 | |
| 	error = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR,
 | |
| 				      BTOBB(sector_size), XBF_NO_IOACCT, &bp,
 | |
| 				      buf_ops);
 | |
| 	if (error) {
 | |
| 		if (loud)
 | |
| 			xfs_warn(mp, "SB validate failed with error %d.", error);
 | |
| 		/* bad CRC means corrupted metadata */
 | |
| 		if (error == -EFSBADCRC)
 | |
| 			error = -EFSCORRUPTED;
 | |
| 		return error;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Initialize the mount structure from the superblock.
 | |
| 	 */
 | |
| 	xfs_sb_from_disk(sbp, bp->b_addr);
 | |
| 
 | |
| 	/*
 | |
| 	 * If we haven't validated the superblock, do so now before we try
 | |
| 	 * to check the sector size and reread the superblock appropriately.
 | |
| 	 */
 | |
| 	if (sbp->sb_magicnum != XFS_SB_MAGIC) {
 | |
| 		if (loud)
 | |
| 			xfs_warn(mp, "Invalid superblock magic number");
 | |
| 		error = -EINVAL;
 | |
| 		goto release_buf;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * We must be able to do sector-sized and sector-aligned IO.
 | |
| 	 */
 | |
| 	if (sector_size > sbp->sb_sectsize) {
 | |
| 		if (loud)
 | |
| 			xfs_warn(mp, "device supports %u byte sectors (not %u)",
 | |
| 				sector_size, sbp->sb_sectsize);
 | |
| 		error = -ENOSYS;
 | |
| 		goto release_buf;
 | |
| 	}
 | |
| 
 | |
| 	if (buf_ops == NULL) {
 | |
| 		/*
 | |
| 		 * Re-read the superblock so the buffer is correctly sized,
 | |
| 		 * and properly verified.
 | |
| 		 */
 | |
| 		xfs_buf_relse(bp);
 | |
| 		sector_size = sbp->sb_sectsize;
 | |
| 		buf_ops = loud ? &xfs_sb_buf_ops : &xfs_sb_quiet_buf_ops;
 | |
| 		goto reread;
 | |
| 	}
 | |
| 
 | |
| 	mp->m_features |= xfs_sb_version_to_features(sbp);
 | |
| 	xfs_reinit_percpu_counters(mp);
 | |
| 
 | |
| 	/*
 | |
| 	 * If logged xattrs are enabled after log recovery finishes, then set
 | |
| 	 * the opstate so that log recovery will work properly.
 | |
| 	 */
 | |
| 	if (xfs_sb_version_haslogxattrs(&mp->m_sb))
 | |
| 		xfs_set_using_logged_xattrs(mp);
 | |
| 
 | |
| 	/* no need to be quiet anymore, so reset the buf ops */
 | |
| 	bp->b_ops = &xfs_sb_buf_ops;
 | |
| 
 | |
| 	mp->m_sb_bp = bp;
 | |
| 	xfs_buf_unlock(bp);
 | |
| 	return 0;
 | |
| 
 | |
| release_buf:
 | |
| 	xfs_buf_relse(bp);
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * If the sunit/swidth change would move the precomputed root inode value, we
 | |
|  * must reject the ondisk change because repair will stumble over that.
 | |
|  * However, we allow the mount to proceed because we never rejected this
 | |
|  * combination before.  Returns true to update the sb, false otherwise.
 | |
|  */
 | |
| static inline int
 | |
| xfs_check_new_dalign(
 | |
| 	struct xfs_mount	*mp,
 | |
| 	int			new_dalign,
 | |
| 	bool			*update_sb)
 | |
| {
 | |
| 	struct xfs_sb		*sbp = &mp->m_sb;
 | |
| 	xfs_ino_t		calc_ino;
 | |
| 
 | |
| 	calc_ino = xfs_ialloc_calc_rootino(mp, new_dalign);
 | |
| 	trace_xfs_check_new_dalign(mp, new_dalign, calc_ino);
 | |
| 
 | |
| 	if (sbp->sb_rootino == calc_ino) {
 | |
| 		*update_sb = true;
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	xfs_warn(mp,
 | |
| "Cannot change stripe alignment; would require moving root inode.");
 | |
| 
 | |
| 	/*
 | |
| 	 * XXX: Next time we add a new incompat feature, this should start
 | |
| 	 * returning -EINVAL to fail the mount.  Until then, spit out a warning
 | |
| 	 * that we're ignoring the administrator's instructions.
 | |
| 	 */
 | |
| 	xfs_warn(mp, "Skipping superblock stripe alignment update.");
 | |
| 	*update_sb = false;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * If we were provided with new sunit/swidth values as mount options, make sure
 | |
|  * that they pass basic alignment and superblock feature checks, and convert
 | |
|  * them into the same units (FSB) that everything else expects.  This step
 | |
|  * /must/ be done before computing the inode geometry.
 | |
|  */
 | |
| STATIC int
 | |
| xfs_validate_new_dalign(
 | |
| 	struct xfs_mount	*mp)
 | |
| {
 | |
| 	if (mp->m_dalign == 0)
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * If stripe unit and stripe width are not multiples
 | |
| 	 * of the fs blocksize turn off alignment.
 | |
| 	 */
 | |
| 	if ((BBTOB(mp->m_dalign) & mp->m_blockmask) ||
 | |
| 	    (BBTOB(mp->m_swidth) & mp->m_blockmask)) {
 | |
| 		xfs_warn(mp,
 | |
| 	"alignment check failed: sunit/swidth vs. blocksize(%d)",
 | |
| 			mp->m_sb.sb_blocksize);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Convert the stripe unit and width to FSBs.
 | |
| 	 */
 | |
| 	mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign);
 | |
| 	if (mp->m_dalign && (mp->m_sb.sb_agblocks % mp->m_dalign)) {
 | |
| 		xfs_warn(mp,
 | |
| 	"alignment check failed: sunit/swidth vs. agsize(%d)",
 | |
| 			mp->m_sb.sb_agblocks);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if (!mp->m_dalign) {
 | |
| 		xfs_warn(mp,
 | |
| 	"alignment check failed: sunit(%d) less than bsize(%d)",
 | |
| 			mp->m_dalign, mp->m_sb.sb_blocksize);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth);
 | |
| 
 | |
| 	if (!xfs_has_dalign(mp)) {
 | |
| 		xfs_warn(mp,
 | |
| "cannot change alignment: superblock does not support data alignment");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* Update alignment values based on mount options and sb values. */
 | |
| STATIC int
 | |
| xfs_update_alignment(
 | |
| 	struct xfs_mount	*mp)
 | |
| {
 | |
| 	struct xfs_sb		*sbp = &mp->m_sb;
 | |
| 
 | |
| 	if (mp->m_dalign) {
 | |
| 		bool		update_sb;
 | |
| 		int		error;
 | |
| 
 | |
| 		if (sbp->sb_unit == mp->m_dalign &&
 | |
| 		    sbp->sb_width == mp->m_swidth)
 | |
| 			return 0;
 | |
| 
 | |
| 		error = xfs_check_new_dalign(mp, mp->m_dalign, &update_sb);
 | |
| 		if (error || !update_sb)
 | |
| 			return error;
 | |
| 
 | |
| 		sbp->sb_unit = mp->m_dalign;
 | |
| 		sbp->sb_width = mp->m_swidth;
 | |
| 		mp->m_update_sb = true;
 | |
| 	} else if (!xfs_has_noalign(mp) && xfs_has_dalign(mp)) {
 | |
| 		mp->m_dalign = sbp->sb_unit;
 | |
| 		mp->m_swidth = sbp->sb_width;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * precalculate the low space thresholds for dynamic speculative preallocation.
 | |
|  */
 | |
| void
 | |
| xfs_set_low_space_thresholds(
 | |
| 	struct xfs_mount	*mp)
 | |
| {
 | |
| 	uint64_t		dblocks = mp->m_sb.sb_dblocks;
 | |
| 	uint64_t		rtexts = mp->m_sb.sb_rextents;
 | |
| 	int			i;
 | |
| 
 | |
| 	do_div(dblocks, 100);
 | |
| 	do_div(rtexts, 100);
 | |
| 
 | |
| 	for (i = 0; i < XFS_LOWSP_MAX; i++) {
 | |
| 		mp->m_low_space[i] = dblocks * (i + 1);
 | |
| 		mp->m_low_rtexts[i] = rtexts * (i + 1);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Check that the data (and log if separate) is an ok size.
 | |
|  */
 | |
| STATIC int
 | |
| xfs_check_sizes(
 | |
| 	struct xfs_mount *mp)
 | |
| {
 | |
| 	struct xfs_buf	*bp;
 | |
| 	xfs_daddr_t	d;
 | |
| 	int		error;
 | |
| 
 | |
| 	d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
 | |
| 	if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) {
 | |
| 		xfs_warn(mp, "filesystem size mismatch detected");
 | |
| 		return -EFBIG;
 | |
| 	}
 | |
| 	error = xfs_buf_read_uncached(mp->m_ddev_targp,
 | |
| 					d - XFS_FSS_TO_BB(mp, 1),
 | |
| 					XFS_FSS_TO_BB(mp, 1), 0, &bp, NULL);
 | |
| 	if (error) {
 | |
| 		xfs_warn(mp, "last sector read failed");
 | |
| 		return error;
 | |
| 	}
 | |
| 	xfs_buf_relse(bp);
 | |
| 
 | |
| 	if (mp->m_logdev_targp == mp->m_ddev_targp)
 | |
| 		return 0;
 | |
| 
 | |
| 	d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
 | |
| 	if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) {
 | |
| 		xfs_warn(mp, "log size mismatch detected");
 | |
| 		return -EFBIG;
 | |
| 	}
 | |
| 	error = xfs_buf_read_uncached(mp->m_logdev_targp,
 | |
| 					d - XFS_FSB_TO_BB(mp, 1),
 | |
| 					XFS_FSB_TO_BB(mp, 1), 0, &bp, NULL);
 | |
| 	if (error) {
 | |
| 		xfs_warn(mp, "log device read failed");
 | |
| 		return error;
 | |
| 	}
 | |
| 	xfs_buf_relse(bp);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Clear the quotaflags in memory and in the superblock.
 | |
|  */
 | |
| int
 | |
| xfs_mount_reset_sbqflags(
 | |
| 	struct xfs_mount	*mp)
 | |
| {
 | |
| 	mp->m_qflags = 0;
 | |
| 
 | |
| 	/* It is OK to look at sb_qflags in the mount path without m_sb_lock. */
 | |
| 	if (mp->m_sb.sb_qflags == 0)
 | |
| 		return 0;
 | |
| 	spin_lock(&mp->m_sb_lock);
 | |
| 	mp->m_sb.sb_qflags = 0;
 | |
| 	spin_unlock(&mp->m_sb_lock);
 | |
| 
 | |
| 	if (!xfs_fs_writable(mp, SB_FREEZE_WRITE))
 | |
| 		return 0;
 | |
| 
 | |
| 	return xfs_sync_sb(mp, false);
 | |
| }
 | |
| 
 | |
| uint64_t
 | |
| xfs_default_resblks(xfs_mount_t *mp)
 | |
| {
 | |
| 	uint64_t resblks;
 | |
| 
 | |
| 	/*
 | |
| 	 * We default to 5% or 8192 fsbs of space reserved, whichever is
 | |
| 	 * smaller.  This is intended to cover concurrent allocation
 | |
| 	 * transactions when we initially hit enospc. These each require a 4
 | |
| 	 * block reservation. Hence by default we cover roughly 2000 concurrent
 | |
| 	 * allocation reservations.
 | |
| 	 */
 | |
| 	resblks = mp->m_sb.sb_dblocks;
 | |
| 	do_div(resblks, 20);
 | |
| 	resblks = min_t(uint64_t, resblks, 8192);
 | |
| 	return resblks;
 | |
| }
 | |
| 
 | |
| /* Ensure the summary counts are correct. */
 | |
| STATIC int
 | |
| xfs_check_summary_counts(
 | |
| 	struct xfs_mount	*mp)
 | |
| {
 | |
| 	int			error = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * The AG0 superblock verifier rejects in-progress filesystems,
 | |
| 	 * so we should never see the flag set this far into mounting.
 | |
| 	 */
 | |
| 	if (mp->m_sb.sb_inprogress) {
 | |
| 		xfs_err(mp, "sb_inprogress set after log recovery??");
 | |
| 		WARN_ON(1);
 | |
| 		return -EFSCORRUPTED;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Now the log is mounted, we know if it was an unclean shutdown or
 | |
| 	 * not. If it was, with the first phase of recovery has completed, we
 | |
| 	 * have consistent AG blocks on disk. We have not recovered EFIs yet,
 | |
| 	 * but they are recovered transactionally in the second recovery phase
 | |
| 	 * later.
 | |
| 	 *
 | |
| 	 * If the log was clean when we mounted, we can check the summary
 | |
| 	 * counters.  If any of them are obviously incorrect, we can recompute
 | |
| 	 * them from the AGF headers in the next step.
 | |
| 	 */
 | |
| 	if (xfs_is_clean(mp) &&
 | |
| 	    (mp->m_sb.sb_fdblocks > mp->m_sb.sb_dblocks ||
 | |
| 	     !xfs_verify_icount(mp, mp->m_sb.sb_icount) ||
 | |
| 	     mp->m_sb.sb_ifree > mp->m_sb.sb_icount))
 | |
| 		xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS);
 | |
| 
 | |
| 	/*
 | |
| 	 * We can safely re-initialise incore superblock counters from the
 | |
| 	 * per-ag data. These may not be correct if the filesystem was not
 | |
| 	 * cleanly unmounted, so we waited for recovery to finish before doing
 | |
| 	 * this.
 | |
| 	 *
 | |
| 	 * If the filesystem was cleanly unmounted or the previous check did
 | |
| 	 * not flag anything weird, then we can trust the values in the
 | |
| 	 * superblock to be correct and we don't need to do anything here.
 | |
| 	 * Otherwise, recalculate the summary counters.
 | |
| 	 */
 | |
| 	if ((xfs_has_lazysbcount(mp) && !xfs_is_clean(mp)) ||
 | |
| 	    xfs_fs_has_sickness(mp, XFS_SICK_FS_COUNTERS)) {
 | |
| 		error = xfs_initialize_perag_data(mp, mp->m_sb.sb_agcount);
 | |
| 		if (error)
 | |
| 			return error;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Older kernels misused sb_frextents to reflect both incore
 | |
| 	 * reservations made by running transactions and the actual count of
 | |
| 	 * free rt extents in the ondisk metadata.  Transactions committed
 | |
| 	 * during runtime can therefore contain a superblock update that
 | |
| 	 * undercounts the number of free rt extents tracked in the rt bitmap.
 | |
| 	 * A clean unmount record will have the correct frextents value since
 | |
| 	 * there can be no other transactions running at that point.
 | |
| 	 *
 | |
| 	 * If we're mounting the rt volume after recovering the log, recompute
 | |
| 	 * frextents from the rtbitmap file to fix the inconsistency.
 | |
| 	 */
 | |
| 	if (xfs_has_realtime(mp) && !xfs_is_clean(mp)) {
 | |
| 		error = xfs_rtalloc_reinit_frextents(mp);
 | |
| 		if (error)
 | |
| 			return error;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void
 | |
| xfs_unmount_check(
 | |
| 	struct xfs_mount	*mp)
 | |
| {
 | |
| 	if (xfs_is_shutdown(mp))
 | |
| 		return;
 | |
| 
 | |
| 	if (percpu_counter_sum(&mp->m_ifree) >
 | |
| 			percpu_counter_sum(&mp->m_icount)) {
 | |
| 		xfs_alert(mp, "ifree/icount mismatch at unmount");
 | |
| 		xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Flush and reclaim dirty inodes in preparation for unmount. Inodes and
 | |
|  * internal inode structures can be sitting in the CIL and AIL at this point,
 | |
|  * so we need to unpin them, write them back and/or reclaim them before unmount
 | |
|  * can proceed.  In other words, callers are required to have inactivated all
 | |
|  * inodes.
 | |
|  *
 | |
|  * An inode cluster that has been freed can have its buffer still pinned in
 | |
|  * memory because the transaction is still sitting in a iclog. The stale inodes
 | |
|  * on that buffer will be pinned to the buffer until the transaction hits the
 | |
|  * disk and the callbacks run. Pushing the AIL will skip the stale inodes and
 | |
|  * may never see the pinned buffer, so nothing will push out the iclog and
 | |
|  * unpin the buffer.
 | |
|  *
 | |
|  * Hence we need to force the log to unpin everything first. However, log
 | |
|  * forces don't wait for the discards they issue to complete, so we have to
 | |
|  * explicitly wait for them to complete here as well.
 | |
|  *
 | |
|  * Then we can tell the world we are unmounting so that error handling knows
 | |
|  * that the filesystem is going away and we should error out anything that we
 | |
|  * have been retrying in the background.  This will prevent never-ending
 | |
|  * retries in AIL pushing from hanging the unmount.
 | |
|  *
 | |
|  * Finally, we can push the AIL to clean all the remaining dirty objects, then
 | |
|  * reclaim the remaining inodes that are still in memory at this point in time.
 | |
|  */
 | |
| static void
 | |
| xfs_unmount_flush_inodes(
 | |
| 	struct xfs_mount	*mp)
 | |
| {
 | |
| 	xfs_log_force(mp, XFS_LOG_SYNC);
 | |
| 	xfs_extent_busy_wait_all(mp);
 | |
| 	flush_workqueue(xfs_discard_wq);
 | |
| 
 | |
| 	set_bit(XFS_OPSTATE_UNMOUNTING, &mp->m_opstate);
 | |
| 
 | |
| 	xfs_ail_push_all_sync(mp->m_ail);
 | |
| 	xfs_inodegc_stop(mp);
 | |
| 	cancel_delayed_work_sync(&mp->m_reclaim_work);
 | |
| 	xfs_reclaim_inodes(mp);
 | |
| 	xfs_health_unmount(mp);
 | |
| }
 | |
| 
 | |
| static void
 | |
| xfs_mount_setup_inode_geom(
 | |
| 	struct xfs_mount	*mp)
 | |
| {
 | |
| 	struct xfs_ino_geometry *igeo = M_IGEO(mp);
 | |
| 
 | |
| 	igeo->attr_fork_offset = xfs_bmap_compute_attr_offset(mp);
 | |
| 	ASSERT(igeo->attr_fork_offset < XFS_LITINO(mp));
 | |
| 
 | |
| 	xfs_ialloc_setup_geometry(mp);
 | |
| }
 | |
| 
 | |
| /* Compute maximum possible height for per-AG btree types for this fs. */
 | |
| static inline void
 | |
| xfs_agbtree_compute_maxlevels(
 | |
| 	struct xfs_mount	*mp)
 | |
| {
 | |
| 	unsigned int		levels;
 | |
| 
 | |
| 	levels = max(mp->m_alloc_maxlevels, M_IGEO(mp)->inobt_maxlevels);
 | |
| 	levels = max(levels, mp->m_rmap_maxlevels);
 | |
| 	mp->m_agbtree_maxlevels = max(levels, mp->m_refc_maxlevels);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This function does the following on an initial mount of a file system:
 | |
|  *	- reads the superblock from disk and init the mount struct
 | |
|  *	- if we're a 32-bit kernel, do a size check on the superblock
 | |
|  *		so we don't mount terabyte filesystems
 | |
|  *	- init mount struct realtime fields
 | |
|  *	- allocate inode hash table for fs
 | |
|  *	- init directory manager
 | |
|  *	- perform recovery and init the log manager
 | |
|  */
 | |
| int
 | |
| xfs_mountfs(
 | |
| 	struct xfs_mount	*mp)
 | |
| {
 | |
| 	struct xfs_sb		*sbp = &(mp->m_sb);
 | |
| 	struct xfs_inode	*rip;
 | |
| 	struct xfs_ino_geometry	*igeo = M_IGEO(mp);
 | |
| 	uint			quotamount = 0;
 | |
| 	uint			quotaflags = 0;
 | |
| 	int			error = 0;
 | |
| 
 | |
| 	xfs_sb_mount_common(mp, sbp);
 | |
| 
 | |
| 	/*
 | |
| 	 * Check for a mismatched features2 values.  Older kernels read & wrote
 | |
| 	 * into the wrong sb offset for sb_features2 on some platforms due to
 | |
| 	 * xfs_sb_t not being 64bit size aligned when sb_features2 was added,
 | |
| 	 * which made older superblock reading/writing routines swap it as a
 | |
| 	 * 64-bit value.
 | |
| 	 *
 | |
| 	 * For backwards compatibility, we make both slots equal.
 | |
| 	 *
 | |
| 	 * If we detect a mismatched field, we OR the set bits into the existing
 | |
| 	 * features2 field in case it has already been modified; we don't want
 | |
| 	 * to lose any features.  We then update the bad location with the ORed
 | |
| 	 * value so that older kernels will see any features2 flags. The
 | |
| 	 * superblock writeback code ensures the new sb_features2 is copied to
 | |
| 	 * sb_bad_features2 before it is logged or written to disk.
 | |
| 	 */
 | |
| 	if (xfs_sb_has_mismatched_features2(sbp)) {
 | |
| 		xfs_warn(mp, "correcting sb_features alignment problem");
 | |
| 		sbp->sb_features2 |= sbp->sb_bad_features2;
 | |
| 		mp->m_update_sb = true;
 | |
| 	}
 | |
| 
 | |
| 
 | |
| 	/* always use v2 inodes by default now */
 | |
| 	if (!(mp->m_sb.sb_versionnum & XFS_SB_VERSION_NLINKBIT)) {
 | |
| 		mp->m_sb.sb_versionnum |= XFS_SB_VERSION_NLINKBIT;
 | |
| 		mp->m_features |= XFS_FEAT_NLINK;
 | |
| 		mp->m_update_sb = true;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If we were given new sunit/swidth options, do some basic validation
 | |
| 	 * checks and convert the incore dalign and swidth values to the
 | |
| 	 * same units (FSB) that everything else uses.  This /must/ happen
 | |
| 	 * before computing the inode geometry.
 | |
| 	 */
 | |
| 	error = xfs_validate_new_dalign(mp);
 | |
| 	if (error)
 | |
| 		goto out;
 | |
| 
 | |
| 	xfs_alloc_compute_maxlevels(mp);
 | |
| 	xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK);
 | |
| 	xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK);
 | |
| 	xfs_mount_setup_inode_geom(mp);
 | |
| 	xfs_rmapbt_compute_maxlevels(mp);
 | |
| 	xfs_refcountbt_compute_maxlevels(mp);
 | |
| 
 | |
| 	xfs_agbtree_compute_maxlevels(mp);
 | |
| 
 | |
| 	/*
 | |
| 	 * Check if sb_agblocks is aligned at stripe boundary.  If sb_agblocks
 | |
| 	 * is NOT aligned turn off m_dalign since allocator alignment is within
 | |
| 	 * an ag, therefore ag has to be aligned at stripe boundary.  Note that
 | |
| 	 * we must compute the free space and rmap btree geometry before doing
 | |
| 	 * this.
 | |
| 	 */
 | |
| 	error = xfs_update_alignment(mp);
 | |
| 	if (error)
 | |
| 		goto out;
 | |
| 
 | |
| 	/* enable fail_at_unmount as default */
 | |
| 	mp->m_fail_unmount = true;
 | |
| 
 | |
| 	super_set_sysfs_name_id(mp->m_super);
 | |
| 
 | |
| 	error = xfs_sysfs_init(&mp->m_kobj, &xfs_mp_ktype,
 | |
| 			       NULL, mp->m_super->s_id);
 | |
| 	if (error)
 | |
| 		goto out;
 | |
| 
 | |
| 	error = xfs_sysfs_init(&mp->m_stats.xs_kobj, &xfs_stats_ktype,
 | |
| 			       &mp->m_kobj, "stats");
 | |
| 	if (error)
 | |
| 		goto out_remove_sysfs;
 | |
| 
 | |
| 	xchk_stats_register(mp->m_scrub_stats, mp->m_debugfs);
 | |
| 
 | |
| 	error = xfs_error_sysfs_init(mp);
 | |
| 	if (error)
 | |
| 		goto out_remove_scrub_stats;
 | |
| 
 | |
| 	error = xfs_errortag_init(mp);
 | |
| 	if (error)
 | |
| 		goto out_remove_error_sysfs;
 | |
| 
 | |
| 	error = xfs_uuid_mount(mp);
 | |
| 	if (error)
 | |
| 		goto out_remove_errortag;
 | |
| 
 | |
| 	/*
 | |
| 	 * Update the preferred write size based on the information from the
 | |
| 	 * on-disk superblock.
 | |
| 	 */
 | |
| 	mp->m_allocsize_log =
 | |
| 		max_t(uint32_t, sbp->sb_blocklog, mp->m_allocsize_log);
 | |
| 	mp->m_allocsize_blocks = 1U << (mp->m_allocsize_log - sbp->sb_blocklog);
 | |
| 
 | |
| 	/* set the low space thresholds for dynamic preallocation */
 | |
| 	xfs_set_low_space_thresholds(mp);
 | |
| 
 | |
| 	/*
 | |
| 	 * If enabled, sparse inode chunk alignment is expected to match the
 | |
| 	 * cluster size. Full inode chunk alignment must match the chunk size,
 | |
| 	 * but that is checked on sb read verification...
 | |
| 	 */
 | |
| 	if (xfs_has_sparseinodes(mp) &&
 | |
| 	    mp->m_sb.sb_spino_align !=
 | |
| 			XFS_B_TO_FSBT(mp, igeo->inode_cluster_size_raw)) {
 | |
| 		xfs_warn(mp,
 | |
| 	"Sparse inode block alignment (%u) must match cluster size (%llu).",
 | |
| 			 mp->m_sb.sb_spino_align,
 | |
| 			 XFS_B_TO_FSBT(mp, igeo->inode_cluster_size_raw));
 | |
| 		error = -EINVAL;
 | |
| 		goto out_remove_uuid;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Check that the data (and log if separate) is an ok size.
 | |
| 	 */
 | |
| 	error = xfs_check_sizes(mp);
 | |
| 	if (error)
 | |
| 		goto out_remove_uuid;
 | |
| 
 | |
| 	/*
 | |
| 	 * Initialize realtime fields in the mount structure
 | |
| 	 */
 | |
| 	error = xfs_rtmount_init(mp);
 | |
| 	if (error) {
 | |
| 		xfs_warn(mp, "RT mount failed");
 | |
| 		goto out_remove_uuid;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 *  Copies the low order bits of the timestamp and the randomly
 | |
| 	 *  set "sequence" number out of a UUID.
 | |
| 	 */
 | |
| 	mp->m_fixedfsid[0] =
 | |
| 		(get_unaligned_be16(&sbp->sb_uuid.b[8]) << 16) |
 | |
| 		 get_unaligned_be16(&sbp->sb_uuid.b[4]);
 | |
| 	mp->m_fixedfsid[1] = get_unaligned_be32(&sbp->sb_uuid.b[0]);
 | |
| 
 | |
| 	error = xfs_da_mount(mp);
 | |
| 	if (error) {
 | |
| 		xfs_warn(mp, "Failed dir/attr init: %d", error);
 | |
| 		goto out_remove_uuid;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Initialize the precomputed transaction reservations values.
 | |
| 	 */
 | |
| 	xfs_trans_init(mp);
 | |
| 
 | |
| 	/*
 | |
| 	 * Allocate and initialize the per-ag data.
 | |
| 	 */
 | |
| 	error = xfs_initialize_perag(mp, sbp->sb_agcount, mp->m_sb.sb_dblocks,
 | |
| 			&mp->m_maxagi);
 | |
| 	if (error) {
 | |
| 		xfs_warn(mp, "Failed per-ag init: %d", error);
 | |
| 		goto out_free_dir;
 | |
| 	}
 | |
| 
 | |
| 	if (XFS_IS_CORRUPT(mp, !sbp->sb_logblocks)) {
 | |
| 		xfs_warn(mp, "no log defined");
 | |
| 		error = -EFSCORRUPTED;
 | |
| 		goto out_free_perag;
 | |
| 	}
 | |
| 
 | |
| 	error = xfs_inodegc_register_shrinker(mp);
 | |
| 	if (error)
 | |
| 		goto out_fail_wait;
 | |
| 
 | |
| 	/*
 | |
| 	 * Log's mount-time initialization. The first part of recovery can place
 | |
| 	 * some items on the AIL, to be handled when recovery is finished or
 | |
| 	 * cancelled.
 | |
| 	 */
 | |
| 	error = xfs_log_mount(mp, mp->m_logdev_targp,
 | |
| 			      XFS_FSB_TO_DADDR(mp, sbp->sb_logstart),
 | |
| 			      XFS_FSB_TO_BB(mp, sbp->sb_logblocks));
 | |
| 	if (error) {
 | |
| 		xfs_warn(mp, "log mount failed");
 | |
| 		goto out_inodegc_shrinker;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If logged xattrs are still enabled after log recovery finishes, then
 | |
| 	 * they'll be available until unmount.  Otherwise, turn them off.
 | |
| 	 */
 | |
| 	if (xfs_sb_version_haslogxattrs(&mp->m_sb))
 | |
| 		xfs_set_using_logged_xattrs(mp);
 | |
| 	else
 | |
| 		xfs_clear_using_logged_xattrs(mp);
 | |
| 
 | |
| 	/* Enable background inode inactivation workers. */
 | |
| 	xfs_inodegc_start(mp);
 | |
| 	xfs_blockgc_start(mp);
 | |
| 
 | |
| 	/*
 | |
| 	 * Now that we've recovered any pending superblock feature bit
 | |
| 	 * additions, we can finish setting up the attr2 behaviour for the
 | |
| 	 * mount. The noattr2 option overrides the superblock flag, so only
 | |
| 	 * check the superblock feature flag if the mount option is not set.
 | |
| 	 */
 | |
| 	if (xfs_has_noattr2(mp)) {
 | |
| 		mp->m_features &= ~XFS_FEAT_ATTR2;
 | |
| 	} else if (!xfs_has_attr2(mp) &&
 | |
| 		   (mp->m_sb.sb_features2 & XFS_SB_VERSION2_ATTR2BIT)) {
 | |
| 		mp->m_features |= XFS_FEAT_ATTR2;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Get and sanity-check the root inode.
 | |
| 	 * Save the pointer to it in the mount structure.
 | |
| 	 */
 | |
| 	error = xfs_iget(mp, NULL, sbp->sb_rootino, XFS_IGET_UNTRUSTED,
 | |
| 			 XFS_ILOCK_EXCL, &rip);
 | |
| 	if (error) {
 | |
| 		xfs_warn(mp,
 | |
| 			"Failed to read root inode 0x%llx, error %d",
 | |
| 			sbp->sb_rootino, -error);
 | |
| 		goto out_log_dealloc;
 | |
| 	}
 | |
| 
 | |
| 	ASSERT(rip != NULL);
 | |
| 
 | |
| 	if (XFS_IS_CORRUPT(mp, !S_ISDIR(VFS_I(rip)->i_mode))) {
 | |
| 		xfs_warn(mp, "corrupted root inode %llu: not a directory",
 | |
| 			(unsigned long long)rip->i_ino);
 | |
| 		xfs_iunlock(rip, XFS_ILOCK_EXCL);
 | |
| 		error = -EFSCORRUPTED;
 | |
| 		goto out_rele_rip;
 | |
| 	}
 | |
| 	mp->m_rootip = rip;	/* save it */
 | |
| 
 | |
| 	xfs_iunlock(rip, XFS_ILOCK_EXCL);
 | |
| 
 | |
| 	/*
 | |
| 	 * Initialize realtime inode pointers in the mount structure
 | |
| 	 */
 | |
| 	error = xfs_rtmount_inodes(mp);
 | |
| 	if (error) {
 | |
| 		/*
 | |
| 		 * Free up the root inode.
 | |
| 		 */
 | |
| 		xfs_warn(mp, "failed to read RT inodes");
 | |
| 		goto out_rele_rip;
 | |
| 	}
 | |
| 
 | |
| 	/* Make sure the summary counts are ok. */
 | |
| 	error = xfs_check_summary_counts(mp);
 | |
| 	if (error)
 | |
| 		goto out_rtunmount;
 | |
| 
 | |
| 	/*
 | |
| 	 * If this is a read-only mount defer the superblock updates until
 | |
| 	 * the next remount into writeable mode.  Otherwise we would never
 | |
| 	 * perform the update e.g. for the root filesystem.
 | |
| 	 */
 | |
| 	if (mp->m_update_sb && !xfs_is_readonly(mp)) {
 | |
| 		error = xfs_sync_sb(mp, false);
 | |
| 		if (error) {
 | |
| 			xfs_warn(mp, "failed to write sb changes");
 | |
| 			goto out_rtunmount;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Initialise the XFS quota management subsystem for this mount
 | |
| 	 */
 | |
| 	if (XFS_IS_QUOTA_ON(mp)) {
 | |
| 		error = xfs_qm_newmount(mp, "amount, "aflags);
 | |
| 		if (error)
 | |
| 			goto out_rtunmount;
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * If a file system had quotas running earlier, but decided to
 | |
| 		 * mount without -o uquota/pquota/gquota options, revoke the
 | |
| 		 * quotachecked license.
 | |
| 		 */
 | |
| 		if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) {
 | |
| 			xfs_notice(mp, "resetting quota flags");
 | |
| 			error = xfs_mount_reset_sbqflags(mp);
 | |
| 			if (error)
 | |
| 				goto out_rtunmount;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Finish recovering the file system.  This part needed to be delayed
 | |
| 	 * until after the root and real-time bitmap inodes were consistently
 | |
| 	 * read in.  Temporarily create per-AG space reservations for metadata
 | |
| 	 * btree shape changes because space freeing transactions (for inode
 | |
| 	 * inactivation) require the per-AG reservation in lieu of reserving
 | |
| 	 * blocks.
 | |
| 	 */
 | |
| 	error = xfs_fs_reserve_ag_blocks(mp);
 | |
| 	if (error && error == -ENOSPC)
 | |
| 		xfs_warn(mp,
 | |
| 	"ENOSPC reserving per-AG metadata pool, log recovery may fail.");
 | |
| 	error = xfs_log_mount_finish(mp);
 | |
| 	xfs_fs_unreserve_ag_blocks(mp);
 | |
| 	if (error) {
 | |
| 		xfs_warn(mp, "log mount finish failed");
 | |
| 		goto out_rtunmount;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Now the log is fully replayed, we can transition to full read-only
 | |
| 	 * mode for read-only mounts. This will sync all the metadata and clean
 | |
| 	 * the log so that the recovery we just performed does not have to be
 | |
| 	 * replayed again on the next mount.
 | |
| 	 *
 | |
| 	 * We use the same quiesce mechanism as the rw->ro remount, as they are
 | |
| 	 * semantically identical operations.
 | |
| 	 */
 | |
| 	if (xfs_is_readonly(mp) && !xfs_has_norecovery(mp))
 | |
| 		xfs_log_clean(mp);
 | |
| 
 | |
| 	/*
 | |
| 	 * Complete the quota initialisation, post-log-replay component.
 | |
| 	 */
 | |
| 	if (quotamount) {
 | |
| 		ASSERT(mp->m_qflags == 0);
 | |
| 		mp->m_qflags = quotaflags;
 | |
| 
 | |
| 		xfs_qm_mount_quotas(mp);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Now we are mounted, reserve a small amount of unused space for
 | |
| 	 * privileged transactions. This is needed so that transaction
 | |
| 	 * space required for critical operations can dip into this pool
 | |
| 	 * when at ENOSPC. This is needed for operations like create with
 | |
| 	 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations
 | |
| 	 * are not allowed to use this reserved space.
 | |
| 	 *
 | |
| 	 * This may drive us straight to ENOSPC on mount, but that implies
 | |
| 	 * we were already there on the last unmount. Warn if this occurs.
 | |
| 	 */
 | |
| 	if (!xfs_is_readonly(mp)) {
 | |
| 		error = xfs_reserve_blocks(mp, xfs_default_resblks(mp));
 | |
| 		if (error)
 | |
| 			xfs_warn(mp,
 | |
| 	"Unable to allocate reserve blocks. Continuing without reserve pool.");
 | |
| 
 | |
| 		/* Reserve AG blocks for future btree expansion. */
 | |
| 		error = xfs_fs_reserve_ag_blocks(mp);
 | |
| 		if (error && error != -ENOSPC)
 | |
| 			goto out_agresv;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
|  out_agresv:
 | |
| 	xfs_fs_unreserve_ag_blocks(mp);
 | |
| 	xfs_qm_unmount_quotas(mp);
 | |
|  out_rtunmount:
 | |
| 	xfs_rtunmount_inodes(mp);
 | |
|  out_rele_rip:
 | |
| 	xfs_irele(rip);
 | |
| 	/* Clean out dquots that might be in memory after quotacheck. */
 | |
| 	xfs_qm_unmount(mp);
 | |
| 
 | |
| 	/*
 | |
| 	 * Inactivate all inodes that might still be in memory after a log
 | |
| 	 * intent recovery failure so that reclaim can free them.  Metadata
 | |
| 	 * inodes and the root directory shouldn't need inactivation, but the
 | |
| 	 * mount failed for some reason, so pull down all the state and flee.
 | |
| 	 */
 | |
| 	xfs_inodegc_flush(mp);
 | |
| 
 | |
| 	/*
 | |
| 	 * Flush all inode reclamation work and flush the log.
 | |
| 	 * We have to do this /after/ rtunmount and qm_unmount because those
 | |
| 	 * two will have scheduled delayed reclaim for the rt/quota inodes.
 | |
| 	 *
 | |
| 	 * This is slightly different from the unmountfs call sequence
 | |
| 	 * because we could be tearing down a partially set up mount.  In
 | |
| 	 * particular, if log_mount_finish fails we bail out without calling
 | |
| 	 * qm_unmount_quotas and therefore rely on qm_unmount to release the
 | |
| 	 * quota inodes.
 | |
| 	 */
 | |
| 	xfs_unmount_flush_inodes(mp);
 | |
|  out_log_dealloc:
 | |
| 	xfs_log_mount_cancel(mp);
 | |
|  out_inodegc_shrinker:
 | |
| 	shrinker_free(mp->m_inodegc_shrinker);
 | |
|  out_fail_wait:
 | |
| 	if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp)
 | |
| 		xfs_buftarg_drain(mp->m_logdev_targp);
 | |
| 	xfs_buftarg_drain(mp->m_ddev_targp);
 | |
|  out_free_perag:
 | |
| 	xfs_free_perag(mp);
 | |
|  out_free_dir:
 | |
| 	xfs_da_unmount(mp);
 | |
|  out_remove_uuid:
 | |
| 	xfs_uuid_unmount(mp);
 | |
|  out_remove_errortag:
 | |
| 	xfs_errortag_del(mp);
 | |
|  out_remove_error_sysfs:
 | |
| 	xfs_error_sysfs_del(mp);
 | |
|  out_remove_scrub_stats:
 | |
| 	xchk_stats_unregister(mp->m_scrub_stats);
 | |
| 	xfs_sysfs_del(&mp->m_stats.xs_kobj);
 | |
|  out_remove_sysfs:
 | |
| 	xfs_sysfs_del(&mp->m_kobj);
 | |
|  out:
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This flushes out the inodes,dquots and the superblock, unmounts the
 | |
|  * log and makes sure that incore structures are freed.
 | |
|  */
 | |
| void
 | |
| xfs_unmountfs(
 | |
| 	struct xfs_mount	*mp)
 | |
| {
 | |
| 	int			error;
 | |
| 
 | |
| 	/*
 | |
| 	 * Perform all on-disk metadata updates required to inactivate inodes
 | |
| 	 * that the VFS evicted earlier in the unmount process.  Freeing inodes
 | |
| 	 * and discarding CoW fork preallocations can cause shape changes to
 | |
| 	 * the free inode and refcount btrees, respectively, so we must finish
 | |
| 	 * this before we discard the metadata space reservations.  Metadata
 | |
| 	 * inodes and the root directory do not require inactivation.
 | |
| 	 */
 | |
| 	xfs_inodegc_flush(mp);
 | |
| 
 | |
| 	xfs_blockgc_stop(mp);
 | |
| 	xfs_fs_unreserve_ag_blocks(mp);
 | |
| 	xfs_qm_unmount_quotas(mp);
 | |
| 	xfs_rtunmount_inodes(mp);
 | |
| 	xfs_irele(mp->m_rootip);
 | |
| 
 | |
| 	xfs_unmount_flush_inodes(mp);
 | |
| 
 | |
| 	xfs_qm_unmount(mp);
 | |
| 
 | |
| 	/*
 | |
| 	 * Unreserve any blocks we have so that when we unmount we don't account
 | |
| 	 * the reserved free space as used. This is really only necessary for
 | |
| 	 * lazy superblock counting because it trusts the incore superblock
 | |
| 	 * counters to be absolutely correct on clean unmount.
 | |
| 	 *
 | |
| 	 * We don't bother correcting this elsewhere for lazy superblock
 | |
| 	 * counting because on mount of an unclean filesystem we reconstruct the
 | |
| 	 * correct counter value and this is irrelevant.
 | |
| 	 *
 | |
| 	 * For non-lazy counter filesystems, this doesn't matter at all because
 | |
| 	 * we only every apply deltas to the superblock and hence the incore
 | |
| 	 * value does not matter....
 | |
| 	 */
 | |
| 	error = xfs_reserve_blocks(mp, 0);
 | |
| 	if (error)
 | |
| 		xfs_warn(mp, "Unable to free reserved block pool. "
 | |
| 				"Freespace may not be correct on next mount.");
 | |
| 	xfs_unmount_check(mp);
 | |
| 
 | |
| 	/*
 | |
| 	 * Indicate that it's ok to clear log incompat bits before cleaning
 | |
| 	 * the log and writing the unmount record.
 | |
| 	 */
 | |
| 	xfs_set_done_with_log_incompat(mp);
 | |
| 	xfs_log_unmount(mp);
 | |
| 	xfs_da_unmount(mp);
 | |
| 	xfs_uuid_unmount(mp);
 | |
| 
 | |
| #if defined(DEBUG)
 | |
| 	xfs_errortag_clearall(mp);
 | |
| #endif
 | |
| 	shrinker_free(mp->m_inodegc_shrinker);
 | |
| 	xfs_free_perag(mp);
 | |
| 
 | |
| 	xfs_errortag_del(mp);
 | |
| 	xfs_error_sysfs_del(mp);
 | |
| 	xchk_stats_unregister(mp->m_scrub_stats);
 | |
| 	xfs_sysfs_del(&mp->m_stats.xs_kobj);
 | |
| 	xfs_sysfs_del(&mp->m_kobj);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Determine whether modifications can proceed. The caller specifies the minimum
 | |
|  * freeze level for which modifications should not be allowed. This allows
 | |
|  * certain operations to proceed while the freeze sequence is in progress, if
 | |
|  * necessary.
 | |
|  */
 | |
| bool
 | |
| xfs_fs_writable(
 | |
| 	struct xfs_mount	*mp,
 | |
| 	int			level)
 | |
| {
 | |
| 	ASSERT(level > SB_UNFROZEN);
 | |
| 	if ((mp->m_super->s_writers.frozen >= level) ||
 | |
| 	    xfs_is_shutdown(mp) || xfs_is_readonly(mp))
 | |
| 		return false;
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| void
 | |
| xfs_add_freecounter(
 | |
| 	struct xfs_mount	*mp,
 | |
| 	struct percpu_counter	*counter,
 | |
| 	uint64_t		delta)
 | |
| {
 | |
| 	bool			has_resv_pool = (counter == &mp->m_fdblocks);
 | |
| 	uint64_t		res_used;
 | |
| 
 | |
| 	/*
 | |
| 	 * If the reserve pool is depleted, put blocks back into it first.
 | |
| 	 * Most of the time the pool is full.
 | |
| 	 */
 | |
| 	if (!has_resv_pool || mp->m_resblks == mp->m_resblks_avail) {
 | |
| 		percpu_counter_add(counter, delta);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	spin_lock(&mp->m_sb_lock);
 | |
| 	res_used = mp->m_resblks - mp->m_resblks_avail;
 | |
| 	if (res_used > delta) {
 | |
| 		mp->m_resblks_avail += delta;
 | |
| 	} else {
 | |
| 		delta -= res_used;
 | |
| 		mp->m_resblks_avail = mp->m_resblks;
 | |
| 		percpu_counter_add(counter, delta);
 | |
| 	}
 | |
| 	spin_unlock(&mp->m_sb_lock);
 | |
| }
 | |
| 
 | |
| int
 | |
| xfs_dec_freecounter(
 | |
| 	struct xfs_mount	*mp,
 | |
| 	struct percpu_counter	*counter,
 | |
| 	uint64_t		delta,
 | |
| 	bool			rsvd)
 | |
| {
 | |
| 	int64_t			lcounter;
 | |
| 	uint64_t		set_aside = 0;
 | |
| 	s32			batch;
 | |
| 	bool			has_resv_pool;
 | |
| 
 | |
| 	ASSERT(counter == &mp->m_fdblocks || counter == &mp->m_frextents);
 | |
| 	has_resv_pool = (counter == &mp->m_fdblocks);
 | |
| 	if (rsvd)
 | |
| 		ASSERT(has_resv_pool);
 | |
| 
 | |
| 	/*
 | |
| 	 * Taking blocks away, need to be more accurate the closer we
 | |
| 	 * are to zero.
 | |
| 	 *
 | |
| 	 * If the counter has a value of less than 2 * max batch size,
 | |
| 	 * then make everything serialise as we are real close to
 | |
| 	 * ENOSPC.
 | |
| 	 */
 | |
| 	if (__percpu_counter_compare(counter, 2 * XFS_FDBLOCKS_BATCH,
 | |
| 				     XFS_FDBLOCKS_BATCH) < 0)
 | |
| 		batch = 1;
 | |
| 	else
 | |
| 		batch = XFS_FDBLOCKS_BATCH;
 | |
| 
 | |
| 	/*
 | |
| 	 * Set aside allocbt blocks because these blocks are tracked as free
 | |
| 	 * space but not available for allocation. Technically this means that a
 | |
| 	 * single reservation cannot consume all remaining free space, but the
 | |
| 	 * ratio of allocbt blocks to usable free blocks should be rather small.
 | |
| 	 * The tradeoff without this is that filesystems that maintain high
 | |
| 	 * perag block reservations can over reserve physical block availability
 | |
| 	 * and fail physical allocation, which leads to much more serious
 | |
| 	 * problems (i.e. transaction abort, pagecache discards, etc.) than
 | |
| 	 * slightly premature -ENOSPC.
 | |
| 	 */
 | |
| 	if (has_resv_pool)
 | |
| 		set_aside = xfs_fdblocks_unavailable(mp);
 | |
| 	percpu_counter_add_batch(counter, -((int64_t)delta), batch);
 | |
| 	if (__percpu_counter_compare(counter, set_aside,
 | |
| 				     XFS_FDBLOCKS_BATCH) >= 0) {
 | |
| 		/* we had space! */
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * lock up the sb for dipping into reserves before releasing the space
 | |
| 	 * that took us to ENOSPC.
 | |
| 	 */
 | |
| 	spin_lock(&mp->m_sb_lock);
 | |
| 	percpu_counter_add(counter, delta);
 | |
| 	if (!has_resv_pool || !rsvd)
 | |
| 		goto fdblocks_enospc;
 | |
| 
 | |
| 	lcounter = (long long)mp->m_resblks_avail - delta;
 | |
| 	if (lcounter >= 0) {
 | |
| 		mp->m_resblks_avail = lcounter;
 | |
| 		spin_unlock(&mp->m_sb_lock);
 | |
| 		return 0;
 | |
| 	}
 | |
| 	xfs_warn_once(mp,
 | |
| "Reserve blocks depleted! Consider increasing reserve pool size.");
 | |
| 
 | |
| fdblocks_enospc:
 | |
| 	spin_unlock(&mp->m_sb_lock);
 | |
| 	return -ENOSPC;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Used to free the superblock along various error paths.
 | |
|  */
 | |
| void
 | |
| xfs_freesb(
 | |
| 	struct xfs_mount	*mp)
 | |
| {
 | |
| 	struct xfs_buf		*bp = mp->m_sb_bp;
 | |
| 
 | |
| 	xfs_buf_lock(bp);
 | |
| 	mp->m_sb_bp = NULL;
 | |
| 	xfs_buf_relse(bp);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * If the underlying (data/log/rt) device is readonly, there are some
 | |
|  * operations that cannot proceed.
 | |
|  */
 | |
| int
 | |
| xfs_dev_is_read_only(
 | |
| 	struct xfs_mount	*mp,
 | |
| 	char			*message)
 | |
| {
 | |
| 	if (xfs_readonly_buftarg(mp->m_ddev_targp) ||
 | |
| 	    xfs_readonly_buftarg(mp->m_logdev_targp) ||
 | |
| 	    (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) {
 | |
| 		xfs_notice(mp, "%s required on read-only device.", message);
 | |
| 		xfs_notice(mp, "write access unavailable, cannot proceed.");
 | |
| 		return -EROFS;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* Force the summary counters to be recalculated at next mount. */
 | |
| void
 | |
| xfs_force_summary_recalc(
 | |
| 	struct xfs_mount	*mp)
 | |
| {
 | |
| 	if (!xfs_has_lazysbcount(mp))
 | |
| 		return;
 | |
| 
 | |
| 	xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Enable a log incompat feature flag in the primary superblock.  The caller
 | |
|  * cannot have any other transactions in progress.
 | |
|  */
 | |
| int
 | |
| xfs_add_incompat_log_feature(
 | |
| 	struct xfs_mount	*mp,
 | |
| 	uint32_t		feature)
 | |
| {
 | |
| 	struct xfs_dsb		*dsb;
 | |
| 	int			error;
 | |
| 
 | |
| 	ASSERT(hweight32(feature) == 1);
 | |
| 	ASSERT(!(feature & XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN));
 | |
| 
 | |
| 	/*
 | |
| 	 * Force the log to disk and kick the background AIL thread to reduce
 | |
| 	 * the chances that the bwrite will stall waiting for the AIL to unpin
 | |
| 	 * the primary superblock buffer.  This isn't a data integrity
 | |
| 	 * operation, so we don't need a synchronous push.
 | |
| 	 */
 | |
| 	error = xfs_log_force(mp, XFS_LOG_SYNC);
 | |
| 	if (error)
 | |
| 		return error;
 | |
| 	xfs_ail_push_all(mp->m_ail);
 | |
| 
 | |
| 	/*
 | |
| 	 * Lock the primary superblock buffer to serialize all callers that
 | |
| 	 * are trying to set feature bits.
 | |
| 	 */
 | |
| 	xfs_buf_lock(mp->m_sb_bp);
 | |
| 	xfs_buf_hold(mp->m_sb_bp);
 | |
| 
 | |
| 	if (xfs_is_shutdown(mp)) {
 | |
| 		error = -EIO;
 | |
| 		goto rele;
 | |
| 	}
 | |
| 
 | |
| 	if (xfs_sb_has_incompat_log_feature(&mp->m_sb, feature))
 | |
| 		goto rele;
 | |
| 
 | |
| 	/*
 | |
| 	 * Write the primary superblock to disk immediately, because we need
 | |
| 	 * the log_incompat bit to be set in the primary super now to protect
 | |
| 	 * the log items that we're going to commit later.
 | |
| 	 */
 | |
| 	dsb = mp->m_sb_bp->b_addr;
 | |
| 	xfs_sb_to_disk(dsb, &mp->m_sb);
 | |
| 	dsb->sb_features_log_incompat |= cpu_to_be32(feature);
 | |
| 	error = xfs_bwrite(mp->m_sb_bp);
 | |
| 	if (error)
 | |
| 		goto shutdown;
 | |
| 
 | |
| 	/*
 | |
| 	 * Add the feature bits to the incore superblock before we unlock the
 | |
| 	 * buffer.
 | |
| 	 */
 | |
| 	xfs_sb_add_incompat_log_features(&mp->m_sb, feature);
 | |
| 	xfs_buf_relse(mp->m_sb_bp);
 | |
| 
 | |
| 	/* Log the superblock to disk. */
 | |
| 	return xfs_sync_sb(mp, false);
 | |
| shutdown:
 | |
| 	xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
 | |
| rele:
 | |
| 	xfs_buf_relse(mp->m_sb_bp);
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Clear all the log incompat flags from the superblock.
 | |
|  *
 | |
|  * The caller cannot be in a transaction, must ensure that the log does not
 | |
|  * contain any log items protected by any log incompat bit, and must ensure
 | |
|  * that there are no other threads that depend on the state of the log incompat
 | |
|  * feature flags in the primary super.
 | |
|  *
 | |
|  * Returns true if the superblock is dirty.
 | |
|  */
 | |
| bool
 | |
| xfs_clear_incompat_log_features(
 | |
| 	struct xfs_mount	*mp)
 | |
| {
 | |
| 	bool			ret = false;
 | |
| 
 | |
| 	if (!xfs_has_crc(mp) ||
 | |
| 	    !xfs_sb_has_incompat_log_feature(&mp->m_sb,
 | |
| 				XFS_SB_FEAT_INCOMPAT_LOG_ALL) ||
 | |
| 	    xfs_is_shutdown(mp) ||
 | |
| 	    !xfs_is_done_with_log_incompat(mp))
 | |
| 		return false;
 | |
| 
 | |
| 	/*
 | |
| 	 * Update the incore superblock.  We synchronize on the primary super
 | |
| 	 * buffer lock to be consistent with the add function, though at least
 | |
| 	 * in theory this shouldn't be necessary.
 | |
| 	 */
 | |
| 	xfs_buf_lock(mp->m_sb_bp);
 | |
| 	xfs_buf_hold(mp->m_sb_bp);
 | |
| 
 | |
| 	if (xfs_sb_has_incompat_log_feature(&mp->m_sb,
 | |
| 				XFS_SB_FEAT_INCOMPAT_LOG_ALL)) {
 | |
| 		xfs_sb_remove_incompat_log_features(&mp->m_sb);
 | |
| 		ret = true;
 | |
| 	}
 | |
| 
 | |
| 	xfs_buf_relse(mp->m_sb_bp);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Update the in-core delayed block counter.
 | |
|  *
 | |
|  * We prefer to update the counter without having to take a spinlock for every
 | |
|  * counter update (i.e. batching).  Each change to delayed allocation
 | |
|  * reservations can change can easily exceed the default percpu counter
 | |
|  * batching, so we use a larger batch factor here.
 | |
|  *
 | |
|  * Note that we don't currently have any callers requiring fast summation
 | |
|  * (e.g. percpu_counter_read) so we can use a big batch value here.
 | |
|  */
 | |
| #define XFS_DELALLOC_BATCH	(4096)
 | |
| void
 | |
| xfs_mod_delalloc(
 | |
| 	struct xfs_inode	*ip,
 | |
| 	int64_t			data_delta,
 | |
| 	int64_t			ind_delta)
 | |
| {
 | |
| 	struct xfs_mount	*mp = ip->i_mount;
 | |
| 
 | |
| 	if (XFS_IS_REALTIME_INODE(ip)) {
 | |
| 		percpu_counter_add_batch(&mp->m_delalloc_rtextents,
 | |
| 				xfs_rtb_to_rtx(mp, data_delta),
 | |
| 				XFS_DELALLOC_BATCH);
 | |
| 		if (!ind_delta)
 | |
| 			return;
 | |
| 		data_delta = 0;
 | |
| 	}
 | |
| 	percpu_counter_add_batch(&mp->m_delalloc_blks, data_delta + ind_delta,
 | |
| 			XFS_DELALLOC_BATCH);
 | |
| }
 |