mirror of
				git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
				synced 2025-10-31 16:54:21 +00:00 
			
		
		
		
	 61307b7be4
			
		
	
	
		61307b7be4
		
	
	
	
	
		
			
			documented (hopefully adequately) in the respective changelogs.  Notable
 series include:
 
 - Lucas Stach has provided some page-mapping
   cleanup/consolidation/maintainability work in the series "mm/treewide:
   Remove pXd_huge() API".
 
 - In the series "Allow migrate on protnone reference with
   MPOL_PREFERRED_MANY policy", Donet Tom has optimized mempolicy's
   MPOL_PREFERRED_MANY mode, yielding almost doubled performance in one
   test.
 
 - In their series "Memory allocation profiling" Kent Overstreet and
   Suren Baghdasaryan have contributed a means of determining (via
   /proc/allocinfo) whereabouts in the kernel memory is being allocated:
   number of calls and amount of memory.
 
 - Matthew Wilcox has provided the series "Various significant MM
   patches" which does a number of rather unrelated things, but in largely
   similar code sites.
 
 - In his series "mm: page_alloc: freelist migratetype hygiene" Johannes
   Weiner has fixed the page allocator's handling of migratetype requests,
   with resulting improvements in compaction efficiency.
 
 - In the series "make the hugetlb migration strategy consistent" Baolin
   Wang has fixed a hugetlb migration issue, which should improve hugetlb
   allocation reliability.
 
 - Liu Shixin has hit an I/O meltdown caused by readahead in a
   memory-tight memcg.  Addressed in the series "Fix I/O high when memory
   almost met memcg limit".
 
 - In the series "mm/filemap: optimize folio adding and splitting" Kairui
   Song has optimized pagecache insertion, yielding ~10% performance
   improvement in one test.
 
 - Baoquan He has cleaned up and consolidated the early zone
   initialization code in the series "mm/mm_init.c: refactor
   free_area_init_core()".
 
 - Baoquan has also redone some MM initializatio code in the series
   "mm/init: minor clean up and improvement".
 
 - MM helper cleanups from Christoph Hellwig in his series "remove
   follow_pfn".
 
 - More cleanups from Matthew Wilcox in the series "Various page->flags
   cleanups".
 
 - Vlastimil Babka has contributed maintainability improvements in the
   series "memcg_kmem hooks refactoring".
 
 - More folio conversions and cleanups in Matthew Wilcox's series
 
 	"Convert huge_zero_page to huge_zero_folio"
 	"khugepaged folio conversions"
 	"Remove page_idle and page_young wrappers"
 	"Use folio APIs in procfs"
 	"Clean up __folio_put()"
 	"Some cleanups for memory-failure"
 	"Remove page_mapping()"
 	"More folio compat code removal"
 
 - David Hildenbrand chipped in with "fs/proc/task_mmu: convert hugetlb
   functions to work on folis".
 
 - Code consolidation and cleanup work related to GUP's handling of
   hugetlbs in Peter Xu's series "mm/gup: Unify hugetlb, part 2".
 
 - Rick Edgecombe has developed some fixes to stack guard gaps in the
   series "Cover a guard gap corner case".
 
 - Jinjiang Tu has fixed KSM's behaviour after a fork+exec in the series
   "mm/ksm: fix ksm exec support for prctl".
 
 - Baolin Wang has implemented NUMA balancing for multi-size THPs.  This
   is a simple first-cut implementation for now.  The series is "support
   multi-size THP numa balancing".
 
 - Cleanups to vma handling helper functions from Matthew Wilcox in the
   series "Unify vma_address and vma_pgoff_address".
 
 - Some selftests maintenance work from Dev Jain in the series
   "selftests/mm: mremap_test: Optimizations and style fixes".
 
 - Improvements to the swapping of multi-size THPs from Ryan Roberts in
   the series "Swap-out mTHP without splitting".
 
 - Kefeng Wang has significantly optimized the handling of arm64's
   permission page faults in the series
 
 	"arch/mm/fault: accelerate pagefault when badaccess"
 	"mm: remove arch's private VM_FAULT_BADMAP/BADACCESS"
 
 - GUP cleanups from David Hildenbrand in "mm/gup: consistently call it
   GUP-fast".
 
 - hugetlb fault code cleanups from Vishal Moola in "Hugetlb fault path to
   use struct vm_fault".
 
 - selftests build fixes from John Hubbard in the series "Fix
   selftests/mm build without requiring "make headers"".
 
 - Memory tiering fixes/improvements from Ho-Ren (Jack) Chuang in the
   series "Improved Memory Tier Creation for CPUless NUMA Nodes".  Fixes
   the initialization code so that migration between different memory types
   works as intended.
 
 - David Hildenbrand has improved follow_pte() and fixed an errant driver
   in the series "mm: follow_pte() improvements and acrn follow_pte()
   fixes".
 
 - David also did some cleanup work on large folio mapcounts in his
   series "mm: mapcount for large folios + page_mapcount() cleanups".
 
 - Folio conversions in KSM in Alex Shi's series "transfer page to folio
   in KSM".
 
 - Barry Song has added some sysfs stats for monitoring multi-size THP's
   in the series "mm: add per-order mTHP alloc and swpout counters".
 
 - Some zswap cleanups from Yosry Ahmed in the series "zswap same-filled
   and limit checking cleanups".
 
 - Matthew Wilcox has been looking at buffer_head code and found the
   documentation to be lacking.  The series is "Improve buffer head
   documentation".
 
 - Multi-size THPs get more work, this time from Lance Yang.  His series
   "mm/madvise: enhance lazyfreeing with mTHP in madvise_free" optimizes
   the freeing of these things.
 
 - Kemeng Shi has added more userspace-visible writeback instrumentation
   in the series "Improve visibility of writeback".
 
 - Kemeng Shi then sent some maintenance work on top in the series "Fix
   and cleanups to page-writeback".
 
 - Matthew Wilcox reduces mmap_lock traffic in the anon vma code in the
   series "Improve anon_vma scalability for anon VMAs".  Intel's test bot
   reported an improbable 3x improvement in one test.
 
 - SeongJae Park adds some DAMON feature work in the series
 
 	"mm/damon: add a DAMOS filter type for page granularity access recheck"
 	"selftests/damon: add DAMOS quota goal test"
 
 - Also some maintenance work in the series
 
 	"mm/damon/paddr: simplify page level access re-check for pageout"
 	"mm/damon: misc fixes and improvements"
 
 - David Hildenbrand has disabled some known-to-fail selftests ni the
   series "selftests: mm: cow: flag vmsplice() hugetlb tests as XFAIL".
 
 - memcg metadata storage optimizations from Shakeel Butt in "memcg:
   reduce memory consumption by memcg stats".
 
 - DAX fixes and maintenance work from Vishal Verma in the series
   "dax/bus.c: Fixups for dax-bus locking".
 -----BEGIN PGP SIGNATURE-----
 
 iHUEABYIAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCZkgQYwAKCRDdBJ7gKXxA
 jrdKAP9WVJdpEcXxpoub/vVE0UWGtffr8foifi9bCwrQrGh5mgEAx7Yf0+d/oBZB
 nvA4E0DcPrUAFy144FNM0NTCb7u9vAw=
 =V3R/
 -----END PGP SIGNATURE-----
Merge tag 'mm-stable-2024-05-17-19-19' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm
Pull mm updates from Andrew Morton:
 "The usual shower of singleton fixes and minor series all over MM,
  documented (hopefully adequately) in the respective changelogs.
  Notable series include:
   - Lucas Stach has provided some page-mapping cleanup/consolidation/
     maintainability work in the series "mm/treewide: Remove pXd_huge()
     API".
   - In the series "Allow migrate on protnone reference with
     MPOL_PREFERRED_MANY policy", Donet Tom has optimized mempolicy's
     MPOL_PREFERRED_MANY mode, yielding almost doubled performance in
     one test.
   - In their series "Memory allocation profiling" Kent Overstreet and
     Suren Baghdasaryan have contributed a means of determining (via
     /proc/allocinfo) whereabouts in the kernel memory is being
     allocated: number of calls and amount of memory.
   - Matthew Wilcox has provided the series "Various significant MM
     patches" which does a number of rather unrelated things, but in
     largely similar code sites.
   - In his series "mm: page_alloc: freelist migratetype hygiene"
     Johannes Weiner has fixed the page allocator's handling of
     migratetype requests, with resulting improvements in compaction
     efficiency.
   - In the series "make the hugetlb migration strategy consistent"
     Baolin Wang has fixed a hugetlb migration issue, which should
     improve hugetlb allocation reliability.
   - Liu Shixin has hit an I/O meltdown caused by readahead in a
     memory-tight memcg. Addressed in the series "Fix I/O high when
     memory almost met memcg limit".
   - In the series "mm/filemap: optimize folio adding and splitting"
     Kairui Song has optimized pagecache insertion, yielding ~10%
     performance improvement in one test.
   - Baoquan He has cleaned up and consolidated the early zone
     initialization code in the series "mm/mm_init.c: refactor
     free_area_init_core()".
   - Baoquan has also redone some MM initializatio code in the series
     "mm/init: minor clean up and improvement".
   - MM helper cleanups from Christoph Hellwig in his series "remove
     follow_pfn".
   - More cleanups from Matthew Wilcox in the series "Various
     page->flags cleanups".
   - Vlastimil Babka has contributed maintainability improvements in the
     series "memcg_kmem hooks refactoring".
   - More folio conversions and cleanups in Matthew Wilcox's series:
	"Convert huge_zero_page to huge_zero_folio"
	"khugepaged folio conversions"
	"Remove page_idle and page_young wrappers"
	"Use folio APIs in procfs"
	"Clean up __folio_put()"
	"Some cleanups for memory-failure"
	"Remove page_mapping()"
	"More folio compat code removal"
   - David Hildenbrand chipped in with "fs/proc/task_mmu: convert
     hugetlb functions to work on folis".
   - Code consolidation and cleanup work related to GUP's handling of
     hugetlbs in Peter Xu's series "mm/gup: Unify hugetlb, part 2".
   - Rick Edgecombe has developed some fixes to stack guard gaps in the
     series "Cover a guard gap corner case".
   - Jinjiang Tu has fixed KSM's behaviour after a fork+exec in the
     series "mm/ksm: fix ksm exec support for prctl".
   - Baolin Wang has implemented NUMA balancing for multi-size THPs.
     This is a simple first-cut implementation for now. The series is
     "support multi-size THP numa balancing".
   - Cleanups to vma handling helper functions from Matthew Wilcox in
     the series "Unify vma_address and vma_pgoff_address".
   - Some selftests maintenance work from Dev Jain in the series
     "selftests/mm: mremap_test: Optimizations and style fixes".
   - Improvements to the swapping of multi-size THPs from Ryan Roberts
     in the series "Swap-out mTHP without splitting".
   - Kefeng Wang has significantly optimized the handling of arm64's
     permission page faults in the series
	"arch/mm/fault: accelerate pagefault when badaccess"
	"mm: remove arch's private VM_FAULT_BADMAP/BADACCESS"
   - GUP cleanups from David Hildenbrand in "mm/gup: consistently call
     it GUP-fast".
   - hugetlb fault code cleanups from Vishal Moola in "Hugetlb fault
     path to use struct vm_fault".
   - selftests build fixes from John Hubbard in the series "Fix
     selftests/mm build without requiring "make headers"".
   - Memory tiering fixes/improvements from Ho-Ren (Jack) Chuang in the
     series "Improved Memory Tier Creation for CPUless NUMA Nodes".
     Fixes the initialization code so that migration between different
     memory types works as intended.
   - David Hildenbrand has improved follow_pte() and fixed an errant
     driver in the series "mm: follow_pte() improvements and acrn
     follow_pte() fixes".
   - David also did some cleanup work on large folio mapcounts in his
     series "mm: mapcount for large folios + page_mapcount() cleanups".
   - Folio conversions in KSM in Alex Shi's series "transfer page to
     folio in KSM".
   - Barry Song has added some sysfs stats for monitoring multi-size
     THP's in the series "mm: add per-order mTHP alloc and swpout
     counters".
   - Some zswap cleanups from Yosry Ahmed in the series "zswap
     same-filled and limit checking cleanups".
   - Matthew Wilcox has been looking at buffer_head code and found the
     documentation to be lacking. The series is "Improve buffer head
     documentation".
   - Multi-size THPs get more work, this time from Lance Yang. His
     series "mm/madvise: enhance lazyfreeing with mTHP in madvise_free"
     optimizes the freeing of these things.
   - Kemeng Shi has added more userspace-visible writeback
     instrumentation in the series "Improve visibility of writeback".
   - Kemeng Shi then sent some maintenance work on top in the series
     "Fix and cleanups to page-writeback".
   - Matthew Wilcox reduces mmap_lock traffic in the anon vma code in
     the series "Improve anon_vma scalability for anon VMAs". Intel's
     test bot reported an improbable 3x improvement in one test.
   - SeongJae Park adds some DAMON feature work in the series
	"mm/damon: add a DAMOS filter type for page granularity access recheck"
	"selftests/damon: add DAMOS quota goal test"
   - Also some maintenance work in the series
	"mm/damon/paddr: simplify page level access re-check for pageout"
	"mm/damon: misc fixes and improvements"
   - David Hildenbrand has disabled some known-to-fail selftests ni the
     series "selftests: mm: cow: flag vmsplice() hugetlb tests as
     XFAIL".
   - memcg metadata storage optimizations from Shakeel Butt in "memcg:
     reduce memory consumption by memcg stats".
   - DAX fixes and maintenance work from Vishal Verma in the series
     "dax/bus.c: Fixups for dax-bus locking""
* tag 'mm-stable-2024-05-17-19-19' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (426 commits)
  memcg, oom: cleanup unused memcg_oom_gfp_mask and memcg_oom_order
  selftests/mm: hugetlb_madv_vs_map: avoid test skipping by querying hugepage size at runtime
  mm/hugetlb: add missing VM_FAULT_SET_HINDEX in hugetlb_wp
  mm/hugetlb: add missing VM_FAULT_SET_HINDEX in hugetlb_fault
  selftests: cgroup: add tests to verify the zswap writeback path
  mm: memcg: make alloc_mem_cgroup_per_node_info() return bool
  mm/damon/core: fix return value from damos_wmark_metric_value
  mm: do not update memcg stats for NR_{FILE/SHMEM}_PMDMAPPED
  selftests: cgroup: remove redundant enabling of memory controller
  Docs/mm/damon/maintainer-profile: allow posting patches based on damon/next tree
  Docs/mm/damon/maintainer-profile: change the maintainer's timezone from PST to PT
  Docs/mm/damon/design: use a list for supported filters
  Docs/admin-guide/mm/damon/usage: fix wrong schemes effective quota update command
  Docs/admin-guide/mm/damon/usage: fix wrong example of DAMOS filter matching sysfs file
  selftests/damon: classify tests for functionalities and regressions
  selftests/damon/_damon_sysfs: use 'is' instead of '==' for 'None'
  selftests/damon/_damon_sysfs: find sysfs mount point from /proc/mounts
  selftests/damon/_damon_sysfs: check errors from nr_schemes file reads
  mm/damon/core: initialize ->esz_bp from damos_quota_init_priv()
  selftests/damon: add a test for DAMOS quota goal
  ...
		
	
			
		
			
				
	
	
		
			1768 lines
		
	
	
	
		
			46 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1768 lines
		
	
	
	
		
			46 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0-only
 | |
| /*
 | |
|  *  mm/userfaultfd.c
 | |
|  *
 | |
|  *  Copyright (C) 2015  Red Hat, Inc.
 | |
|  */
 | |
| 
 | |
| #include <linux/mm.h>
 | |
| #include <linux/sched/signal.h>
 | |
| #include <linux/pagemap.h>
 | |
| #include <linux/rmap.h>
 | |
| #include <linux/swap.h>
 | |
| #include <linux/swapops.h>
 | |
| #include <linux/userfaultfd_k.h>
 | |
| #include <linux/mmu_notifier.h>
 | |
| #include <linux/hugetlb.h>
 | |
| #include <linux/shmem_fs.h>
 | |
| #include <asm/tlbflush.h>
 | |
| #include <asm/tlb.h>
 | |
| #include "internal.h"
 | |
| 
 | |
| static __always_inline
 | |
| bool validate_dst_vma(struct vm_area_struct *dst_vma, unsigned long dst_end)
 | |
| {
 | |
| 	/* Make sure that the dst range is fully within dst_vma. */
 | |
| 	if (dst_end > dst_vma->vm_end)
 | |
| 		return false;
 | |
| 
 | |
| 	/*
 | |
| 	 * Check the vma is registered in uffd, this is required to
 | |
| 	 * enforce the VM_MAYWRITE check done at uffd registration
 | |
| 	 * time.
 | |
| 	 */
 | |
| 	if (!dst_vma->vm_userfaultfd_ctx.ctx)
 | |
| 		return false;
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static __always_inline
 | |
| struct vm_area_struct *find_vma_and_prepare_anon(struct mm_struct *mm,
 | |
| 						 unsigned long addr)
 | |
| {
 | |
| 	struct vm_area_struct *vma;
 | |
| 
 | |
| 	mmap_assert_locked(mm);
 | |
| 	vma = vma_lookup(mm, addr);
 | |
| 	if (!vma)
 | |
| 		vma = ERR_PTR(-ENOENT);
 | |
| 	else if (!(vma->vm_flags & VM_SHARED) &&
 | |
| 		 unlikely(anon_vma_prepare(vma)))
 | |
| 		vma = ERR_PTR(-ENOMEM);
 | |
| 
 | |
| 	return vma;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_PER_VMA_LOCK
 | |
| /*
 | |
|  * uffd_lock_vma() - Lookup and lock vma corresponding to @address.
 | |
|  * @mm: mm to search vma in.
 | |
|  * @address: address that the vma should contain.
 | |
|  *
 | |
|  * Should be called without holding mmap_lock.
 | |
|  *
 | |
|  * Return: A locked vma containing @address, -ENOENT if no vma is found, or
 | |
|  * -ENOMEM if anon_vma couldn't be allocated.
 | |
|  */
 | |
| static struct vm_area_struct *uffd_lock_vma(struct mm_struct *mm,
 | |
| 				       unsigned long address)
 | |
| {
 | |
| 	struct vm_area_struct *vma;
 | |
| 
 | |
| 	vma = lock_vma_under_rcu(mm, address);
 | |
| 	if (vma) {
 | |
| 		/*
 | |
| 		 * We know we're going to need to use anon_vma, so check
 | |
| 		 * that early.
 | |
| 		 */
 | |
| 		if (!(vma->vm_flags & VM_SHARED) && unlikely(!vma->anon_vma))
 | |
| 			vma_end_read(vma);
 | |
| 		else
 | |
| 			return vma;
 | |
| 	}
 | |
| 
 | |
| 	mmap_read_lock(mm);
 | |
| 	vma = find_vma_and_prepare_anon(mm, address);
 | |
| 	if (!IS_ERR(vma)) {
 | |
| 		/*
 | |
| 		 * We cannot use vma_start_read() as it may fail due to
 | |
| 		 * false locked (see comment in vma_start_read()). We
 | |
| 		 * can avoid that by directly locking vm_lock under
 | |
| 		 * mmap_lock, which guarantees that nobody can lock the
 | |
| 		 * vma for write (vma_start_write()) under us.
 | |
| 		 */
 | |
| 		down_read(&vma->vm_lock->lock);
 | |
| 	}
 | |
| 
 | |
| 	mmap_read_unlock(mm);
 | |
| 	return vma;
 | |
| }
 | |
| 
 | |
| static struct vm_area_struct *uffd_mfill_lock(struct mm_struct *dst_mm,
 | |
| 					      unsigned long dst_start,
 | |
| 					      unsigned long len)
 | |
| {
 | |
| 	struct vm_area_struct *dst_vma;
 | |
| 
 | |
| 	dst_vma = uffd_lock_vma(dst_mm, dst_start);
 | |
| 	if (IS_ERR(dst_vma) || validate_dst_vma(dst_vma, dst_start + len))
 | |
| 		return dst_vma;
 | |
| 
 | |
| 	vma_end_read(dst_vma);
 | |
| 	return ERR_PTR(-ENOENT);
 | |
| }
 | |
| 
 | |
| static void uffd_mfill_unlock(struct vm_area_struct *vma)
 | |
| {
 | |
| 	vma_end_read(vma);
 | |
| }
 | |
| 
 | |
| #else
 | |
| 
 | |
| static struct vm_area_struct *uffd_mfill_lock(struct mm_struct *dst_mm,
 | |
| 					      unsigned long dst_start,
 | |
| 					      unsigned long len)
 | |
| {
 | |
| 	struct vm_area_struct *dst_vma;
 | |
| 
 | |
| 	mmap_read_lock(dst_mm);
 | |
| 	dst_vma = find_vma_and_prepare_anon(dst_mm, dst_start);
 | |
| 	if (IS_ERR(dst_vma))
 | |
| 		goto out_unlock;
 | |
| 
 | |
| 	if (validate_dst_vma(dst_vma, dst_start + len))
 | |
| 		return dst_vma;
 | |
| 
 | |
| 	dst_vma = ERR_PTR(-ENOENT);
 | |
| out_unlock:
 | |
| 	mmap_read_unlock(dst_mm);
 | |
| 	return dst_vma;
 | |
| }
 | |
| 
 | |
| static void uffd_mfill_unlock(struct vm_area_struct *vma)
 | |
| {
 | |
| 	mmap_read_unlock(vma->vm_mm);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /* Check if dst_addr is outside of file's size. Must be called with ptl held. */
 | |
| static bool mfill_file_over_size(struct vm_area_struct *dst_vma,
 | |
| 				 unsigned long dst_addr)
 | |
| {
 | |
| 	struct inode *inode;
 | |
| 	pgoff_t offset, max_off;
 | |
| 
 | |
| 	if (!dst_vma->vm_file)
 | |
| 		return false;
 | |
| 
 | |
| 	inode = dst_vma->vm_file->f_inode;
 | |
| 	offset = linear_page_index(dst_vma, dst_addr);
 | |
| 	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
 | |
| 	return offset >= max_off;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Install PTEs, to map dst_addr (within dst_vma) to page.
 | |
|  *
 | |
|  * This function handles both MCOPY_ATOMIC_NORMAL and _CONTINUE for both shmem
 | |
|  * and anon, and for both shared and private VMAs.
 | |
|  */
 | |
| int mfill_atomic_install_pte(pmd_t *dst_pmd,
 | |
| 			     struct vm_area_struct *dst_vma,
 | |
| 			     unsigned long dst_addr, struct page *page,
 | |
| 			     bool newly_allocated, uffd_flags_t flags)
 | |
| {
 | |
| 	int ret;
 | |
| 	struct mm_struct *dst_mm = dst_vma->vm_mm;
 | |
| 	pte_t _dst_pte, *dst_pte;
 | |
| 	bool writable = dst_vma->vm_flags & VM_WRITE;
 | |
| 	bool vm_shared = dst_vma->vm_flags & VM_SHARED;
 | |
| 	spinlock_t *ptl;
 | |
| 	struct folio *folio = page_folio(page);
 | |
| 	bool page_in_cache = folio_mapping(folio);
 | |
| 
 | |
| 	_dst_pte = mk_pte(page, dst_vma->vm_page_prot);
 | |
| 	_dst_pte = pte_mkdirty(_dst_pte);
 | |
| 	if (page_in_cache && !vm_shared)
 | |
| 		writable = false;
 | |
| 	if (writable)
 | |
| 		_dst_pte = pte_mkwrite(_dst_pte, dst_vma);
 | |
| 	if (flags & MFILL_ATOMIC_WP)
 | |
| 		_dst_pte = pte_mkuffd_wp(_dst_pte);
 | |
| 
 | |
| 	ret = -EAGAIN;
 | |
| 	dst_pte = pte_offset_map_lock(dst_mm, dst_pmd, dst_addr, &ptl);
 | |
| 	if (!dst_pte)
 | |
| 		goto out;
 | |
| 
 | |
| 	if (mfill_file_over_size(dst_vma, dst_addr)) {
 | |
| 		ret = -EFAULT;
 | |
| 		goto out_unlock;
 | |
| 	}
 | |
| 
 | |
| 	ret = -EEXIST;
 | |
| 	/*
 | |
| 	 * We allow to overwrite a pte marker: consider when both MISSING|WP
 | |
| 	 * registered, we firstly wr-protect a none pte which has no page cache
 | |
| 	 * page backing it, then access the page.
 | |
| 	 */
 | |
| 	if (!pte_none_mostly(ptep_get(dst_pte)))
 | |
| 		goto out_unlock;
 | |
| 
 | |
| 	if (page_in_cache) {
 | |
| 		/* Usually, cache pages are already added to LRU */
 | |
| 		if (newly_allocated)
 | |
| 			folio_add_lru(folio);
 | |
| 		folio_add_file_rmap_pte(folio, page, dst_vma);
 | |
| 	} else {
 | |
| 		folio_add_new_anon_rmap(folio, dst_vma, dst_addr);
 | |
| 		folio_add_lru_vma(folio, dst_vma);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Must happen after rmap, as mm_counter() checks mapping (via
 | |
| 	 * PageAnon()), which is set by __page_set_anon_rmap().
 | |
| 	 */
 | |
| 	inc_mm_counter(dst_mm, mm_counter(folio));
 | |
| 
 | |
| 	set_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
 | |
| 
 | |
| 	/* No need to invalidate - it was non-present before */
 | |
| 	update_mmu_cache(dst_vma, dst_addr, dst_pte);
 | |
| 	ret = 0;
 | |
| out_unlock:
 | |
| 	pte_unmap_unlock(dst_pte, ptl);
 | |
| out:
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int mfill_atomic_pte_copy(pmd_t *dst_pmd,
 | |
| 				 struct vm_area_struct *dst_vma,
 | |
| 				 unsigned long dst_addr,
 | |
| 				 unsigned long src_addr,
 | |
| 				 uffd_flags_t flags,
 | |
| 				 struct folio **foliop)
 | |
| {
 | |
| 	void *kaddr;
 | |
| 	int ret;
 | |
| 	struct folio *folio;
 | |
| 
 | |
| 	if (!*foliop) {
 | |
| 		ret = -ENOMEM;
 | |
| 		folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, dst_vma,
 | |
| 					dst_addr, false);
 | |
| 		if (!folio)
 | |
| 			goto out;
 | |
| 
 | |
| 		kaddr = kmap_local_folio(folio, 0);
 | |
| 		/*
 | |
| 		 * The read mmap_lock is held here.  Despite the
 | |
| 		 * mmap_lock being read recursive a deadlock is still
 | |
| 		 * possible if a writer has taken a lock.  For example:
 | |
| 		 *
 | |
| 		 * process A thread 1 takes read lock on own mmap_lock
 | |
| 		 * process A thread 2 calls mmap, blocks taking write lock
 | |
| 		 * process B thread 1 takes page fault, read lock on own mmap lock
 | |
| 		 * process B thread 2 calls mmap, blocks taking write lock
 | |
| 		 * process A thread 1 blocks taking read lock on process B
 | |
| 		 * process B thread 1 blocks taking read lock on process A
 | |
| 		 *
 | |
| 		 * Disable page faults to prevent potential deadlock
 | |
| 		 * and retry the copy outside the mmap_lock.
 | |
| 		 */
 | |
| 		pagefault_disable();
 | |
| 		ret = copy_from_user(kaddr, (const void __user *) src_addr,
 | |
| 				     PAGE_SIZE);
 | |
| 		pagefault_enable();
 | |
| 		kunmap_local(kaddr);
 | |
| 
 | |
| 		/* fallback to copy_from_user outside mmap_lock */
 | |
| 		if (unlikely(ret)) {
 | |
| 			ret = -ENOENT;
 | |
| 			*foliop = folio;
 | |
| 			/* don't free the page */
 | |
| 			goto out;
 | |
| 		}
 | |
| 
 | |
| 		flush_dcache_folio(folio);
 | |
| 	} else {
 | |
| 		folio = *foliop;
 | |
| 		*foliop = NULL;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * The memory barrier inside __folio_mark_uptodate makes sure that
 | |
| 	 * preceding stores to the page contents become visible before
 | |
| 	 * the set_pte_at() write.
 | |
| 	 */
 | |
| 	__folio_mark_uptodate(folio);
 | |
| 
 | |
| 	ret = -ENOMEM;
 | |
| 	if (mem_cgroup_charge(folio, dst_vma->vm_mm, GFP_KERNEL))
 | |
| 		goto out_release;
 | |
| 
 | |
| 	ret = mfill_atomic_install_pte(dst_pmd, dst_vma, dst_addr,
 | |
| 				       &folio->page, true, flags);
 | |
| 	if (ret)
 | |
| 		goto out_release;
 | |
| out:
 | |
| 	return ret;
 | |
| out_release:
 | |
| 	folio_put(folio);
 | |
| 	goto out;
 | |
| }
 | |
| 
 | |
| static int mfill_atomic_pte_zeroed_folio(pmd_t *dst_pmd,
 | |
| 					 struct vm_area_struct *dst_vma,
 | |
| 					 unsigned long dst_addr)
 | |
| {
 | |
| 	struct folio *folio;
 | |
| 	int ret = -ENOMEM;
 | |
| 
 | |
| 	folio = vma_alloc_zeroed_movable_folio(dst_vma, dst_addr);
 | |
| 	if (!folio)
 | |
| 		return ret;
 | |
| 
 | |
| 	if (mem_cgroup_charge(folio, dst_vma->vm_mm, GFP_KERNEL))
 | |
| 		goto out_put;
 | |
| 
 | |
| 	/*
 | |
| 	 * The memory barrier inside __folio_mark_uptodate makes sure that
 | |
| 	 * zeroing out the folio become visible before mapping the page
 | |
| 	 * using set_pte_at(). See do_anonymous_page().
 | |
| 	 */
 | |
| 	__folio_mark_uptodate(folio);
 | |
| 
 | |
| 	ret = mfill_atomic_install_pte(dst_pmd, dst_vma, dst_addr,
 | |
| 				       &folio->page, true, 0);
 | |
| 	if (ret)
 | |
| 		goto out_put;
 | |
| 
 | |
| 	return 0;
 | |
| out_put:
 | |
| 	folio_put(folio);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int mfill_atomic_pte_zeropage(pmd_t *dst_pmd,
 | |
| 				     struct vm_area_struct *dst_vma,
 | |
| 				     unsigned long dst_addr)
 | |
| {
 | |
| 	pte_t _dst_pte, *dst_pte;
 | |
| 	spinlock_t *ptl;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (mm_forbids_zeropage(dst_vma->vm_mm))
 | |
| 		return mfill_atomic_pte_zeroed_folio(dst_pmd, dst_vma, dst_addr);
 | |
| 
 | |
| 	_dst_pte = pte_mkspecial(pfn_pte(my_zero_pfn(dst_addr),
 | |
| 					 dst_vma->vm_page_prot));
 | |
| 	ret = -EAGAIN;
 | |
| 	dst_pte = pte_offset_map_lock(dst_vma->vm_mm, dst_pmd, dst_addr, &ptl);
 | |
| 	if (!dst_pte)
 | |
| 		goto out;
 | |
| 	if (mfill_file_over_size(dst_vma, dst_addr)) {
 | |
| 		ret = -EFAULT;
 | |
| 		goto out_unlock;
 | |
| 	}
 | |
| 	ret = -EEXIST;
 | |
| 	if (!pte_none(ptep_get(dst_pte)))
 | |
| 		goto out_unlock;
 | |
| 	set_pte_at(dst_vma->vm_mm, dst_addr, dst_pte, _dst_pte);
 | |
| 	/* No need to invalidate - it was non-present before */
 | |
| 	update_mmu_cache(dst_vma, dst_addr, dst_pte);
 | |
| 	ret = 0;
 | |
| out_unlock:
 | |
| 	pte_unmap_unlock(dst_pte, ptl);
 | |
| out:
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /* Handles UFFDIO_CONTINUE for all shmem VMAs (shared or private). */
 | |
| static int mfill_atomic_pte_continue(pmd_t *dst_pmd,
 | |
| 				     struct vm_area_struct *dst_vma,
 | |
| 				     unsigned long dst_addr,
 | |
| 				     uffd_flags_t flags)
 | |
| {
 | |
| 	struct inode *inode = file_inode(dst_vma->vm_file);
 | |
| 	pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
 | |
| 	struct folio *folio;
 | |
| 	struct page *page;
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = shmem_get_folio(inode, pgoff, &folio, SGP_NOALLOC);
 | |
| 	/* Our caller expects us to return -EFAULT if we failed to find folio */
 | |
| 	if (ret == -ENOENT)
 | |
| 		ret = -EFAULT;
 | |
| 	if (ret)
 | |
| 		goto out;
 | |
| 	if (!folio) {
 | |
| 		ret = -EFAULT;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	page = folio_file_page(folio, pgoff);
 | |
| 	if (PageHWPoison(page)) {
 | |
| 		ret = -EIO;
 | |
| 		goto out_release;
 | |
| 	}
 | |
| 
 | |
| 	ret = mfill_atomic_install_pte(dst_pmd, dst_vma, dst_addr,
 | |
| 				       page, false, flags);
 | |
| 	if (ret)
 | |
| 		goto out_release;
 | |
| 
 | |
| 	folio_unlock(folio);
 | |
| 	ret = 0;
 | |
| out:
 | |
| 	return ret;
 | |
| out_release:
 | |
| 	folio_unlock(folio);
 | |
| 	folio_put(folio);
 | |
| 	goto out;
 | |
| }
 | |
| 
 | |
| /* Handles UFFDIO_POISON for all non-hugetlb VMAs. */
 | |
| static int mfill_atomic_pte_poison(pmd_t *dst_pmd,
 | |
| 				   struct vm_area_struct *dst_vma,
 | |
| 				   unsigned long dst_addr,
 | |
| 				   uffd_flags_t flags)
 | |
| {
 | |
| 	int ret;
 | |
| 	struct mm_struct *dst_mm = dst_vma->vm_mm;
 | |
| 	pte_t _dst_pte, *dst_pte;
 | |
| 	spinlock_t *ptl;
 | |
| 
 | |
| 	_dst_pte = make_pte_marker(PTE_MARKER_POISONED);
 | |
| 	ret = -EAGAIN;
 | |
| 	dst_pte = pte_offset_map_lock(dst_mm, dst_pmd, dst_addr, &ptl);
 | |
| 	if (!dst_pte)
 | |
| 		goto out;
 | |
| 
 | |
| 	if (mfill_file_over_size(dst_vma, dst_addr)) {
 | |
| 		ret = -EFAULT;
 | |
| 		goto out_unlock;
 | |
| 	}
 | |
| 
 | |
| 	ret = -EEXIST;
 | |
| 	/* Refuse to overwrite any PTE, even a PTE marker (e.g. UFFD WP). */
 | |
| 	if (!pte_none(ptep_get(dst_pte)))
 | |
| 		goto out_unlock;
 | |
| 
 | |
| 	set_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
 | |
| 
 | |
| 	/* No need to invalidate - it was non-present before */
 | |
| 	update_mmu_cache(dst_vma, dst_addr, dst_pte);
 | |
| 	ret = 0;
 | |
| out_unlock:
 | |
| 	pte_unmap_unlock(dst_pte, ptl);
 | |
| out:
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static pmd_t *mm_alloc_pmd(struct mm_struct *mm, unsigned long address)
 | |
| {
 | |
| 	pgd_t *pgd;
 | |
| 	p4d_t *p4d;
 | |
| 	pud_t *pud;
 | |
| 
 | |
| 	pgd = pgd_offset(mm, address);
 | |
| 	p4d = p4d_alloc(mm, pgd, address);
 | |
| 	if (!p4d)
 | |
| 		return NULL;
 | |
| 	pud = pud_alloc(mm, p4d, address);
 | |
| 	if (!pud)
 | |
| 		return NULL;
 | |
| 	/*
 | |
| 	 * Note that we didn't run this because the pmd was
 | |
| 	 * missing, the *pmd may be already established and in
 | |
| 	 * turn it may also be a trans_huge_pmd.
 | |
| 	 */
 | |
| 	return pmd_alloc(mm, pud, address);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_HUGETLB_PAGE
 | |
| /*
 | |
|  * mfill_atomic processing for HUGETLB vmas.  Note that this routine is
 | |
|  * called with either vma-lock or mmap_lock held, it will release the lock
 | |
|  * before returning.
 | |
|  */
 | |
| static __always_inline ssize_t mfill_atomic_hugetlb(
 | |
| 					      struct userfaultfd_ctx *ctx,
 | |
| 					      struct vm_area_struct *dst_vma,
 | |
| 					      unsigned long dst_start,
 | |
| 					      unsigned long src_start,
 | |
| 					      unsigned long len,
 | |
| 					      uffd_flags_t flags)
 | |
| {
 | |
| 	struct mm_struct *dst_mm = dst_vma->vm_mm;
 | |
| 	ssize_t err;
 | |
| 	pte_t *dst_pte;
 | |
| 	unsigned long src_addr, dst_addr;
 | |
| 	long copied;
 | |
| 	struct folio *folio;
 | |
| 	unsigned long vma_hpagesize;
 | |
| 	pgoff_t idx;
 | |
| 	u32 hash;
 | |
| 	struct address_space *mapping;
 | |
| 
 | |
| 	/*
 | |
| 	 * There is no default zero huge page for all huge page sizes as
 | |
| 	 * supported by hugetlb.  A PMD_SIZE huge pages may exist as used
 | |
| 	 * by THP.  Since we can not reliably insert a zero page, this
 | |
| 	 * feature is not supported.
 | |
| 	 */
 | |
| 	if (uffd_flags_mode_is(flags, MFILL_ATOMIC_ZEROPAGE)) {
 | |
| 		up_read(&ctx->map_changing_lock);
 | |
| 		uffd_mfill_unlock(dst_vma);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	src_addr = src_start;
 | |
| 	dst_addr = dst_start;
 | |
| 	copied = 0;
 | |
| 	folio = NULL;
 | |
| 	vma_hpagesize = vma_kernel_pagesize(dst_vma);
 | |
| 
 | |
| 	/*
 | |
| 	 * Validate alignment based on huge page size
 | |
| 	 */
 | |
| 	err = -EINVAL;
 | |
| 	if (dst_start & (vma_hpagesize - 1) || len & (vma_hpagesize - 1))
 | |
| 		goto out_unlock;
 | |
| 
 | |
| retry:
 | |
| 	/*
 | |
| 	 * On routine entry dst_vma is set.  If we had to drop mmap_lock and
 | |
| 	 * retry, dst_vma will be set to NULL and we must lookup again.
 | |
| 	 */
 | |
| 	if (!dst_vma) {
 | |
| 		dst_vma = uffd_mfill_lock(dst_mm, dst_start, len);
 | |
| 		if (IS_ERR(dst_vma)) {
 | |
| 			err = PTR_ERR(dst_vma);
 | |
| 			goto out;
 | |
| 		}
 | |
| 
 | |
| 		err = -ENOENT;
 | |
| 		if (!is_vm_hugetlb_page(dst_vma))
 | |
| 			goto out_unlock_vma;
 | |
| 
 | |
| 		err = -EINVAL;
 | |
| 		if (vma_hpagesize != vma_kernel_pagesize(dst_vma))
 | |
| 			goto out_unlock_vma;
 | |
| 
 | |
| 		/*
 | |
| 		 * If memory mappings are changing because of non-cooperative
 | |
| 		 * operation (e.g. mremap) running in parallel, bail out and
 | |
| 		 * request the user to retry later
 | |
| 		 */
 | |
| 		down_read(&ctx->map_changing_lock);
 | |
| 		err = -EAGAIN;
 | |
| 		if (atomic_read(&ctx->mmap_changing))
 | |
| 			goto out_unlock;
 | |
| 	}
 | |
| 
 | |
| 	while (src_addr < src_start + len) {
 | |
| 		BUG_ON(dst_addr >= dst_start + len);
 | |
| 
 | |
| 		/*
 | |
| 		 * Serialize via vma_lock and hugetlb_fault_mutex.
 | |
| 		 * vma_lock ensures the dst_pte remains valid even
 | |
| 		 * in the case of shared pmds.  fault mutex prevents
 | |
| 		 * races with other faulting threads.
 | |
| 		 */
 | |
| 		idx = linear_page_index(dst_vma, dst_addr);
 | |
| 		mapping = dst_vma->vm_file->f_mapping;
 | |
| 		hash = hugetlb_fault_mutex_hash(mapping, idx);
 | |
| 		mutex_lock(&hugetlb_fault_mutex_table[hash]);
 | |
| 		hugetlb_vma_lock_read(dst_vma);
 | |
| 
 | |
| 		err = -ENOMEM;
 | |
| 		dst_pte = huge_pte_alloc(dst_mm, dst_vma, dst_addr, vma_hpagesize);
 | |
| 		if (!dst_pte) {
 | |
| 			hugetlb_vma_unlock_read(dst_vma);
 | |
| 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
 | |
| 			goto out_unlock;
 | |
| 		}
 | |
| 
 | |
| 		if (!uffd_flags_mode_is(flags, MFILL_ATOMIC_CONTINUE) &&
 | |
| 		    !huge_pte_none_mostly(huge_ptep_get(dst_pte))) {
 | |
| 			err = -EEXIST;
 | |
| 			hugetlb_vma_unlock_read(dst_vma);
 | |
| 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
 | |
| 			goto out_unlock;
 | |
| 		}
 | |
| 
 | |
| 		err = hugetlb_mfill_atomic_pte(dst_pte, dst_vma, dst_addr,
 | |
| 					       src_addr, flags, &folio);
 | |
| 
 | |
| 		hugetlb_vma_unlock_read(dst_vma);
 | |
| 		mutex_unlock(&hugetlb_fault_mutex_table[hash]);
 | |
| 
 | |
| 		cond_resched();
 | |
| 
 | |
| 		if (unlikely(err == -ENOENT)) {
 | |
| 			up_read(&ctx->map_changing_lock);
 | |
| 			uffd_mfill_unlock(dst_vma);
 | |
| 			BUG_ON(!folio);
 | |
| 
 | |
| 			err = copy_folio_from_user(folio,
 | |
| 						   (const void __user *)src_addr, true);
 | |
| 			if (unlikely(err)) {
 | |
| 				err = -EFAULT;
 | |
| 				goto out;
 | |
| 			}
 | |
| 
 | |
| 			dst_vma = NULL;
 | |
| 			goto retry;
 | |
| 		} else
 | |
| 			BUG_ON(folio);
 | |
| 
 | |
| 		if (!err) {
 | |
| 			dst_addr += vma_hpagesize;
 | |
| 			src_addr += vma_hpagesize;
 | |
| 			copied += vma_hpagesize;
 | |
| 
 | |
| 			if (fatal_signal_pending(current))
 | |
| 				err = -EINTR;
 | |
| 		}
 | |
| 		if (err)
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| out_unlock:
 | |
| 	up_read(&ctx->map_changing_lock);
 | |
| out_unlock_vma:
 | |
| 	uffd_mfill_unlock(dst_vma);
 | |
| out:
 | |
| 	if (folio)
 | |
| 		folio_put(folio);
 | |
| 	BUG_ON(copied < 0);
 | |
| 	BUG_ON(err > 0);
 | |
| 	BUG_ON(!copied && !err);
 | |
| 	return copied ? copied : err;
 | |
| }
 | |
| #else /* !CONFIG_HUGETLB_PAGE */
 | |
| /* fail at build time if gcc attempts to use this */
 | |
| extern ssize_t mfill_atomic_hugetlb(struct userfaultfd_ctx *ctx,
 | |
| 				    struct vm_area_struct *dst_vma,
 | |
| 				    unsigned long dst_start,
 | |
| 				    unsigned long src_start,
 | |
| 				    unsigned long len,
 | |
| 				    uffd_flags_t flags);
 | |
| #endif /* CONFIG_HUGETLB_PAGE */
 | |
| 
 | |
| static __always_inline ssize_t mfill_atomic_pte(pmd_t *dst_pmd,
 | |
| 						struct vm_area_struct *dst_vma,
 | |
| 						unsigned long dst_addr,
 | |
| 						unsigned long src_addr,
 | |
| 						uffd_flags_t flags,
 | |
| 						struct folio **foliop)
 | |
| {
 | |
| 	ssize_t err;
 | |
| 
 | |
| 	if (uffd_flags_mode_is(flags, MFILL_ATOMIC_CONTINUE)) {
 | |
| 		return mfill_atomic_pte_continue(dst_pmd, dst_vma,
 | |
| 						 dst_addr, flags);
 | |
| 	} else if (uffd_flags_mode_is(flags, MFILL_ATOMIC_POISON)) {
 | |
| 		return mfill_atomic_pte_poison(dst_pmd, dst_vma,
 | |
| 					       dst_addr, flags);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * The normal page fault path for a shmem will invoke the
 | |
| 	 * fault, fill the hole in the file and COW it right away. The
 | |
| 	 * result generates plain anonymous memory. So when we are
 | |
| 	 * asked to fill an hole in a MAP_PRIVATE shmem mapping, we'll
 | |
| 	 * generate anonymous memory directly without actually filling
 | |
| 	 * the hole. For the MAP_PRIVATE case the robustness check
 | |
| 	 * only happens in the pagetable (to verify it's still none)
 | |
| 	 * and not in the radix tree.
 | |
| 	 */
 | |
| 	if (!(dst_vma->vm_flags & VM_SHARED)) {
 | |
| 		if (uffd_flags_mode_is(flags, MFILL_ATOMIC_COPY))
 | |
| 			err = mfill_atomic_pte_copy(dst_pmd, dst_vma,
 | |
| 						    dst_addr, src_addr,
 | |
| 						    flags, foliop);
 | |
| 		else
 | |
| 			err = mfill_atomic_pte_zeropage(dst_pmd,
 | |
| 						 dst_vma, dst_addr);
 | |
| 	} else {
 | |
| 		err = shmem_mfill_atomic_pte(dst_pmd, dst_vma,
 | |
| 					     dst_addr, src_addr,
 | |
| 					     flags, foliop);
 | |
| 	}
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static __always_inline ssize_t mfill_atomic(struct userfaultfd_ctx *ctx,
 | |
| 					    unsigned long dst_start,
 | |
| 					    unsigned long src_start,
 | |
| 					    unsigned long len,
 | |
| 					    uffd_flags_t flags)
 | |
| {
 | |
| 	struct mm_struct *dst_mm = ctx->mm;
 | |
| 	struct vm_area_struct *dst_vma;
 | |
| 	ssize_t err;
 | |
| 	pmd_t *dst_pmd;
 | |
| 	unsigned long src_addr, dst_addr;
 | |
| 	long copied;
 | |
| 	struct folio *folio;
 | |
| 
 | |
| 	/*
 | |
| 	 * Sanitize the command parameters:
 | |
| 	 */
 | |
| 	BUG_ON(dst_start & ~PAGE_MASK);
 | |
| 	BUG_ON(len & ~PAGE_MASK);
 | |
| 
 | |
| 	/* Does the address range wrap, or is the span zero-sized? */
 | |
| 	BUG_ON(src_start + len <= src_start);
 | |
| 	BUG_ON(dst_start + len <= dst_start);
 | |
| 
 | |
| 	src_addr = src_start;
 | |
| 	dst_addr = dst_start;
 | |
| 	copied = 0;
 | |
| 	folio = NULL;
 | |
| retry:
 | |
| 	/*
 | |
| 	 * Make sure the vma is not shared, that the dst range is
 | |
| 	 * both valid and fully within a single existing vma.
 | |
| 	 */
 | |
| 	dst_vma = uffd_mfill_lock(dst_mm, dst_start, len);
 | |
| 	if (IS_ERR(dst_vma)) {
 | |
| 		err = PTR_ERR(dst_vma);
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If memory mappings are changing because of non-cooperative
 | |
| 	 * operation (e.g. mremap) running in parallel, bail out and
 | |
| 	 * request the user to retry later
 | |
| 	 */
 | |
| 	down_read(&ctx->map_changing_lock);
 | |
| 	err = -EAGAIN;
 | |
| 	if (atomic_read(&ctx->mmap_changing))
 | |
| 		goto out_unlock;
 | |
| 
 | |
| 	err = -EINVAL;
 | |
| 	/*
 | |
| 	 * shmem_zero_setup is invoked in mmap for MAP_ANONYMOUS|MAP_SHARED but
 | |
| 	 * it will overwrite vm_ops, so vma_is_anonymous must return false.
 | |
| 	 */
 | |
| 	if (WARN_ON_ONCE(vma_is_anonymous(dst_vma) &&
 | |
| 	    dst_vma->vm_flags & VM_SHARED))
 | |
| 		goto out_unlock;
 | |
| 
 | |
| 	/*
 | |
| 	 * validate 'mode' now that we know the dst_vma: don't allow
 | |
| 	 * a wrprotect copy if the userfaultfd didn't register as WP.
 | |
| 	 */
 | |
| 	if ((flags & MFILL_ATOMIC_WP) && !(dst_vma->vm_flags & VM_UFFD_WP))
 | |
| 		goto out_unlock;
 | |
| 
 | |
| 	/*
 | |
| 	 * If this is a HUGETLB vma, pass off to appropriate routine
 | |
| 	 */
 | |
| 	if (is_vm_hugetlb_page(dst_vma))
 | |
| 		return  mfill_atomic_hugetlb(ctx, dst_vma, dst_start,
 | |
| 					     src_start, len, flags);
 | |
| 
 | |
| 	if (!vma_is_anonymous(dst_vma) && !vma_is_shmem(dst_vma))
 | |
| 		goto out_unlock;
 | |
| 	if (!vma_is_shmem(dst_vma) &&
 | |
| 	    uffd_flags_mode_is(flags, MFILL_ATOMIC_CONTINUE))
 | |
| 		goto out_unlock;
 | |
| 
 | |
| 	while (src_addr < src_start + len) {
 | |
| 		pmd_t dst_pmdval;
 | |
| 
 | |
| 		BUG_ON(dst_addr >= dst_start + len);
 | |
| 
 | |
| 		dst_pmd = mm_alloc_pmd(dst_mm, dst_addr);
 | |
| 		if (unlikely(!dst_pmd)) {
 | |
| 			err = -ENOMEM;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		dst_pmdval = pmdp_get_lockless(dst_pmd);
 | |
| 		/*
 | |
| 		 * If the dst_pmd is mapped as THP don't
 | |
| 		 * override it and just be strict.
 | |
| 		 */
 | |
| 		if (unlikely(pmd_trans_huge(dst_pmdval))) {
 | |
| 			err = -EEXIST;
 | |
| 			break;
 | |
| 		}
 | |
| 		if (unlikely(pmd_none(dst_pmdval)) &&
 | |
| 		    unlikely(__pte_alloc(dst_mm, dst_pmd))) {
 | |
| 			err = -ENOMEM;
 | |
| 			break;
 | |
| 		}
 | |
| 		/* If an huge pmd materialized from under us fail */
 | |
| 		if (unlikely(pmd_trans_huge(*dst_pmd))) {
 | |
| 			err = -EFAULT;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		BUG_ON(pmd_none(*dst_pmd));
 | |
| 		BUG_ON(pmd_trans_huge(*dst_pmd));
 | |
| 
 | |
| 		err = mfill_atomic_pte(dst_pmd, dst_vma, dst_addr,
 | |
| 				       src_addr, flags, &folio);
 | |
| 		cond_resched();
 | |
| 
 | |
| 		if (unlikely(err == -ENOENT)) {
 | |
| 			void *kaddr;
 | |
| 
 | |
| 			up_read(&ctx->map_changing_lock);
 | |
| 			uffd_mfill_unlock(dst_vma);
 | |
| 			BUG_ON(!folio);
 | |
| 
 | |
| 			kaddr = kmap_local_folio(folio, 0);
 | |
| 			err = copy_from_user(kaddr,
 | |
| 					     (const void __user *) src_addr,
 | |
| 					     PAGE_SIZE);
 | |
| 			kunmap_local(kaddr);
 | |
| 			if (unlikely(err)) {
 | |
| 				err = -EFAULT;
 | |
| 				goto out;
 | |
| 			}
 | |
| 			flush_dcache_folio(folio);
 | |
| 			goto retry;
 | |
| 		} else
 | |
| 			BUG_ON(folio);
 | |
| 
 | |
| 		if (!err) {
 | |
| 			dst_addr += PAGE_SIZE;
 | |
| 			src_addr += PAGE_SIZE;
 | |
| 			copied += PAGE_SIZE;
 | |
| 
 | |
| 			if (fatal_signal_pending(current))
 | |
| 				err = -EINTR;
 | |
| 		}
 | |
| 		if (err)
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| out_unlock:
 | |
| 	up_read(&ctx->map_changing_lock);
 | |
| 	uffd_mfill_unlock(dst_vma);
 | |
| out:
 | |
| 	if (folio)
 | |
| 		folio_put(folio);
 | |
| 	BUG_ON(copied < 0);
 | |
| 	BUG_ON(err > 0);
 | |
| 	BUG_ON(!copied && !err);
 | |
| 	return copied ? copied : err;
 | |
| }
 | |
| 
 | |
| ssize_t mfill_atomic_copy(struct userfaultfd_ctx *ctx, unsigned long dst_start,
 | |
| 			  unsigned long src_start, unsigned long len,
 | |
| 			  uffd_flags_t flags)
 | |
| {
 | |
| 	return mfill_atomic(ctx, dst_start, src_start, len,
 | |
| 			    uffd_flags_set_mode(flags, MFILL_ATOMIC_COPY));
 | |
| }
 | |
| 
 | |
| ssize_t mfill_atomic_zeropage(struct userfaultfd_ctx *ctx,
 | |
| 			      unsigned long start,
 | |
| 			      unsigned long len)
 | |
| {
 | |
| 	return mfill_atomic(ctx, start, 0, len,
 | |
| 			    uffd_flags_set_mode(0, MFILL_ATOMIC_ZEROPAGE));
 | |
| }
 | |
| 
 | |
| ssize_t mfill_atomic_continue(struct userfaultfd_ctx *ctx, unsigned long start,
 | |
| 			      unsigned long len, uffd_flags_t flags)
 | |
| {
 | |
| 
 | |
| 	/*
 | |
| 	 * A caller might reasonably assume that UFFDIO_CONTINUE contains an
 | |
| 	 * smp_wmb() to ensure that any writes to the about-to-be-mapped page by
 | |
| 	 * the thread doing the UFFDIO_CONTINUE are guaranteed to be visible to
 | |
| 	 * subsequent loads from the page through the newly mapped address range.
 | |
| 	 */
 | |
| 	smp_wmb();
 | |
| 
 | |
| 	return mfill_atomic(ctx, start, 0, len,
 | |
| 			    uffd_flags_set_mode(flags, MFILL_ATOMIC_CONTINUE));
 | |
| }
 | |
| 
 | |
| ssize_t mfill_atomic_poison(struct userfaultfd_ctx *ctx, unsigned long start,
 | |
| 			    unsigned long len, uffd_flags_t flags)
 | |
| {
 | |
| 	return mfill_atomic(ctx, start, 0, len,
 | |
| 			    uffd_flags_set_mode(flags, MFILL_ATOMIC_POISON));
 | |
| }
 | |
| 
 | |
| long uffd_wp_range(struct vm_area_struct *dst_vma,
 | |
| 		   unsigned long start, unsigned long len, bool enable_wp)
 | |
| {
 | |
| 	unsigned int mm_cp_flags;
 | |
| 	struct mmu_gather tlb;
 | |
| 	long ret;
 | |
| 
 | |
| 	VM_WARN_ONCE(start < dst_vma->vm_start || start + len > dst_vma->vm_end,
 | |
| 			"The address range exceeds VMA boundary.\n");
 | |
| 	if (enable_wp)
 | |
| 		mm_cp_flags = MM_CP_UFFD_WP;
 | |
| 	else
 | |
| 		mm_cp_flags = MM_CP_UFFD_WP_RESOLVE;
 | |
| 
 | |
| 	/*
 | |
| 	 * vma->vm_page_prot already reflects that uffd-wp is enabled for this
 | |
| 	 * VMA (see userfaultfd_set_vm_flags()) and that all PTEs are supposed
 | |
| 	 * to be write-protected as default whenever protection changes.
 | |
| 	 * Try upgrading write permissions manually.
 | |
| 	 */
 | |
| 	if (!enable_wp && vma_wants_manual_pte_write_upgrade(dst_vma))
 | |
| 		mm_cp_flags |= MM_CP_TRY_CHANGE_WRITABLE;
 | |
| 	tlb_gather_mmu(&tlb, dst_vma->vm_mm);
 | |
| 	ret = change_protection(&tlb, dst_vma, start, start + len, mm_cp_flags);
 | |
| 	tlb_finish_mmu(&tlb);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| int mwriteprotect_range(struct userfaultfd_ctx *ctx, unsigned long start,
 | |
| 			unsigned long len, bool enable_wp)
 | |
| {
 | |
| 	struct mm_struct *dst_mm = ctx->mm;
 | |
| 	unsigned long end = start + len;
 | |
| 	unsigned long _start, _end;
 | |
| 	struct vm_area_struct *dst_vma;
 | |
| 	unsigned long page_mask;
 | |
| 	long err;
 | |
| 	VMA_ITERATOR(vmi, dst_mm, start);
 | |
| 
 | |
| 	/*
 | |
| 	 * Sanitize the command parameters:
 | |
| 	 */
 | |
| 	BUG_ON(start & ~PAGE_MASK);
 | |
| 	BUG_ON(len & ~PAGE_MASK);
 | |
| 
 | |
| 	/* Does the address range wrap, or is the span zero-sized? */
 | |
| 	BUG_ON(start + len <= start);
 | |
| 
 | |
| 	mmap_read_lock(dst_mm);
 | |
| 
 | |
| 	/*
 | |
| 	 * If memory mappings are changing because of non-cooperative
 | |
| 	 * operation (e.g. mremap) running in parallel, bail out and
 | |
| 	 * request the user to retry later
 | |
| 	 */
 | |
| 	down_read(&ctx->map_changing_lock);
 | |
| 	err = -EAGAIN;
 | |
| 	if (atomic_read(&ctx->mmap_changing))
 | |
| 		goto out_unlock;
 | |
| 
 | |
| 	err = -ENOENT;
 | |
| 	for_each_vma_range(vmi, dst_vma, end) {
 | |
| 
 | |
| 		if (!userfaultfd_wp(dst_vma)) {
 | |
| 			err = -ENOENT;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		if (is_vm_hugetlb_page(dst_vma)) {
 | |
| 			err = -EINVAL;
 | |
| 			page_mask = vma_kernel_pagesize(dst_vma) - 1;
 | |
| 			if ((start & page_mask) || (len & page_mask))
 | |
| 				break;
 | |
| 		}
 | |
| 
 | |
| 		_start = max(dst_vma->vm_start, start);
 | |
| 		_end = min(dst_vma->vm_end, end);
 | |
| 
 | |
| 		err = uffd_wp_range(dst_vma, _start, _end - _start, enable_wp);
 | |
| 
 | |
| 		/* Return 0 on success, <0 on failures */
 | |
| 		if (err < 0)
 | |
| 			break;
 | |
| 		err = 0;
 | |
| 	}
 | |
| out_unlock:
 | |
| 	up_read(&ctx->map_changing_lock);
 | |
| 	mmap_read_unlock(dst_mm);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| 
 | |
| void double_pt_lock(spinlock_t *ptl1,
 | |
| 		    spinlock_t *ptl2)
 | |
| 	__acquires(ptl1)
 | |
| 	__acquires(ptl2)
 | |
| {
 | |
| 	spinlock_t *ptl_tmp;
 | |
| 
 | |
| 	if (ptl1 > ptl2) {
 | |
| 		/* exchange ptl1 and ptl2 */
 | |
| 		ptl_tmp = ptl1;
 | |
| 		ptl1 = ptl2;
 | |
| 		ptl2 = ptl_tmp;
 | |
| 	}
 | |
| 	/* lock in virtual address order to avoid lock inversion */
 | |
| 	spin_lock(ptl1);
 | |
| 	if (ptl1 != ptl2)
 | |
| 		spin_lock_nested(ptl2, SINGLE_DEPTH_NESTING);
 | |
| 	else
 | |
| 		__acquire(ptl2);
 | |
| }
 | |
| 
 | |
| void double_pt_unlock(spinlock_t *ptl1,
 | |
| 		      spinlock_t *ptl2)
 | |
| 	__releases(ptl1)
 | |
| 	__releases(ptl2)
 | |
| {
 | |
| 	spin_unlock(ptl1);
 | |
| 	if (ptl1 != ptl2)
 | |
| 		spin_unlock(ptl2);
 | |
| 	else
 | |
| 		__release(ptl2);
 | |
| }
 | |
| 
 | |
| 
 | |
| static int move_present_pte(struct mm_struct *mm,
 | |
| 			    struct vm_area_struct *dst_vma,
 | |
| 			    struct vm_area_struct *src_vma,
 | |
| 			    unsigned long dst_addr, unsigned long src_addr,
 | |
| 			    pte_t *dst_pte, pte_t *src_pte,
 | |
| 			    pte_t orig_dst_pte, pte_t orig_src_pte,
 | |
| 			    spinlock_t *dst_ptl, spinlock_t *src_ptl,
 | |
| 			    struct folio *src_folio)
 | |
| {
 | |
| 	int err = 0;
 | |
| 
 | |
| 	double_pt_lock(dst_ptl, src_ptl);
 | |
| 
 | |
| 	if (!pte_same(ptep_get(src_pte), orig_src_pte) ||
 | |
| 	    !pte_same(ptep_get(dst_pte), orig_dst_pte)) {
 | |
| 		err = -EAGAIN;
 | |
| 		goto out;
 | |
| 	}
 | |
| 	if (folio_test_large(src_folio) ||
 | |
| 	    folio_maybe_dma_pinned(src_folio) ||
 | |
| 	    !PageAnonExclusive(&src_folio->page)) {
 | |
| 		err = -EBUSY;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	orig_src_pte = ptep_clear_flush(src_vma, src_addr, src_pte);
 | |
| 	/* Folio got pinned from under us. Put it back and fail the move. */
 | |
| 	if (folio_maybe_dma_pinned(src_folio)) {
 | |
| 		set_pte_at(mm, src_addr, src_pte, orig_src_pte);
 | |
| 		err = -EBUSY;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	folio_move_anon_rmap(src_folio, dst_vma);
 | |
| 	src_folio->index = linear_page_index(dst_vma, dst_addr);
 | |
| 
 | |
| 	orig_dst_pte = mk_pte(&src_folio->page, dst_vma->vm_page_prot);
 | |
| 	/* Follow mremap() behavior and treat the entry dirty after the move */
 | |
| 	orig_dst_pte = pte_mkwrite(pte_mkdirty(orig_dst_pte), dst_vma);
 | |
| 
 | |
| 	set_pte_at(mm, dst_addr, dst_pte, orig_dst_pte);
 | |
| out:
 | |
| 	double_pt_unlock(dst_ptl, src_ptl);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static int move_swap_pte(struct mm_struct *mm,
 | |
| 			 unsigned long dst_addr, unsigned long src_addr,
 | |
| 			 pte_t *dst_pte, pte_t *src_pte,
 | |
| 			 pte_t orig_dst_pte, pte_t orig_src_pte,
 | |
| 			 spinlock_t *dst_ptl, spinlock_t *src_ptl)
 | |
| {
 | |
| 	if (!pte_swp_exclusive(orig_src_pte))
 | |
| 		return -EBUSY;
 | |
| 
 | |
| 	double_pt_lock(dst_ptl, src_ptl);
 | |
| 
 | |
| 	if (!pte_same(ptep_get(src_pte), orig_src_pte) ||
 | |
| 	    !pte_same(ptep_get(dst_pte), orig_dst_pte)) {
 | |
| 		double_pt_unlock(dst_ptl, src_ptl);
 | |
| 		return -EAGAIN;
 | |
| 	}
 | |
| 
 | |
| 	orig_src_pte = ptep_get_and_clear(mm, src_addr, src_pte);
 | |
| 	set_pte_at(mm, dst_addr, dst_pte, orig_src_pte);
 | |
| 	double_pt_unlock(dst_ptl, src_ptl);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int move_zeropage_pte(struct mm_struct *mm,
 | |
| 			     struct vm_area_struct *dst_vma,
 | |
| 			     struct vm_area_struct *src_vma,
 | |
| 			     unsigned long dst_addr, unsigned long src_addr,
 | |
| 			     pte_t *dst_pte, pte_t *src_pte,
 | |
| 			     pte_t orig_dst_pte, pte_t orig_src_pte,
 | |
| 			     spinlock_t *dst_ptl, spinlock_t *src_ptl)
 | |
| {
 | |
| 	pte_t zero_pte;
 | |
| 
 | |
| 	double_pt_lock(dst_ptl, src_ptl);
 | |
| 	if (!pte_same(ptep_get(src_pte), orig_src_pte) ||
 | |
| 	    !pte_same(ptep_get(dst_pte), orig_dst_pte)) {
 | |
| 		double_pt_unlock(dst_ptl, src_ptl);
 | |
| 		return -EAGAIN;
 | |
| 	}
 | |
| 
 | |
| 	zero_pte = pte_mkspecial(pfn_pte(my_zero_pfn(dst_addr),
 | |
| 					 dst_vma->vm_page_prot));
 | |
| 	ptep_clear_flush(src_vma, src_addr, src_pte);
 | |
| 	set_pte_at(mm, dst_addr, dst_pte, zero_pte);
 | |
| 	double_pt_unlock(dst_ptl, src_ptl);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * The mmap_lock for reading is held by the caller. Just move the page
 | |
|  * from src_pmd to dst_pmd if possible, and return true if succeeded
 | |
|  * in moving the page.
 | |
|  */
 | |
| static int move_pages_pte(struct mm_struct *mm, pmd_t *dst_pmd, pmd_t *src_pmd,
 | |
| 			  struct vm_area_struct *dst_vma,
 | |
| 			  struct vm_area_struct *src_vma,
 | |
| 			  unsigned long dst_addr, unsigned long src_addr,
 | |
| 			  __u64 mode)
 | |
| {
 | |
| 	swp_entry_t entry;
 | |
| 	pte_t orig_src_pte, orig_dst_pte;
 | |
| 	pte_t src_folio_pte;
 | |
| 	spinlock_t *src_ptl, *dst_ptl;
 | |
| 	pte_t *src_pte = NULL;
 | |
| 	pte_t *dst_pte = NULL;
 | |
| 
 | |
| 	struct folio *src_folio = NULL;
 | |
| 	struct anon_vma *src_anon_vma = NULL;
 | |
| 	struct mmu_notifier_range range;
 | |
| 	int err = 0;
 | |
| 
 | |
| 	flush_cache_range(src_vma, src_addr, src_addr + PAGE_SIZE);
 | |
| 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
 | |
| 				src_addr, src_addr + PAGE_SIZE);
 | |
| 	mmu_notifier_invalidate_range_start(&range);
 | |
| retry:
 | |
| 	dst_pte = pte_offset_map_nolock(mm, dst_pmd, dst_addr, &dst_ptl);
 | |
| 
 | |
| 	/* Retry if a huge pmd materialized from under us */
 | |
| 	if (unlikely(!dst_pte)) {
 | |
| 		err = -EAGAIN;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	src_pte = pte_offset_map_nolock(mm, src_pmd, src_addr, &src_ptl);
 | |
| 
 | |
| 	/*
 | |
| 	 * We held the mmap_lock for reading so MADV_DONTNEED
 | |
| 	 * can zap transparent huge pages under us, or the
 | |
| 	 * transparent huge page fault can establish new
 | |
| 	 * transparent huge pages under us.
 | |
| 	 */
 | |
| 	if (unlikely(!src_pte)) {
 | |
| 		err = -EAGAIN;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	/* Sanity checks before the operation */
 | |
| 	if (WARN_ON_ONCE(pmd_none(*dst_pmd)) ||	WARN_ON_ONCE(pmd_none(*src_pmd)) ||
 | |
| 	    WARN_ON_ONCE(pmd_trans_huge(*dst_pmd)) || WARN_ON_ONCE(pmd_trans_huge(*src_pmd))) {
 | |
| 		err = -EINVAL;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	spin_lock(dst_ptl);
 | |
| 	orig_dst_pte = ptep_get(dst_pte);
 | |
| 	spin_unlock(dst_ptl);
 | |
| 	if (!pte_none(orig_dst_pte)) {
 | |
| 		err = -EEXIST;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	spin_lock(src_ptl);
 | |
| 	orig_src_pte = ptep_get(src_pte);
 | |
| 	spin_unlock(src_ptl);
 | |
| 	if (pte_none(orig_src_pte)) {
 | |
| 		if (!(mode & UFFDIO_MOVE_MODE_ALLOW_SRC_HOLES))
 | |
| 			err = -ENOENT;
 | |
| 		else /* nothing to do to move a hole */
 | |
| 			err = 0;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	/* If PTE changed after we locked the folio them start over */
 | |
| 	if (src_folio && unlikely(!pte_same(src_folio_pte, orig_src_pte))) {
 | |
| 		err = -EAGAIN;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	if (pte_present(orig_src_pte)) {
 | |
| 		if (is_zero_pfn(pte_pfn(orig_src_pte))) {
 | |
| 			err = move_zeropage_pte(mm, dst_vma, src_vma,
 | |
| 					       dst_addr, src_addr, dst_pte, src_pte,
 | |
| 					       orig_dst_pte, orig_src_pte,
 | |
| 					       dst_ptl, src_ptl);
 | |
| 			goto out;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Pin and lock both source folio and anon_vma. Since we are in
 | |
| 		 * RCU read section, we can't block, so on contention have to
 | |
| 		 * unmap the ptes, obtain the lock and retry.
 | |
| 		 */
 | |
| 		if (!src_folio) {
 | |
| 			struct folio *folio;
 | |
| 
 | |
| 			/*
 | |
| 			 * Pin the page while holding the lock to be sure the
 | |
| 			 * page isn't freed under us
 | |
| 			 */
 | |
| 			spin_lock(src_ptl);
 | |
| 			if (!pte_same(orig_src_pte, ptep_get(src_pte))) {
 | |
| 				spin_unlock(src_ptl);
 | |
| 				err = -EAGAIN;
 | |
| 				goto out;
 | |
| 			}
 | |
| 
 | |
| 			folio = vm_normal_folio(src_vma, src_addr, orig_src_pte);
 | |
| 			if (!folio || !PageAnonExclusive(&folio->page)) {
 | |
| 				spin_unlock(src_ptl);
 | |
| 				err = -EBUSY;
 | |
| 				goto out;
 | |
| 			}
 | |
| 
 | |
| 			folio_get(folio);
 | |
| 			src_folio = folio;
 | |
| 			src_folio_pte = orig_src_pte;
 | |
| 			spin_unlock(src_ptl);
 | |
| 
 | |
| 			if (!folio_trylock(src_folio)) {
 | |
| 				pte_unmap(&orig_src_pte);
 | |
| 				pte_unmap(&orig_dst_pte);
 | |
| 				src_pte = dst_pte = NULL;
 | |
| 				/* now we can block and wait */
 | |
| 				folio_lock(src_folio);
 | |
| 				goto retry;
 | |
| 			}
 | |
| 
 | |
| 			if (WARN_ON_ONCE(!folio_test_anon(src_folio))) {
 | |
| 				err = -EBUSY;
 | |
| 				goto out;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		/* at this point we have src_folio locked */
 | |
| 		if (folio_test_large(src_folio)) {
 | |
| 			/* split_folio() can block */
 | |
| 			pte_unmap(&orig_src_pte);
 | |
| 			pte_unmap(&orig_dst_pte);
 | |
| 			src_pte = dst_pte = NULL;
 | |
| 			err = split_folio(src_folio);
 | |
| 			if (err)
 | |
| 				goto out;
 | |
| 			/* have to reacquire the folio after it got split */
 | |
| 			folio_unlock(src_folio);
 | |
| 			folio_put(src_folio);
 | |
| 			src_folio = NULL;
 | |
| 			goto retry;
 | |
| 		}
 | |
| 
 | |
| 		if (!src_anon_vma) {
 | |
| 			/*
 | |
| 			 * folio_referenced walks the anon_vma chain
 | |
| 			 * without the folio lock. Serialize against it with
 | |
| 			 * the anon_vma lock, the folio lock is not enough.
 | |
| 			 */
 | |
| 			src_anon_vma = folio_get_anon_vma(src_folio);
 | |
| 			if (!src_anon_vma) {
 | |
| 				/* page was unmapped from under us */
 | |
| 				err = -EAGAIN;
 | |
| 				goto out;
 | |
| 			}
 | |
| 			if (!anon_vma_trylock_write(src_anon_vma)) {
 | |
| 				pte_unmap(&orig_src_pte);
 | |
| 				pte_unmap(&orig_dst_pte);
 | |
| 				src_pte = dst_pte = NULL;
 | |
| 				/* now we can block and wait */
 | |
| 				anon_vma_lock_write(src_anon_vma);
 | |
| 				goto retry;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		err = move_present_pte(mm,  dst_vma, src_vma,
 | |
| 				       dst_addr, src_addr, dst_pte, src_pte,
 | |
| 				       orig_dst_pte, orig_src_pte,
 | |
| 				       dst_ptl, src_ptl, src_folio);
 | |
| 	} else {
 | |
| 		entry = pte_to_swp_entry(orig_src_pte);
 | |
| 		if (non_swap_entry(entry)) {
 | |
| 			if (is_migration_entry(entry)) {
 | |
| 				pte_unmap(&orig_src_pte);
 | |
| 				pte_unmap(&orig_dst_pte);
 | |
| 				src_pte = dst_pte = NULL;
 | |
| 				migration_entry_wait(mm, src_pmd, src_addr);
 | |
| 				err = -EAGAIN;
 | |
| 			} else
 | |
| 				err = -EFAULT;
 | |
| 			goto out;
 | |
| 		}
 | |
| 
 | |
| 		err = move_swap_pte(mm, dst_addr, src_addr,
 | |
| 				    dst_pte, src_pte,
 | |
| 				    orig_dst_pte, orig_src_pte,
 | |
| 				    dst_ptl, src_ptl);
 | |
| 	}
 | |
| 
 | |
| out:
 | |
| 	if (src_anon_vma) {
 | |
| 		anon_vma_unlock_write(src_anon_vma);
 | |
| 		put_anon_vma(src_anon_vma);
 | |
| 	}
 | |
| 	if (src_folio) {
 | |
| 		folio_unlock(src_folio);
 | |
| 		folio_put(src_folio);
 | |
| 	}
 | |
| 	if (dst_pte)
 | |
| 		pte_unmap(dst_pte);
 | |
| 	if (src_pte)
 | |
| 		pte_unmap(src_pte);
 | |
| 	mmu_notifier_invalidate_range_end(&range);
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_TRANSPARENT_HUGEPAGE
 | |
| static inline bool move_splits_huge_pmd(unsigned long dst_addr,
 | |
| 					unsigned long src_addr,
 | |
| 					unsigned long src_end)
 | |
| {
 | |
| 	return (src_addr & ~HPAGE_PMD_MASK) || (dst_addr & ~HPAGE_PMD_MASK) ||
 | |
| 		src_end - src_addr < HPAGE_PMD_SIZE;
 | |
| }
 | |
| #else
 | |
| static inline bool move_splits_huge_pmd(unsigned long dst_addr,
 | |
| 					unsigned long src_addr,
 | |
| 					unsigned long src_end)
 | |
| {
 | |
| 	/* This is unreachable anyway, just to avoid warnings when HPAGE_PMD_SIZE==0 */
 | |
| 	return false;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static inline bool vma_move_compatible(struct vm_area_struct *vma)
 | |
| {
 | |
| 	return !(vma->vm_flags & (VM_PFNMAP | VM_IO |  VM_HUGETLB |
 | |
| 				  VM_MIXEDMAP | VM_SHADOW_STACK));
 | |
| }
 | |
| 
 | |
| static int validate_move_areas(struct userfaultfd_ctx *ctx,
 | |
| 			       struct vm_area_struct *src_vma,
 | |
| 			       struct vm_area_struct *dst_vma)
 | |
| {
 | |
| 	/* Only allow moving if both have the same access and protection */
 | |
| 	if ((src_vma->vm_flags & VM_ACCESS_FLAGS) != (dst_vma->vm_flags & VM_ACCESS_FLAGS) ||
 | |
| 	    pgprot_val(src_vma->vm_page_prot) != pgprot_val(dst_vma->vm_page_prot))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/* Only allow moving if both are mlocked or both aren't */
 | |
| 	if ((src_vma->vm_flags & VM_LOCKED) != (dst_vma->vm_flags & VM_LOCKED))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/*
 | |
| 	 * For now, we keep it simple and only move between writable VMAs.
 | |
| 	 * Access flags are equal, therefore cheching only the source is enough.
 | |
| 	 */
 | |
| 	if (!(src_vma->vm_flags & VM_WRITE))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/* Check if vma flags indicate content which can be moved */
 | |
| 	if (!vma_move_compatible(src_vma) || !vma_move_compatible(dst_vma))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/* Ensure dst_vma is registered in uffd we are operating on */
 | |
| 	if (!dst_vma->vm_userfaultfd_ctx.ctx ||
 | |
| 	    dst_vma->vm_userfaultfd_ctx.ctx != ctx)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/* Only allow moving across anonymous vmas */
 | |
| 	if (!vma_is_anonymous(src_vma) || !vma_is_anonymous(dst_vma))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static __always_inline
 | |
| int find_vmas_mm_locked(struct mm_struct *mm,
 | |
| 			unsigned long dst_start,
 | |
| 			unsigned long src_start,
 | |
| 			struct vm_area_struct **dst_vmap,
 | |
| 			struct vm_area_struct **src_vmap)
 | |
| {
 | |
| 	struct vm_area_struct *vma;
 | |
| 
 | |
| 	mmap_assert_locked(mm);
 | |
| 	vma = find_vma_and_prepare_anon(mm, dst_start);
 | |
| 	if (IS_ERR(vma))
 | |
| 		return PTR_ERR(vma);
 | |
| 
 | |
| 	*dst_vmap = vma;
 | |
| 	/* Skip finding src_vma if src_start is in dst_vma */
 | |
| 	if (src_start >= vma->vm_start && src_start < vma->vm_end)
 | |
| 		goto out_success;
 | |
| 
 | |
| 	vma = vma_lookup(mm, src_start);
 | |
| 	if (!vma)
 | |
| 		return -ENOENT;
 | |
| out_success:
 | |
| 	*src_vmap = vma;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_PER_VMA_LOCK
 | |
| static int uffd_move_lock(struct mm_struct *mm,
 | |
| 			  unsigned long dst_start,
 | |
| 			  unsigned long src_start,
 | |
| 			  struct vm_area_struct **dst_vmap,
 | |
| 			  struct vm_area_struct **src_vmap)
 | |
| {
 | |
| 	struct vm_area_struct *vma;
 | |
| 	int err;
 | |
| 
 | |
| 	vma = uffd_lock_vma(mm, dst_start);
 | |
| 	if (IS_ERR(vma))
 | |
| 		return PTR_ERR(vma);
 | |
| 
 | |
| 	*dst_vmap = vma;
 | |
| 	/*
 | |
| 	 * Skip finding src_vma if src_start is in dst_vma. This also ensures
 | |
| 	 * that we don't lock the same vma twice.
 | |
| 	 */
 | |
| 	if (src_start >= vma->vm_start && src_start < vma->vm_end) {
 | |
| 		*src_vmap = vma;
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Using uffd_lock_vma() to get src_vma can lead to following deadlock:
 | |
| 	 *
 | |
| 	 * Thread1				Thread2
 | |
| 	 * -------				-------
 | |
| 	 * vma_start_read(dst_vma)
 | |
| 	 *					mmap_write_lock(mm)
 | |
| 	 *					vma_start_write(src_vma)
 | |
| 	 * vma_start_read(src_vma)
 | |
| 	 * mmap_read_lock(mm)
 | |
| 	 *					vma_start_write(dst_vma)
 | |
| 	 */
 | |
| 	*src_vmap = lock_vma_under_rcu(mm, src_start);
 | |
| 	if (likely(*src_vmap))
 | |
| 		return 0;
 | |
| 
 | |
| 	/* Undo any locking and retry in mmap_lock critical section */
 | |
| 	vma_end_read(*dst_vmap);
 | |
| 
 | |
| 	mmap_read_lock(mm);
 | |
| 	err = find_vmas_mm_locked(mm, dst_start, src_start, dst_vmap, src_vmap);
 | |
| 	if (!err) {
 | |
| 		/*
 | |
| 		 * See comment in uffd_lock_vma() as to why not using
 | |
| 		 * vma_start_read() here.
 | |
| 		 */
 | |
| 		down_read(&(*dst_vmap)->vm_lock->lock);
 | |
| 		if (*dst_vmap != *src_vmap)
 | |
| 			down_read_nested(&(*src_vmap)->vm_lock->lock,
 | |
| 					 SINGLE_DEPTH_NESTING);
 | |
| 	}
 | |
| 	mmap_read_unlock(mm);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static void uffd_move_unlock(struct vm_area_struct *dst_vma,
 | |
| 			     struct vm_area_struct *src_vma)
 | |
| {
 | |
| 	vma_end_read(src_vma);
 | |
| 	if (src_vma != dst_vma)
 | |
| 		vma_end_read(dst_vma);
 | |
| }
 | |
| 
 | |
| #else
 | |
| 
 | |
| static int uffd_move_lock(struct mm_struct *mm,
 | |
| 			  unsigned long dst_start,
 | |
| 			  unsigned long src_start,
 | |
| 			  struct vm_area_struct **dst_vmap,
 | |
| 			  struct vm_area_struct **src_vmap)
 | |
| {
 | |
| 	int err;
 | |
| 
 | |
| 	mmap_read_lock(mm);
 | |
| 	err = find_vmas_mm_locked(mm, dst_start, src_start, dst_vmap, src_vmap);
 | |
| 	if (err)
 | |
| 		mmap_read_unlock(mm);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static void uffd_move_unlock(struct vm_area_struct *dst_vma,
 | |
| 			     struct vm_area_struct *src_vma)
 | |
| {
 | |
| 	mmap_assert_locked(src_vma->vm_mm);
 | |
| 	mmap_read_unlock(dst_vma->vm_mm);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /**
 | |
|  * move_pages - move arbitrary anonymous pages of an existing vma
 | |
|  * @ctx: pointer to the userfaultfd context
 | |
|  * @dst_start: start of the destination virtual memory range
 | |
|  * @src_start: start of the source virtual memory range
 | |
|  * @len: length of the virtual memory range
 | |
|  * @mode: flags from uffdio_move.mode
 | |
|  *
 | |
|  * It will either use the mmap_lock in read mode or per-vma locks
 | |
|  *
 | |
|  * move_pages() remaps arbitrary anonymous pages atomically in zero
 | |
|  * copy. It only works on non shared anonymous pages because those can
 | |
|  * be relocated without generating non linear anon_vmas in the rmap
 | |
|  * code.
 | |
|  *
 | |
|  * It provides a zero copy mechanism to handle userspace page faults.
 | |
|  * The source vma pages should have mapcount == 1, which can be
 | |
|  * enforced by using madvise(MADV_DONTFORK) on src vma.
 | |
|  *
 | |
|  * The thread receiving the page during the userland page fault
 | |
|  * will receive the faulting page in the source vma through the network,
 | |
|  * storage or any other I/O device (MADV_DONTFORK in the source vma
 | |
|  * avoids move_pages() to fail with -EBUSY if the process forks before
 | |
|  * move_pages() is called), then it will call move_pages() to map the
 | |
|  * page in the faulting address in the destination vma.
 | |
|  *
 | |
|  * This userfaultfd command works purely via pagetables, so it's the
 | |
|  * most efficient way to move physical non shared anonymous pages
 | |
|  * across different virtual addresses. Unlike mremap()/mmap()/munmap()
 | |
|  * it does not create any new vmas. The mapping in the destination
 | |
|  * address is atomic.
 | |
|  *
 | |
|  * It only works if the vma protection bits are identical from the
 | |
|  * source and destination vma.
 | |
|  *
 | |
|  * It can remap non shared anonymous pages within the same vma too.
 | |
|  *
 | |
|  * If the source virtual memory range has any unmapped holes, or if
 | |
|  * the destination virtual memory range is not a whole unmapped hole,
 | |
|  * move_pages() will fail respectively with -ENOENT or -EEXIST. This
 | |
|  * provides a very strict behavior to avoid any chance of memory
 | |
|  * corruption going unnoticed if there are userland race conditions.
 | |
|  * Only one thread should resolve the userland page fault at any given
 | |
|  * time for any given faulting address. This means that if two threads
 | |
|  * try to both call move_pages() on the same destination address at the
 | |
|  * same time, the second thread will get an explicit error from this
 | |
|  * command.
 | |
|  *
 | |
|  * The command retval will return "len" is successful. The command
 | |
|  * however can be interrupted by fatal signals or errors. If
 | |
|  * interrupted it will return the number of bytes successfully
 | |
|  * remapped before the interruption if any, or the negative error if
 | |
|  * none. It will never return zero. Either it will return an error or
 | |
|  * an amount of bytes successfully moved. If the retval reports a
 | |
|  * "short" remap, the move_pages() command should be repeated by
 | |
|  * userland with src+retval, dst+reval, len-retval if it wants to know
 | |
|  * about the error that interrupted it.
 | |
|  *
 | |
|  * The UFFDIO_MOVE_MODE_ALLOW_SRC_HOLES flag can be specified to
 | |
|  * prevent -ENOENT errors to materialize if there are holes in the
 | |
|  * source virtual range that is being remapped. The holes will be
 | |
|  * accounted as successfully remapped in the retval of the
 | |
|  * command. This is mostly useful to remap hugepage naturally aligned
 | |
|  * virtual regions without knowing if there are transparent hugepage
 | |
|  * in the regions or not, but preventing the risk of having to split
 | |
|  * the hugepmd during the remap.
 | |
|  *
 | |
|  * If there's any rmap walk that is taking the anon_vma locks without
 | |
|  * first obtaining the folio lock (the only current instance is
 | |
|  * folio_referenced), they will have to verify if the folio->mapping
 | |
|  * has changed after taking the anon_vma lock. If it changed they
 | |
|  * should release the lock and retry obtaining a new anon_vma, because
 | |
|  * it means the anon_vma was changed by move_pages() before the lock
 | |
|  * could be obtained. This is the only additional complexity added to
 | |
|  * the rmap code to provide this anonymous page remapping functionality.
 | |
|  */
 | |
| ssize_t move_pages(struct userfaultfd_ctx *ctx, unsigned long dst_start,
 | |
| 		   unsigned long src_start, unsigned long len, __u64 mode)
 | |
| {
 | |
| 	struct mm_struct *mm = ctx->mm;
 | |
| 	struct vm_area_struct *src_vma, *dst_vma;
 | |
| 	unsigned long src_addr, dst_addr;
 | |
| 	pmd_t *src_pmd, *dst_pmd;
 | |
| 	long err = -EINVAL;
 | |
| 	ssize_t moved = 0;
 | |
| 
 | |
| 	/* Sanitize the command parameters. */
 | |
| 	if (WARN_ON_ONCE(src_start & ~PAGE_MASK) ||
 | |
| 	    WARN_ON_ONCE(dst_start & ~PAGE_MASK) ||
 | |
| 	    WARN_ON_ONCE(len & ~PAGE_MASK))
 | |
| 		goto out;
 | |
| 
 | |
| 	/* Does the address range wrap, or is the span zero-sized? */
 | |
| 	if (WARN_ON_ONCE(src_start + len <= src_start) ||
 | |
| 	    WARN_ON_ONCE(dst_start + len <= dst_start))
 | |
| 		goto out;
 | |
| 
 | |
| 	err = uffd_move_lock(mm, dst_start, src_start, &dst_vma, &src_vma);
 | |
| 	if (err)
 | |
| 		goto out;
 | |
| 
 | |
| 	/* Re-check after taking map_changing_lock */
 | |
| 	err = -EAGAIN;
 | |
| 	down_read(&ctx->map_changing_lock);
 | |
| 	if (likely(atomic_read(&ctx->mmap_changing)))
 | |
| 		goto out_unlock;
 | |
| 	/*
 | |
| 	 * Make sure the vma is not shared, that the src and dst remap
 | |
| 	 * ranges are both valid and fully within a single existing
 | |
| 	 * vma.
 | |
| 	 */
 | |
| 	err = -EINVAL;
 | |
| 	if (src_vma->vm_flags & VM_SHARED)
 | |
| 		goto out_unlock;
 | |
| 	if (src_start + len > src_vma->vm_end)
 | |
| 		goto out_unlock;
 | |
| 
 | |
| 	if (dst_vma->vm_flags & VM_SHARED)
 | |
| 		goto out_unlock;
 | |
| 	if (dst_start + len > dst_vma->vm_end)
 | |
| 		goto out_unlock;
 | |
| 
 | |
| 	err = validate_move_areas(ctx, src_vma, dst_vma);
 | |
| 	if (err)
 | |
| 		goto out_unlock;
 | |
| 
 | |
| 	for (src_addr = src_start, dst_addr = dst_start;
 | |
| 	     src_addr < src_start + len;) {
 | |
| 		spinlock_t *ptl;
 | |
| 		pmd_t dst_pmdval;
 | |
| 		unsigned long step_size;
 | |
| 
 | |
| 		/*
 | |
| 		 * Below works because anonymous area would not have a
 | |
| 		 * transparent huge PUD. If file-backed support is added,
 | |
| 		 * that case would need to be handled here.
 | |
| 		 */
 | |
| 		src_pmd = mm_find_pmd(mm, src_addr);
 | |
| 		if (unlikely(!src_pmd)) {
 | |
| 			if (!(mode & UFFDIO_MOVE_MODE_ALLOW_SRC_HOLES)) {
 | |
| 				err = -ENOENT;
 | |
| 				break;
 | |
| 			}
 | |
| 			src_pmd = mm_alloc_pmd(mm, src_addr);
 | |
| 			if (unlikely(!src_pmd)) {
 | |
| 				err = -ENOMEM;
 | |
| 				break;
 | |
| 			}
 | |
| 		}
 | |
| 		dst_pmd = mm_alloc_pmd(mm, dst_addr);
 | |
| 		if (unlikely(!dst_pmd)) {
 | |
| 			err = -ENOMEM;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		dst_pmdval = pmdp_get_lockless(dst_pmd);
 | |
| 		/*
 | |
| 		 * If the dst_pmd is mapped as THP don't override it and just
 | |
| 		 * be strict. If dst_pmd changes into TPH after this check, the
 | |
| 		 * move_pages_huge_pmd() will detect the change and retry
 | |
| 		 * while move_pages_pte() will detect the change and fail.
 | |
| 		 */
 | |
| 		if (unlikely(pmd_trans_huge(dst_pmdval))) {
 | |
| 			err = -EEXIST;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		ptl = pmd_trans_huge_lock(src_pmd, src_vma);
 | |
| 		if (ptl) {
 | |
| 			if (pmd_devmap(*src_pmd)) {
 | |
| 				spin_unlock(ptl);
 | |
| 				err = -ENOENT;
 | |
| 				break;
 | |
| 			}
 | |
| 
 | |
| 			/* Check if we can move the pmd without splitting it. */
 | |
| 			if (move_splits_huge_pmd(dst_addr, src_addr, src_start + len) ||
 | |
| 			    !pmd_none(dst_pmdval)) {
 | |
| 				struct folio *folio = pmd_folio(*src_pmd);
 | |
| 
 | |
| 				if (!folio || (!is_huge_zero_folio(folio) &&
 | |
| 					       !PageAnonExclusive(&folio->page))) {
 | |
| 					spin_unlock(ptl);
 | |
| 					err = -EBUSY;
 | |
| 					break;
 | |
| 				}
 | |
| 
 | |
| 				spin_unlock(ptl);
 | |
| 				split_huge_pmd(src_vma, src_pmd, src_addr);
 | |
| 				/* The folio will be split by move_pages_pte() */
 | |
| 				continue;
 | |
| 			}
 | |
| 
 | |
| 			err = move_pages_huge_pmd(mm, dst_pmd, src_pmd,
 | |
| 						  dst_pmdval, dst_vma, src_vma,
 | |
| 						  dst_addr, src_addr);
 | |
| 			step_size = HPAGE_PMD_SIZE;
 | |
| 		} else {
 | |
| 			if (pmd_none(*src_pmd)) {
 | |
| 				if (!(mode & UFFDIO_MOVE_MODE_ALLOW_SRC_HOLES)) {
 | |
| 					err = -ENOENT;
 | |
| 					break;
 | |
| 				}
 | |
| 				if (unlikely(__pte_alloc(mm, src_pmd))) {
 | |
| 					err = -ENOMEM;
 | |
| 					break;
 | |
| 				}
 | |
| 			}
 | |
| 
 | |
| 			if (unlikely(pte_alloc(mm, dst_pmd))) {
 | |
| 				err = -ENOMEM;
 | |
| 				break;
 | |
| 			}
 | |
| 
 | |
| 			err = move_pages_pte(mm, dst_pmd, src_pmd,
 | |
| 					     dst_vma, src_vma,
 | |
| 					     dst_addr, src_addr, mode);
 | |
| 			step_size = PAGE_SIZE;
 | |
| 		}
 | |
| 
 | |
| 		cond_resched();
 | |
| 
 | |
| 		if (fatal_signal_pending(current)) {
 | |
| 			/* Do not override an error */
 | |
| 			if (!err || err == -EAGAIN)
 | |
| 				err = -EINTR;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		if (err) {
 | |
| 			if (err == -EAGAIN)
 | |
| 				continue;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		/* Proceed to the next page */
 | |
| 		dst_addr += step_size;
 | |
| 		src_addr += step_size;
 | |
| 		moved += step_size;
 | |
| 	}
 | |
| 
 | |
| out_unlock:
 | |
| 	up_read(&ctx->map_changing_lock);
 | |
| 	uffd_move_unlock(dst_vma, src_vma);
 | |
| out:
 | |
| 	VM_WARN_ON(moved < 0);
 | |
| 	VM_WARN_ON(err > 0);
 | |
| 	VM_WARN_ON(!moved && !err);
 | |
| 	return moved ? moved : err;
 | |
| }
 |