mirror of
git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
synced 2025-04-13 09:59:31 +00:00

gp_port is already pointed to the grandparent port during its definition, remove a redundant code to let gp_port point to the grandparent port again. Signed-off-by: Li Ming <ming.li@zohomail.com> Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com> Reviewed-by: Davidlohr Bueso <dave@stgolabs.net> Link: https://patch.msgid.link/20250211062054.300108-1-ming.li@zohomail.com Signed-off-by: Dave Jiang <dave.jiang@intel.com>
1088 lines
28 KiB
C
1088 lines
28 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/* Copyright(c) 2023 Intel Corporation. All rights reserved. */
|
|
#include <linux/acpi.h>
|
|
#include <linux/xarray.h>
|
|
#include <linux/fw_table.h>
|
|
#include <linux/node.h>
|
|
#include <linux/overflow.h>
|
|
#include "cxlpci.h"
|
|
#include "cxlmem.h"
|
|
#include "core.h"
|
|
#include "cxl.h"
|
|
|
|
struct dsmas_entry {
|
|
struct range dpa_range;
|
|
u8 handle;
|
|
struct access_coordinate coord[ACCESS_COORDINATE_MAX];
|
|
struct access_coordinate cdat_coord[ACCESS_COORDINATE_MAX];
|
|
int entries;
|
|
int qos_class;
|
|
};
|
|
|
|
static u32 cdat_normalize(u16 entry, u64 base, u8 type)
|
|
{
|
|
u32 value;
|
|
|
|
/*
|
|
* Check for invalid and overflow values
|
|
*/
|
|
if (entry == 0xffff || !entry)
|
|
return 0;
|
|
else if (base > (UINT_MAX / (entry)))
|
|
return 0;
|
|
|
|
/*
|
|
* CDAT fields follow the format of HMAT fields. See table 5 Device
|
|
* Scoped Latency and Bandwidth Information Structure in Coherent Device
|
|
* Attribute Table (CDAT) Specification v1.01.
|
|
*/
|
|
value = entry * base;
|
|
switch (type) {
|
|
case ACPI_HMAT_ACCESS_LATENCY:
|
|
case ACPI_HMAT_READ_LATENCY:
|
|
case ACPI_HMAT_WRITE_LATENCY:
|
|
value = DIV_ROUND_UP(value, 1000);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
return value;
|
|
}
|
|
|
|
static int cdat_dsmas_handler(union acpi_subtable_headers *header, void *arg,
|
|
const unsigned long end)
|
|
{
|
|
struct acpi_cdat_header *hdr = &header->cdat;
|
|
struct acpi_cdat_dsmas *dsmas;
|
|
int size = sizeof(*hdr) + sizeof(*dsmas);
|
|
struct xarray *dsmas_xa = arg;
|
|
struct dsmas_entry *dent;
|
|
u16 len;
|
|
int rc;
|
|
|
|
len = le16_to_cpu((__force __le16)hdr->length);
|
|
if (len != size || (unsigned long)hdr + len > end) {
|
|
pr_warn("Malformed DSMAS table length: (%u:%u)\n", size, len);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Skip common header */
|
|
dsmas = (struct acpi_cdat_dsmas *)(hdr + 1);
|
|
|
|
dent = kzalloc(sizeof(*dent), GFP_KERNEL);
|
|
if (!dent)
|
|
return -ENOMEM;
|
|
|
|
dent->handle = dsmas->dsmad_handle;
|
|
dent->dpa_range.start = le64_to_cpu((__force __le64)dsmas->dpa_base_address);
|
|
dent->dpa_range.end = le64_to_cpu((__force __le64)dsmas->dpa_base_address) +
|
|
le64_to_cpu((__force __le64)dsmas->dpa_length) - 1;
|
|
|
|
rc = xa_insert(dsmas_xa, dent->handle, dent, GFP_KERNEL);
|
|
if (rc) {
|
|
kfree(dent);
|
|
return rc;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void __cxl_access_coordinate_set(struct access_coordinate *coord,
|
|
int access, unsigned int val)
|
|
{
|
|
switch (access) {
|
|
case ACPI_HMAT_ACCESS_LATENCY:
|
|
coord->read_latency = val;
|
|
coord->write_latency = val;
|
|
break;
|
|
case ACPI_HMAT_READ_LATENCY:
|
|
coord->read_latency = val;
|
|
break;
|
|
case ACPI_HMAT_WRITE_LATENCY:
|
|
coord->write_latency = val;
|
|
break;
|
|
case ACPI_HMAT_ACCESS_BANDWIDTH:
|
|
coord->read_bandwidth = val;
|
|
coord->write_bandwidth = val;
|
|
break;
|
|
case ACPI_HMAT_READ_BANDWIDTH:
|
|
coord->read_bandwidth = val;
|
|
break;
|
|
case ACPI_HMAT_WRITE_BANDWIDTH:
|
|
coord->write_bandwidth = val;
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void cxl_access_coordinate_set(struct access_coordinate *coord,
|
|
int access, unsigned int val)
|
|
{
|
|
for (int i = 0; i < ACCESS_COORDINATE_MAX; i++)
|
|
__cxl_access_coordinate_set(&coord[i], access, val);
|
|
}
|
|
|
|
static int cdat_dslbis_handler(union acpi_subtable_headers *header, void *arg,
|
|
const unsigned long end)
|
|
{
|
|
struct acpi_cdat_header *hdr = &header->cdat;
|
|
struct acpi_cdat_dslbis *dslbis;
|
|
int size = sizeof(*hdr) + sizeof(*dslbis);
|
|
struct xarray *dsmas_xa = arg;
|
|
struct dsmas_entry *dent;
|
|
__le64 le_base;
|
|
__le16 le_val;
|
|
u64 val;
|
|
u16 len;
|
|
|
|
len = le16_to_cpu((__force __le16)hdr->length);
|
|
if (len != size || (unsigned long)hdr + len > end) {
|
|
pr_warn("Malformed DSLBIS table length: (%u:%u)\n", size, len);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Skip common header */
|
|
dslbis = (struct acpi_cdat_dslbis *)(hdr + 1);
|
|
|
|
/* Skip unrecognized data type */
|
|
if (dslbis->data_type > ACPI_HMAT_WRITE_BANDWIDTH)
|
|
return 0;
|
|
|
|
/* Not a memory type, skip */
|
|
if ((dslbis->flags & ACPI_HMAT_MEMORY_HIERARCHY) != ACPI_HMAT_MEMORY)
|
|
return 0;
|
|
|
|
dent = xa_load(dsmas_xa, dslbis->handle);
|
|
if (!dent) {
|
|
pr_warn("No matching DSMAS entry for DSLBIS entry.\n");
|
|
return 0;
|
|
}
|
|
|
|
le_base = (__force __le64)dslbis->entry_base_unit;
|
|
le_val = (__force __le16)dslbis->entry[0];
|
|
val = cdat_normalize(le16_to_cpu(le_val), le64_to_cpu(le_base),
|
|
dslbis->data_type);
|
|
|
|
cxl_access_coordinate_set(dent->cdat_coord, dslbis->data_type, val);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int cdat_table_parse_output(int rc)
|
|
{
|
|
if (rc < 0)
|
|
return rc;
|
|
if (rc == 0)
|
|
return -ENOENT;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int cxl_cdat_endpoint_process(struct cxl_port *port,
|
|
struct xarray *dsmas_xa)
|
|
{
|
|
int rc;
|
|
|
|
rc = cdat_table_parse(ACPI_CDAT_TYPE_DSMAS, cdat_dsmas_handler,
|
|
dsmas_xa, port->cdat.table, port->cdat.length);
|
|
rc = cdat_table_parse_output(rc);
|
|
if (rc)
|
|
return rc;
|
|
|
|
rc = cdat_table_parse(ACPI_CDAT_TYPE_DSLBIS, cdat_dslbis_handler,
|
|
dsmas_xa, port->cdat.table, port->cdat.length);
|
|
return cdat_table_parse_output(rc);
|
|
}
|
|
|
|
static int cxl_port_perf_data_calculate(struct cxl_port *port,
|
|
struct xarray *dsmas_xa)
|
|
{
|
|
struct access_coordinate ep_c[ACCESS_COORDINATE_MAX];
|
|
struct dsmas_entry *dent;
|
|
int valid_entries = 0;
|
|
unsigned long index;
|
|
int rc;
|
|
|
|
rc = cxl_endpoint_get_perf_coordinates(port, ep_c);
|
|
if (rc) {
|
|
dev_dbg(&port->dev, "Failed to retrieve ep perf coordinates.\n");
|
|
return rc;
|
|
}
|
|
|
|
struct cxl_root *cxl_root __free(put_cxl_root) = find_cxl_root(port);
|
|
|
|
if (!cxl_root)
|
|
return -ENODEV;
|
|
|
|
if (!cxl_root->ops || !cxl_root->ops->qos_class)
|
|
return -EOPNOTSUPP;
|
|
|
|
xa_for_each(dsmas_xa, index, dent) {
|
|
int qos_class;
|
|
|
|
cxl_coordinates_combine(dent->coord, dent->cdat_coord, ep_c);
|
|
dent->entries = 1;
|
|
rc = cxl_root->ops->qos_class(cxl_root,
|
|
&dent->coord[ACCESS_COORDINATE_CPU],
|
|
1, &qos_class);
|
|
if (rc != 1)
|
|
continue;
|
|
|
|
valid_entries++;
|
|
dent->qos_class = qos_class;
|
|
}
|
|
|
|
if (!valid_entries)
|
|
return -ENOENT;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void update_perf_entry(struct device *dev, struct dsmas_entry *dent,
|
|
struct cxl_dpa_perf *dpa_perf)
|
|
{
|
|
for (int i = 0; i < ACCESS_COORDINATE_MAX; i++) {
|
|
dpa_perf->coord[i] = dent->coord[i];
|
|
dpa_perf->cdat_coord[i] = dent->cdat_coord[i];
|
|
}
|
|
dpa_perf->dpa_range = dent->dpa_range;
|
|
dpa_perf->qos_class = dent->qos_class;
|
|
dev_dbg(dev,
|
|
"DSMAS: dpa: %pra qos: %d read_bw: %d write_bw %d read_lat: %d write_lat: %d\n",
|
|
&dent->dpa_range, dpa_perf->qos_class,
|
|
dent->coord[ACCESS_COORDINATE_CPU].read_bandwidth,
|
|
dent->coord[ACCESS_COORDINATE_CPU].write_bandwidth,
|
|
dent->coord[ACCESS_COORDINATE_CPU].read_latency,
|
|
dent->coord[ACCESS_COORDINATE_CPU].write_latency);
|
|
}
|
|
|
|
static void cxl_memdev_set_qos_class(struct cxl_dev_state *cxlds,
|
|
struct xarray *dsmas_xa)
|
|
{
|
|
struct device *dev = cxlds->dev;
|
|
struct dsmas_entry *dent;
|
|
unsigned long index;
|
|
|
|
xa_for_each(dsmas_xa, index, dent) {
|
|
bool found = false;
|
|
|
|
for (int i = 0; i < cxlds->nr_partitions; i++) {
|
|
struct resource *res = &cxlds->part[i].res;
|
|
struct range range = {
|
|
.start = res->start,
|
|
.end = res->end,
|
|
};
|
|
|
|
if (range_contains(&range, &dent->dpa_range)) {
|
|
update_perf_entry(dev, dent,
|
|
&cxlds->part[i].perf);
|
|
found = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!found)
|
|
dev_dbg(dev, "no partition for dsmas dpa: %pra\n",
|
|
&dent->dpa_range);
|
|
}
|
|
}
|
|
|
|
static int match_cxlrd_qos_class(struct device *dev, void *data)
|
|
{
|
|
int dev_qos_class = *(int *)data;
|
|
struct cxl_root_decoder *cxlrd;
|
|
|
|
if (!is_root_decoder(dev))
|
|
return 0;
|
|
|
|
cxlrd = to_cxl_root_decoder(dev);
|
|
if (cxlrd->qos_class == CXL_QOS_CLASS_INVALID)
|
|
return 0;
|
|
|
|
if (cxlrd->qos_class == dev_qos_class)
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void reset_dpa_perf(struct cxl_dpa_perf *dpa_perf)
|
|
{
|
|
*dpa_perf = (struct cxl_dpa_perf) {
|
|
.qos_class = CXL_QOS_CLASS_INVALID,
|
|
};
|
|
}
|
|
|
|
static bool cxl_qos_match(struct cxl_port *root_port,
|
|
struct cxl_dpa_perf *dpa_perf)
|
|
{
|
|
if (dpa_perf->qos_class == CXL_QOS_CLASS_INVALID)
|
|
return false;
|
|
|
|
if (!device_for_each_child(&root_port->dev, &dpa_perf->qos_class,
|
|
match_cxlrd_qos_class))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
static int match_cxlrd_hb(struct device *dev, void *data)
|
|
{
|
|
struct device *host_bridge = data;
|
|
struct cxl_switch_decoder *cxlsd;
|
|
struct cxl_root_decoder *cxlrd;
|
|
|
|
if (!is_root_decoder(dev))
|
|
return 0;
|
|
|
|
cxlrd = to_cxl_root_decoder(dev);
|
|
cxlsd = &cxlrd->cxlsd;
|
|
|
|
guard(rwsem_read)(&cxl_region_rwsem);
|
|
for (int i = 0; i < cxlsd->nr_targets; i++) {
|
|
if (host_bridge == cxlsd->target[i]->dport_dev)
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void cxl_qos_class_verify(struct cxl_memdev *cxlmd)
|
|
{
|
|
struct cxl_dev_state *cxlds = cxlmd->cxlds;
|
|
struct cxl_port *root_port;
|
|
|
|
struct cxl_root *cxl_root __free(put_cxl_root) =
|
|
find_cxl_root(cxlmd->endpoint);
|
|
|
|
/*
|
|
* No need to reset_dpa_perf() here as find_cxl_root() is guaranteed to
|
|
* succeed when called in the cxl_endpoint_port_probe() path.
|
|
*/
|
|
if (!cxl_root)
|
|
return;
|
|
|
|
root_port = &cxl_root->port;
|
|
|
|
/*
|
|
* Save userspace from needing to check if a qos class has any matches
|
|
* by hiding qos class info if the memdev is not mapped by a root
|
|
* decoder, or the partition class does not match any root decoder
|
|
* class.
|
|
*/
|
|
if (!device_for_each_child(&root_port->dev,
|
|
cxlmd->endpoint->host_bridge,
|
|
match_cxlrd_hb)) {
|
|
for (int i = 0; i < cxlds->nr_partitions; i++) {
|
|
struct cxl_dpa_perf *perf = &cxlds->part[i].perf;
|
|
|
|
reset_dpa_perf(perf);
|
|
}
|
|
return;
|
|
}
|
|
|
|
for (int i = 0; i < cxlds->nr_partitions; i++) {
|
|
struct cxl_dpa_perf *perf = &cxlds->part[i].perf;
|
|
|
|
if (!cxl_qos_match(root_port, perf))
|
|
reset_dpa_perf(perf);
|
|
}
|
|
}
|
|
|
|
static void discard_dsmas(struct xarray *xa)
|
|
{
|
|
unsigned long index;
|
|
void *ent;
|
|
|
|
xa_for_each(xa, index, ent) {
|
|
xa_erase(xa, index);
|
|
kfree(ent);
|
|
}
|
|
xa_destroy(xa);
|
|
}
|
|
DEFINE_FREE(dsmas, struct xarray *, if (_T) discard_dsmas(_T))
|
|
|
|
void cxl_endpoint_parse_cdat(struct cxl_port *port)
|
|
{
|
|
struct cxl_memdev *cxlmd = to_cxl_memdev(port->uport_dev);
|
|
struct cxl_dev_state *cxlds = cxlmd->cxlds;
|
|
struct xarray __dsmas_xa;
|
|
struct xarray *dsmas_xa __free(dsmas) = &__dsmas_xa;
|
|
int rc;
|
|
|
|
xa_init(&__dsmas_xa);
|
|
if (!port->cdat.table)
|
|
return;
|
|
|
|
rc = cxl_cdat_endpoint_process(port, dsmas_xa);
|
|
if (rc < 0) {
|
|
dev_dbg(&port->dev, "Failed to parse CDAT: %d\n", rc);
|
|
return;
|
|
}
|
|
|
|
rc = cxl_port_perf_data_calculate(port, dsmas_xa);
|
|
if (rc) {
|
|
dev_dbg(&port->dev, "Failed to do perf coord calculations.\n");
|
|
return;
|
|
}
|
|
|
|
cxl_memdev_set_qos_class(cxlds, dsmas_xa);
|
|
cxl_qos_class_verify(cxlmd);
|
|
cxl_memdev_update_perf(cxlmd);
|
|
}
|
|
EXPORT_SYMBOL_NS_GPL(cxl_endpoint_parse_cdat, "CXL");
|
|
|
|
static int cdat_sslbis_handler(union acpi_subtable_headers *header, void *arg,
|
|
const unsigned long end)
|
|
{
|
|
struct acpi_cdat_sslbis_table {
|
|
struct acpi_cdat_header header;
|
|
struct acpi_cdat_sslbis sslbis_header;
|
|
struct acpi_cdat_sslbe entries[];
|
|
} *tbl = (struct acpi_cdat_sslbis_table *)header;
|
|
int size = sizeof(header->cdat) + sizeof(tbl->sslbis_header);
|
|
struct acpi_cdat_sslbis *sslbis;
|
|
struct cxl_port *port = arg;
|
|
struct device *dev = &port->dev;
|
|
int remain, entries, i;
|
|
u16 len;
|
|
|
|
len = le16_to_cpu((__force __le16)header->cdat.length);
|
|
remain = len - size;
|
|
if (!remain || remain % sizeof(tbl->entries[0]) ||
|
|
(unsigned long)header + len > end) {
|
|
dev_warn(dev, "Malformed SSLBIS table length: (%u)\n", len);
|
|
return -EINVAL;
|
|
}
|
|
|
|
sslbis = &tbl->sslbis_header;
|
|
/* Unrecognized data type, we can skip */
|
|
if (sslbis->data_type > ACPI_HMAT_WRITE_BANDWIDTH)
|
|
return 0;
|
|
|
|
entries = remain / sizeof(tbl->entries[0]);
|
|
if (struct_size(tbl, entries, entries) != len)
|
|
return -EINVAL;
|
|
|
|
for (i = 0; i < entries; i++) {
|
|
u16 x = le16_to_cpu((__force __le16)tbl->entries[i].portx_id);
|
|
u16 y = le16_to_cpu((__force __le16)tbl->entries[i].porty_id);
|
|
__le64 le_base;
|
|
__le16 le_val;
|
|
struct cxl_dport *dport;
|
|
unsigned long index;
|
|
u16 dsp_id;
|
|
u64 val;
|
|
|
|
switch (x) {
|
|
case ACPI_CDAT_SSLBIS_US_PORT:
|
|
dsp_id = y;
|
|
break;
|
|
case ACPI_CDAT_SSLBIS_ANY_PORT:
|
|
switch (y) {
|
|
case ACPI_CDAT_SSLBIS_US_PORT:
|
|
dsp_id = x;
|
|
break;
|
|
case ACPI_CDAT_SSLBIS_ANY_PORT:
|
|
dsp_id = ACPI_CDAT_SSLBIS_ANY_PORT;
|
|
break;
|
|
default:
|
|
dsp_id = y;
|
|
break;
|
|
}
|
|
break;
|
|
default:
|
|
dsp_id = x;
|
|
break;
|
|
}
|
|
|
|
le_base = (__force __le64)tbl->sslbis_header.entry_base_unit;
|
|
le_val = (__force __le16)tbl->entries[i].latency_or_bandwidth;
|
|
val = cdat_normalize(le16_to_cpu(le_val), le64_to_cpu(le_base),
|
|
sslbis->data_type);
|
|
|
|
xa_for_each(&port->dports, index, dport) {
|
|
if (dsp_id == ACPI_CDAT_SSLBIS_ANY_PORT ||
|
|
dsp_id == dport->port_id) {
|
|
cxl_access_coordinate_set(dport->coord,
|
|
sslbis->data_type,
|
|
val);
|
|
}
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
void cxl_switch_parse_cdat(struct cxl_port *port)
|
|
{
|
|
int rc;
|
|
|
|
if (!port->cdat.table)
|
|
return;
|
|
|
|
rc = cdat_table_parse(ACPI_CDAT_TYPE_SSLBIS, cdat_sslbis_handler,
|
|
port, port->cdat.table, port->cdat.length);
|
|
rc = cdat_table_parse_output(rc);
|
|
if (rc)
|
|
dev_dbg(&port->dev, "Failed to parse SSLBIS: %d\n", rc);
|
|
}
|
|
EXPORT_SYMBOL_NS_GPL(cxl_switch_parse_cdat, "CXL");
|
|
|
|
static void __cxl_coordinates_combine(struct access_coordinate *out,
|
|
struct access_coordinate *c1,
|
|
struct access_coordinate *c2)
|
|
{
|
|
if (c1->write_bandwidth && c2->write_bandwidth)
|
|
out->write_bandwidth = min(c1->write_bandwidth,
|
|
c2->write_bandwidth);
|
|
out->write_latency = c1->write_latency + c2->write_latency;
|
|
|
|
if (c1->read_bandwidth && c2->read_bandwidth)
|
|
out->read_bandwidth = min(c1->read_bandwidth,
|
|
c2->read_bandwidth);
|
|
out->read_latency = c1->read_latency + c2->read_latency;
|
|
}
|
|
|
|
/**
|
|
* cxl_coordinates_combine - Combine the two input coordinates
|
|
*
|
|
* @out: Output coordinate of c1 and c2 combined
|
|
* @c1: input coordinates
|
|
* @c2: input coordinates
|
|
*/
|
|
void cxl_coordinates_combine(struct access_coordinate *out,
|
|
struct access_coordinate *c1,
|
|
struct access_coordinate *c2)
|
|
{
|
|
for (int i = 0; i < ACCESS_COORDINATE_MAX; i++)
|
|
__cxl_coordinates_combine(&out[i], &c1[i], &c2[i]);
|
|
}
|
|
|
|
MODULE_IMPORT_NS("CXL");
|
|
|
|
static void cxl_bandwidth_add(struct access_coordinate *coord,
|
|
struct access_coordinate *c1,
|
|
struct access_coordinate *c2)
|
|
{
|
|
for (int i = 0; i < ACCESS_COORDINATE_MAX; i++) {
|
|
coord[i].read_bandwidth = c1[i].read_bandwidth +
|
|
c2[i].read_bandwidth;
|
|
coord[i].write_bandwidth = c1[i].write_bandwidth +
|
|
c2[i].write_bandwidth;
|
|
}
|
|
}
|
|
|
|
static bool dpa_perf_contains(struct cxl_dpa_perf *perf,
|
|
struct resource *dpa_res)
|
|
{
|
|
struct range dpa = {
|
|
.start = dpa_res->start,
|
|
.end = dpa_res->end,
|
|
};
|
|
|
|
return range_contains(&perf->dpa_range, &dpa);
|
|
}
|
|
|
|
static struct cxl_dpa_perf *cxled_get_dpa_perf(struct cxl_endpoint_decoder *cxled)
|
|
{
|
|
struct cxl_memdev *cxlmd = cxled_to_memdev(cxled);
|
|
struct cxl_dev_state *cxlds = cxlmd->cxlds;
|
|
struct cxl_dpa_perf *perf;
|
|
|
|
if (cxled->part < 0)
|
|
return ERR_PTR(-EINVAL);
|
|
perf = &cxlds->part[cxled->part].perf;
|
|
|
|
if (!perf)
|
|
return ERR_PTR(-EINVAL);
|
|
|
|
if (!dpa_perf_contains(perf, cxled->dpa_res))
|
|
return ERR_PTR(-EINVAL);
|
|
|
|
return perf;
|
|
}
|
|
|
|
/*
|
|
* Transient context for containing the current calculation of bandwidth when
|
|
* doing walking the port hierarchy to deal with shared upstream link.
|
|
*/
|
|
struct cxl_perf_ctx {
|
|
struct access_coordinate coord[ACCESS_COORDINATE_MAX];
|
|
struct cxl_port *port;
|
|
};
|
|
|
|
/**
|
|
* cxl_endpoint_gather_bandwidth - collect all the endpoint bandwidth in an xarray
|
|
* @cxlr: CXL region for the bandwidth calculation
|
|
* @cxled: endpoint decoder to start on
|
|
* @usp_xa: (output) the xarray that collects all the bandwidth coordinates
|
|
* indexed by the upstream device with data of 'struct cxl_perf_ctx'.
|
|
* @gp_is_root: (output) bool of whether the grandparent is cxl root.
|
|
*
|
|
* Return: 0 for success or -errno
|
|
*
|
|
* Collects aggregated endpoint bandwidth and store the bandwidth in
|
|
* an xarray indexed by the upstream device of the switch or the RP
|
|
* device. Each endpoint consists the minimum of the bandwidth from DSLBIS
|
|
* from the endpoint CDAT, the endpoint upstream link bandwidth, and the
|
|
* bandwidth from the SSLBIS of the switch CDAT for the switch upstream port to
|
|
* the downstream port that's associated with the endpoint. If the
|
|
* device is directly connected to a RP, then no SSLBIS is involved.
|
|
*/
|
|
static int cxl_endpoint_gather_bandwidth(struct cxl_region *cxlr,
|
|
struct cxl_endpoint_decoder *cxled,
|
|
struct xarray *usp_xa,
|
|
bool *gp_is_root)
|
|
{
|
|
struct cxl_port *endpoint = to_cxl_port(cxled->cxld.dev.parent);
|
|
struct cxl_port *parent_port = to_cxl_port(endpoint->dev.parent);
|
|
struct cxl_port *gp_port = to_cxl_port(parent_port->dev.parent);
|
|
struct access_coordinate pci_coord[ACCESS_COORDINATE_MAX];
|
|
struct access_coordinate sw_coord[ACCESS_COORDINATE_MAX];
|
|
struct access_coordinate ep_coord[ACCESS_COORDINATE_MAX];
|
|
struct cxl_memdev *cxlmd = cxled_to_memdev(cxled);
|
|
struct cxl_dev_state *cxlds = cxlmd->cxlds;
|
|
struct pci_dev *pdev = to_pci_dev(cxlds->dev);
|
|
struct cxl_perf_ctx *perf_ctx;
|
|
struct cxl_dpa_perf *perf;
|
|
unsigned long index;
|
|
void *ptr;
|
|
int rc;
|
|
|
|
if (!dev_is_pci(cxlds->dev))
|
|
return -ENODEV;
|
|
|
|
if (cxlds->rcd)
|
|
return -ENODEV;
|
|
|
|
perf = cxled_get_dpa_perf(cxled);
|
|
if (IS_ERR(perf))
|
|
return PTR_ERR(perf);
|
|
|
|
*gp_is_root = is_cxl_root(gp_port);
|
|
|
|
/*
|
|
* If the grandparent is cxl root, then index is the root port,
|
|
* otherwise it's the parent switch upstream device.
|
|
*/
|
|
if (*gp_is_root)
|
|
index = (unsigned long)endpoint->parent_dport->dport_dev;
|
|
else
|
|
index = (unsigned long)parent_port->uport_dev;
|
|
|
|
perf_ctx = xa_load(usp_xa, index);
|
|
if (!perf_ctx) {
|
|
struct cxl_perf_ctx *c __free(kfree) =
|
|
kzalloc(sizeof(*perf_ctx), GFP_KERNEL);
|
|
|
|
if (!c)
|
|
return -ENOMEM;
|
|
ptr = xa_store(usp_xa, index, c, GFP_KERNEL);
|
|
if (xa_is_err(ptr))
|
|
return xa_err(ptr);
|
|
perf_ctx = no_free_ptr(c);
|
|
perf_ctx->port = parent_port;
|
|
}
|
|
|
|
/* Direct upstream link from EP bandwidth */
|
|
rc = cxl_pci_get_bandwidth(pdev, pci_coord);
|
|
if (rc < 0)
|
|
return rc;
|
|
|
|
/*
|
|
* Min of upstream link bandwidth and Endpoint CDAT bandwidth from
|
|
* DSLBIS.
|
|
*/
|
|
cxl_coordinates_combine(ep_coord, pci_coord, perf->cdat_coord);
|
|
|
|
/*
|
|
* If grandparent port is root, then there's no switch involved and
|
|
* the endpoint is connected to a root port.
|
|
*/
|
|
if (!*gp_is_root) {
|
|
/*
|
|
* Retrieve the switch SSLBIS for switch downstream port
|
|
* associated with the endpoint bandwidth.
|
|
*/
|
|
rc = cxl_port_get_switch_dport_bandwidth(endpoint, sw_coord);
|
|
if (rc)
|
|
return rc;
|
|
|
|
/*
|
|
* Min of the earlier coordinates with the switch SSLBIS
|
|
* bandwidth
|
|
*/
|
|
cxl_coordinates_combine(ep_coord, ep_coord, sw_coord);
|
|
}
|
|
|
|
/*
|
|
* Aggregate the computed bandwidth with the current aggregated bandwidth
|
|
* of the endpoints with the same switch upstream device or RP.
|
|
*/
|
|
cxl_bandwidth_add(perf_ctx->coord, perf_ctx->coord, ep_coord);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void free_perf_xa(struct xarray *xa)
|
|
{
|
|
struct cxl_perf_ctx *ctx;
|
|
unsigned long index;
|
|
|
|
if (!xa)
|
|
return;
|
|
|
|
xa_for_each(xa, index, ctx)
|
|
kfree(ctx);
|
|
xa_destroy(xa);
|
|
kfree(xa);
|
|
}
|
|
DEFINE_FREE(free_perf_xa, struct xarray *, if (_T) free_perf_xa(_T))
|
|
|
|
/**
|
|
* cxl_switch_gather_bandwidth - collect all the bandwidth at switch level in an xarray
|
|
* @cxlr: The region being operated on
|
|
* @input_xa: xarray indexed by upstream device of a switch with data of 'struct
|
|
* cxl_perf_ctx'
|
|
* @gp_is_root: (output) bool of whether the grandparent is cxl root.
|
|
*
|
|
* Return: a xarray of resulting cxl_perf_ctx per parent switch or root port
|
|
* or ERR_PTR(-errno)
|
|
*
|
|
* Iterate through the xarray. Take the minimum of the downstream calculated
|
|
* bandwidth, the upstream link bandwidth, and the SSLBIS of the upstream
|
|
* switch if exists. Sum the resulting bandwidth under the switch upstream
|
|
* device or a RP device. The function can be iterated over multiple switches
|
|
* if the switches are present.
|
|
*/
|
|
static struct xarray *cxl_switch_gather_bandwidth(struct cxl_region *cxlr,
|
|
struct xarray *input_xa,
|
|
bool *gp_is_root)
|
|
{
|
|
struct xarray *res_xa __free(free_perf_xa) =
|
|
kzalloc(sizeof(*res_xa), GFP_KERNEL);
|
|
struct access_coordinate coords[ACCESS_COORDINATE_MAX];
|
|
struct cxl_perf_ctx *ctx, *us_ctx;
|
|
unsigned long index, us_index;
|
|
int dev_count = 0;
|
|
int gp_count = 0;
|
|
void *ptr;
|
|
int rc;
|
|
|
|
if (!res_xa)
|
|
return ERR_PTR(-ENOMEM);
|
|
xa_init(res_xa);
|
|
|
|
xa_for_each(input_xa, index, ctx) {
|
|
struct device *dev = (struct device *)index;
|
|
struct cxl_port *port = ctx->port;
|
|
struct cxl_port *parent_port = to_cxl_port(port->dev.parent);
|
|
struct cxl_port *gp_port = to_cxl_port(parent_port->dev.parent);
|
|
struct cxl_dport *dport = port->parent_dport;
|
|
bool is_root = false;
|
|
|
|
dev_count++;
|
|
if (is_cxl_root(gp_port)) {
|
|
is_root = true;
|
|
gp_count++;
|
|
}
|
|
|
|
/*
|
|
* If the grandparent is cxl root, then index is the root port,
|
|
* otherwise it's the parent switch upstream device.
|
|
*/
|
|
if (is_root)
|
|
us_index = (unsigned long)port->parent_dport->dport_dev;
|
|
else
|
|
us_index = (unsigned long)parent_port->uport_dev;
|
|
|
|
us_ctx = xa_load(res_xa, us_index);
|
|
if (!us_ctx) {
|
|
struct cxl_perf_ctx *n __free(kfree) =
|
|
kzalloc(sizeof(*n), GFP_KERNEL);
|
|
|
|
if (!n)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
ptr = xa_store(res_xa, us_index, n, GFP_KERNEL);
|
|
if (xa_is_err(ptr))
|
|
return ERR_PTR(xa_err(ptr));
|
|
us_ctx = no_free_ptr(n);
|
|
us_ctx->port = parent_port;
|
|
}
|
|
|
|
/*
|
|
* If the device isn't an upstream PCIe port, there's something
|
|
* wrong with the topology.
|
|
*/
|
|
if (!dev_is_pci(dev))
|
|
return ERR_PTR(-EINVAL);
|
|
|
|
/* Retrieve the upstream link bandwidth */
|
|
rc = cxl_pci_get_bandwidth(to_pci_dev(dev), coords);
|
|
if (rc)
|
|
return ERR_PTR(-ENXIO);
|
|
|
|
/*
|
|
* Take the min of downstream bandwidth and the upstream link
|
|
* bandwidth.
|
|
*/
|
|
cxl_coordinates_combine(coords, coords, ctx->coord);
|
|
|
|
/*
|
|
* Take the min of the calculated bandwdith and the upstream
|
|
* switch SSLBIS bandwidth if there's a parent switch
|
|
*/
|
|
if (!is_root)
|
|
cxl_coordinates_combine(coords, coords, dport->coord);
|
|
|
|
/*
|
|
* Aggregate the calculated bandwidth common to an upstream
|
|
* switch.
|
|
*/
|
|
cxl_bandwidth_add(us_ctx->coord, us_ctx->coord, coords);
|
|
}
|
|
|
|
/* Asymmetric topology detected. */
|
|
if (gp_count) {
|
|
if (gp_count != dev_count) {
|
|
dev_dbg(&cxlr->dev,
|
|
"Asymmetric hierarchy detected, bandwidth not updated\n");
|
|
return ERR_PTR(-EOPNOTSUPP);
|
|
}
|
|
*gp_is_root = true;
|
|
}
|
|
|
|
return no_free_ptr(res_xa);
|
|
}
|
|
|
|
/**
|
|
* cxl_rp_gather_bandwidth - handle the root port level bandwidth collection
|
|
* @xa: the xarray that holds the cxl_perf_ctx that has the bandwidth calculated
|
|
* below each root port device.
|
|
*
|
|
* Return: xarray that holds cxl_perf_ctx per host bridge or ERR_PTR(-errno)
|
|
*/
|
|
static struct xarray *cxl_rp_gather_bandwidth(struct xarray *xa)
|
|
{
|
|
struct xarray *hb_xa __free(free_perf_xa) =
|
|
kzalloc(sizeof(*hb_xa), GFP_KERNEL);
|
|
struct cxl_perf_ctx *ctx;
|
|
unsigned long index;
|
|
|
|
if (!hb_xa)
|
|
return ERR_PTR(-ENOMEM);
|
|
xa_init(hb_xa);
|
|
|
|
xa_for_each(xa, index, ctx) {
|
|
struct cxl_port *port = ctx->port;
|
|
unsigned long hb_index = (unsigned long)port->uport_dev;
|
|
struct cxl_perf_ctx *hb_ctx;
|
|
void *ptr;
|
|
|
|
hb_ctx = xa_load(hb_xa, hb_index);
|
|
if (!hb_ctx) {
|
|
struct cxl_perf_ctx *n __free(kfree) =
|
|
kzalloc(sizeof(*n), GFP_KERNEL);
|
|
|
|
if (!n)
|
|
return ERR_PTR(-ENOMEM);
|
|
ptr = xa_store(hb_xa, hb_index, n, GFP_KERNEL);
|
|
if (xa_is_err(ptr))
|
|
return ERR_PTR(xa_err(ptr));
|
|
hb_ctx = no_free_ptr(n);
|
|
hb_ctx->port = port;
|
|
}
|
|
|
|
cxl_bandwidth_add(hb_ctx->coord, hb_ctx->coord, ctx->coord);
|
|
}
|
|
|
|
return no_free_ptr(hb_xa);
|
|
}
|
|
|
|
/**
|
|
* cxl_hb_gather_bandwidth - handle the host bridge level bandwidth collection
|
|
* @xa: the xarray that holds the cxl_perf_ctx that has the bandwidth calculated
|
|
* below each host bridge.
|
|
*
|
|
* Return: xarray that holds cxl_perf_ctx per ACPI0017 device or ERR_PTR(-errno)
|
|
*/
|
|
static struct xarray *cxl_hb_gather_bandwidth(struct xarray *xa)
|
|
{
|
|
struct xarray *mw_xa __free(free_perf_xa) =
|
|
kzalloc(sizeof(*mw_xa), GFP_KERNEL);
|
|
struct cxl_perf_ctx *ctx;
|
|
unsigned long index;
|
|
|
|
if (!mw_xa)
|
|
return ERR_PTR(-ENOMEM);
|
|
xa_init(mw_xa);
|
|
|
|
xa_for_each(xa, index, ctx) {
|
|
struct cxl_port *port = ctx->port;
|
|
struct cxl_port *parent_port;
|
|
struct cxl_perf_ctx *mw_ctx;
|
|
struct cxl_dport *dport;
|
|
unsigned long mw_index;
|
|
void *ptr;
|
|
|
|
parent_port = to_cxl_port(port->dev.parent);
|
|
mw_index = (unsigned long)parent_port->uport_dev;
|
|
|
|
mw_ctx = xa_load(mw_xa, mw_index);
|
|
if (!mw_ctx) {
|
|
struct cxl_perf_ctx *n __free(kfree) =
|
|
kzalloc(sizeof(*n), GFP_KERNEL);
|
|
|
|
if (!n)
|
|
return ERR_PTR(-ENOMEM);
|
|
ptr = xa_store(mw_xa, mw_index, n, GFP_KERNEL);
|
|
if (xa_is_err(ptr))
|
|
return ERR_PTR(xa_err(ptr));
|
|
mw_ctx = no_free_ptr(n);
|
|
}
|
|
|
|
dport = port->parent_dport;
|
|
cxl_coordinates_combine(ctx->coord, ctx->coord, dport->coord);
|
|
cxl_bandwidth_add(mw_ctx->coord, mw_ctx->coord, ctx->coord);
|
|
}
|
|
|
|
return no_free_ptr(mw_xa);
|
|
}
|
|
|
|
/**
|
|
* cxl_region_update_bandwidth - Update the bandwidth access coordinates of a region
|
|
* @cxlr: The region being operated on
|
|
* @input_xa: xarray holds cxl_perf_ctx wht calculated bandwidth per ACPI0017 instance
|
|
*/
|
|
static void cxl_region_update_bandwidth(struct cxl_region *cxlr,
|
|
struct xarray *input_xa)
|
|
{
|
|
struct access_coordinate coord[ACCESS_COORDINATE_MAX];
|
|
struct cxl_perf_ctx *ctx;
|
|
unsigned long index;
|
|
|
|
memset(coord, 0, sizeof(coord));
|
|
xa_for_each(input_xa, index, ctx)
|
|
cxl_bandwidth_add(coord, coord, ctx->coord);
|
|
|
|
for (int i = 0; i < ACCESS_COORDINATE_MAX; i++) {
|
|
cxlr->coord[i].read_bandwidth = coord[i].read_bandwidth;
|
|
cxlr->coord[i].write_bandwidth = coord[i].write_bandwidth;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* cxl_region_shared_upstream_bandwidth_update - Recalculate the bandwidth for
|
|
* the region
|
|
* @cxlr: the cxl region to recalculate
|
|
*
|
|
* The function walks the topology from bottom up and calculates the bandwidth. It
|
|
* starts at the endpoints, processes at the switches if any, processes at the rootport
|
|
* level, at the host bridge level, and finally aggregates at the region.
|
|
*/
|
|
void cxl_region_shared_upstream_bandwidth_update(struct cxl_region *cxlr)
|
|
{
|
|
struct xarray *working_xa;
|
|
int root_count = 0;
|
|
bool is_root;
|
|
int rc;
|
|
|
|
lockdep_assert_held(&cxl_dpa_rwsem);
|
|
|
|
struct xarray *usp_xa __free(free_perf_xa) =
|
|
kzalloc(sizeof(*usp_xa), GFP_KERNEL);
|
|
|
|
if (!usp_xa)
|
|
return;
|
|
|
|
xa_init(usp_xa);
|
|
|
|
/* Collect bandwidth data from all the endpoints. */
|
|
for (int i = 0; i < cxlr->params.nr_targets; i++) {
|
|
struct cxl_endpoint_decoder *cxled = cxlr->params.targets[i];
|
|
|
|
is_root = false;
|
|
rc = cxl_endpoint_gather_bandwidth(cxlr, cxled, usp_xa, &is_root);
|
|
if (rc)
|
|
return;
|
|
root_count += is_root;
|
|
}
|
|
|
|
/* Detect asymmetric hierarchy with some direct attached endpoints. */
|
|
if (root_count && root_count != cxlr->params.nr_targets) {
|
|
dev_dbg(&cxlr->dev,
|
|
"Asymmetric hierarchy detected, bandwidth not updated\n");
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Walk up one or more switches to deal with the bandwidth of the
|
|
* switches if they exist. Endpoints directly attached to RPs skip
|
|
* over this part.
|
|
*/
|
|
if (!root_count) {
|
|
do {
|
|
working_xa = cxl_switch_gather_bandwidth(cxlr, usp_xa,
|
|
&is_root);
|
|
if (IS_ERR(working_xa))
|
|
return;
|
|
free_perf_xa(usp_xa);
|
|
usp_xa = working_xa;
|
|
} while (!is_root);
|
|
}
|
|
|
|
/* Handle the bandwidth at the root port of the hierarchy */
|
|
working_xa = cxl_rp_gather_bandwidth(usp_xa);
|
|
if (IS_ERR(working_xa))
|
|
return;
|
|
free_perf_xa(usp_xa);
|
|
usp_xa = working_xa;
|
|
|
|
/* Handle the bandwidth at the host bridge of the hierarchy */
|
|
working_xa = cxl_hb_gather_bandwidth(usp_xa);
|
|
if (IS_ERR(working_xa))
|
|
return;
|
|
free_perf_xa(usp_xa);
|
|
usp_xa = working_xa;
|
|
|
|
/*
|
|
* Aggregate all the bandwidth collected per CFMWS (ACPI0017) and
|
|
* update the region bandwidth with the final calculated values.
|
|
*/
|
|
cxl_region_update_bandwidth(cxlr, usp_xa);
|
|
}
|
|
|
|
void cxl_region_perf_data_calculate(struct cxl_region *cxlr,
|
|
struct cxl_endpoint_decoder *cxled)
|
|
{
|
|
struct cxl_dpa_perf *perf;
|
|
|
|
lockdep_assert_held(&cxl_dpa_rwsem);
|
|
|
|
perf = cxled_get_dpa_perf(cxled);
|
|
if (IS_ERR(perf))
|
|
return;
|
|
|
|
for (int i = 0; i < ACCESS_COORDINATE_MAX; i++) {
|
|
/* Get total bandwidth and the worst latency for the cxl region */
|
|
cxlr->coord[i].read_latency = max_t(unsigned int,
|
|
cxlr->coord[i].read_latency,
|
|
perf->coord[i].read_latency);
|
|
cxlr->coord[i].write_latency = max_t(unsigned int,
|
|
cxlr->coord[i].write_latency,
|
|
perf->coord[i].write_latency);
|
|
cxlr->coord[i].read_bandwidth += perf->coord[i].read_bandwidth;
|
|
cxlr->coord[i].write_bandwidth += perf->coord[i].write_bandwidth;
|
|
}
|
|
}
|
|
|
|
int cxl_update_hmat_access_coordinates(int nid, struct cxl_region *cxlr,
|
|
enum access_coordinate_class access)
|
|
{
|
|
return hmat_update_target_coordinates(nid, &cxlr->coord[access], access);
|
|
}
|
|
|
|
bool cxl_need_node_perf_attrs_update(int nid)
|
|
{
|
|
return !acpi_node_backed_by_real_pxm(nid);
|
|
}
|