mirror of
git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
synced 2025-08-05 16:54:27 +00:00

Use the kernel's canonical $(ARCH) paths instead of the raw target triple for KVM selftests directories. KVM selftests are quite nearly the only place in the entire kernel that using the target triple for directories, tools/testing/selftests/drivers/s390x being the lone holdout. Using the kernel's preferred nomenclature eliminates the minor, but annoying, friction of having to translate to KVM's selftests directories, e.g. for pattern matching, opening files, running selftests, etc. Opportunsitically delete file comments that reference the full path of the file, as they are obviously prone to becoming stale, and serve no known purpose. Reviewed-by: Muhammad Usama Anjum <usama.anjum@collabora.com> Acked-by: Claudio Imbrenda <imbrenda@linux.ibm.com> Acked-by: Andrew Jones <ajones@ventanamicro.com> Link: https://lore.kernel.org/r/20241128005547.4077116-16-seanjc@google.com Signed-off-by: Sean Christopherson <seanjc@google.com>
552 lines
17 KiB
C
552 lines
17 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* Copyright (C) 2018, Google LLC.
|
|
*/
|
|
|
|
#include <asm/msr-index.h>
|
|
|
|
#include "test_util.h"
|
|
#include "kvm_util.h"
|
|
#include "processor.h"
|
|
#include "vmx.h"
|
|
|
|
#define PAGE_SHIFT_4K 12
|
|
|
|
#define KVM_EPT_PAGE_TABLE_MIN_PADDR 0x1c0000
|
|
|
|
bool enable_evmcs;
|
|
|
|
struct hv_enlightened_vmcs *current_evmcs;
|
|
struct hv_vp_assist_page *current_vp_assist;
|
|
|
|
struct eptPageTableEntry {
|
|
uint64_t readable:1;
|
|
uint64_t writable:1;
|
|
uint64_t executable:1;
|
|
uint64_t memory_type:3;
|
|
uint64_t ignore_pat:1;
|
|
uint64_t page_size:1;
|
|
uint64_t accessed:1;
|
|
uint64_t dirty:1;
|
|
uint64_t ignored_11_10:2;
|
|
uint64_t address:40;
|
|
uint64_t ignored_62_52:11;
|
|
uint64_t suppress_ve:1;
|
|
};
|
|
|
|
struct eptPageTablePointer {
|
|
uint64_t memory_type:3;
|
|
uint64_t page_walk_length:3;
|
|
uint64_t ad_enabled:1;
|
|
uint64_t reserved_11_07:5;
|
|
uint64_t address:40;
|
|
uint64_t reserved_63_52:12;
|
|
};
|
|
int vcpu_enable_evmcs(struct kvm_vcpu *vcpu)
|
|
{
|
|
uint16_t evmcs_ver;
|
|
|
|
vcpu_enable_cap(vcpu, KVM_CAP_HYPERV_ENLIGHTENED_VMCS,
|
|
(unsigned long)&evmcs_ver);
|
|
|
|
/* KVM should return supported EVMCS version range */
|
|
TEST_ASSERT(((evmcs_ver >> 8) >= (evmcs_ver & 0xff)) &&
|
|
(evmcs_ver & 0xff) > 0,
|
|
"Incorrect EVMCS version range: %x:%x",
|
|
evmcs_ver & 0xff, evmcs_ver >> 8);
|
|
|
|
return evmcs_ver;
|
|
}
|
|
|
|
/* Allocate memory regions for nested VMX tests.
|
|
*
|
|
* Input Args:
|
|
* vm - The VM to allocate guest-virtual addresses in.
|
|
*
|
|
* Output Args:
|
|
* p_vmx_gva - The guest virtual address for the struct vmx_pages.
|
|
*
|
|
* Return:
|
|
* Pointer to structure with the addresses of the VMX areas.
|
|
*/
|
|
struct vmx_pages *
|
|
vcpu_alloc_vmx(struct kvm_vm *vm, vm_vaddr_t *p_vmx_gva)
|
|
{
|
|
vm_vaddr_t vmx_gva = vm_vaddr_alloc_page(vm);
|
|
struct vmx_pages *vmx = addr_gva2hva(vm, vmx_gva);
|
|
|
|
/* Setup of a region of guest memory for the vmxon region. */
|
|
vmx->vmxon = (void *)vm_vaddr_alloc_page(vm);
|
|
vmx->vmxon_hva = addr_gva2hva(vm, (uintptr_t)vmx->vmxon);
|
|
vmx->vmxon_gpa = addr_gva2gpa(vm, (uintptr_t)vmx->vmxon);
|
|
|
|
/* Setup of a region of guest memory for a vmcs. */
|
|
vmx->vmcs = (void *)vm_vaddr_alloc_page(vm);
|
|
vmx->vmcs_hva = addr_gva2hva(vm, (uintptr_t)vmx->vmcs);
|
|
vmx->vmcs_gpa = addr_gva2gpa(vm, (uintptr_t)vmx->vmcs);
|
|
|
|
/* Setup of a region of guest memory for the MSR bitmap. */
|
|
vmx->msr = (void *)vm_vaddr_alloc_page(vm);
|
|
vmx->msr_hva = addr_gva2hva(vm, (uintptr_t)vmx->msr);
|
|
vmx->msr_gpa = addr_gva2gpa(vm, (uintptr_t)vmx->msr);
|
|
memset(vmx->msr_hva, 0, getpagesize());
|
|
|
|
/* Setup of a region of guest memory for the shadow VMCS. */
|
|
vmx->shadow_vmcs = (void *)vm_vaddr_alloc_page(vm);
|
|
vmx->shadow_vmcs_hva = addr_gva2hva(vm, (uintptr_t)vmx->shadow_vmcs);
|
|
vmx->shadow_vmcs_gpa = addr_gva2gpa(vm, (uintptr_t)vmx->shadow_vmcs);
|
|
|
|
/* Setup of a region of guest memory for the VMREAD and VMWRITE bitmaps. */
|
|
vmx->vmread = (void *)vm_vaddr_alloc_page(vm);
|
|
vmx->vmread_hva = addr_gva2hva(vm, (uintptr_t)vmx->vmread);
|
|
vmx->vmread_gpa = addr_gva2gpa(vm, (uintptr_t)vmx->vmread);
|
|
memset(vmx->vmread_hva, 0, getpagesize());
|
|
|
|
vmx->vmwrite = (void *)vm_vaddr_alloc_page(vm);
|
|
vmx->vmwrite_hva = addr_gva2hva(vm, (uintptr_t)vmx->vmwrite);
|
|
vmx->vmwrite_gpa = addr_gva2gpa(vm, (uintptr_t)vmx->vmwrite);
|
|
memset(vmx->vmwrite_hva, 0, getpagesize());
|
|
|
|
*p_vmx_gva = vmx_gva;
|
|
return vmx;
|
|
}
|
|
|
|
bool prepare_for_vmx_operation(struct vmx_pages *vmx)
|
|
{
|
|
uint64_t feature_control;
|
|
uint64_t required;
|
|
unsigned long cr0;
|
|
unsigned long cr4;
|
|
|
|
/*
|
|
* Ensure bits in CR0 and CR4 are valid in VMX operation:
|
|
* - Bit X is 1 in _FIXED0: bit X is fixed to 1 in CRx.
|
|
* - Bit X is 0 in _FIXED1: bit X is fixed to 0 in CRx.
|
|
*/
|
|
__asm__ __volatile__("mov %%cr0, %0" : "=r"(cr0) : : "memory");
|
|
cr0 &= rdmsr(MSR_IA32_VMX_CR0_FIXED1);
|
|
cr0 |= rdmsr(MSR_IA32_VMX_CR0_FIXED0);
|
|
__asm__ __volatile__("mov %0, %%cr0" : : "r"(cr0) : "memory");
|
|
|
|
__asm__ __volatile__("mov %%cr4, %0" : "=r"(cr4) : : "memory");
|
|
cr4 &= rdmsr(MSR_IA32_VMX_CR4_FIXED1);
|
|
cr4 |= rdmsr(MSR_IA32_VMX_CR4_FIXED0);
|
|
/* Enable VMX operation */
|
|
cr4 |= X86_CR4_VMXE;
|
|
__asm__ __volatile__("mov %0, %%cr4" : : "r"(cr4) : "memory");
|
|
|
|
/*
|
|
* Configure IA32_FEATURE_CONTROL MSR to allow VMXON:
|
|
* Bit 0: Lock bit. If clear, VMXON causes a #GP.
|
|
* Bit 2: Enables VMXON outside of SMX operation. If clear, VMXON
|
|
* outside of SMX causes a #GP.
|
|
*/
|
|
required = FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX;
|
|
required |= FEAT_CTL_LOCKED;
|
|
feature_control = rdmsr(MSR_IA32_FEAT_CTL);
|
|
if ((feature_control & required) != required)
|
|
wrmsr(MSR_IA32_FEAT_CTL, feature_control | required);
|
|
|
|
/* Enter VMX root operation. */
|
|
*(uint32_t *)(vmx->vmxon) = vmcs_revision();
|
|
if (vmxon(vmx->vmxon_gpa))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
bool load_vmcs(struct vmx_pages *vmx)
|
|
{
|
|
/* Load a VMCS. */
|
|
*(uint32_t *)(vmx->vmcs) = vmcs_revision();
|
|
if (vmclear(vmx->vmcs_gpa))
|
|
return false;
|
|
|
|
if (vmptrld(vmx->vmcs_gpa))
|
|
return false;
|
|
|
|
/* Setup shadow VMCS, do not load it yet. */
|
|
*(uint32_t *)(vmx->shadow_vmcs) = vmcs_revision() | 0x80000000ul;
|
|
if (vmclear(vmx->shadow_vmcs_gpa))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool ept_vpid_cap_supported(uint64_t mask)
|
|
{
|
|
return rdmsr(MSR_IA32_VMX_EPT_VPID_CAP) & mask;
|
|
}
|
|
|
|
bool ept_1g_pages_supported(void)
|
|
{
|
|
return ept_vpid_cap_supported(VMX_EPT_VPID_CAP_1G_PAGES);
|
|
}
|
|
|
|
/*
|
|
* Initialize the control fields to the most basic settings possible.
|
|
*/
|
|
static inline void init_vmcs_control_fields(struct vmx_pages *vmx)
|
|
{
|
|
uint32_t sec_exec_ctl = 0;
|
|
|
|
vmwrite(VIRTUAL_PROCESSOR_ID, 0);
|
|
vmwrite(POSTED_INTR_NV, 0);
|
|
|
|
vmwrite(PIN_BASED_VM_EXEC_CONTROL, rdmsr(MSR_IA32_VMX_TRUE_PINBASED_CTLS));
|
|
|
|
if (vmx->eptp_gpa) {
|
|
uint64_t ept_paddr;
|
|
struct eptPageTablePointer eptp = {
|
|
.memory_type = X86_MEMTYPE_WB,
|
|
.page_walk_length = 3, /* + 1 */
|
|
.ad_enabled = ept_vpid_cap_supported(VMX_EPT_VPID_CAP_AD_BITS),
|
|
.address = vmx->eptp_gpa >> PAGE_SHIFT_4K,
|
|
};
|
|
|
|
memcpy(&ept_paddr, &eptp, sizeof(ept_paddr));
|
|
vmwrite(EPT_POINTER, ept_paddr);
|
|
sec_exec_ctl |= SECONDARY_EXEC_ENABLE_EPT;
|
|
}
|
|
|
|
if (!vmwrite(SECONDARY_VM_EXEC_CONTROL, sec_exec_ctl))
|
|
vmwrite(CPU_BASED_VM_EXEC_CONTROL,
|
|
rdmsr(MSR_IA32_VMX_TRUE_PROCBASED_CTLS) | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS);
|
|
else {
|
|
vmwrite(CPU_BASED_VM_EXEC_CONTROL, rdmsr(MSR_IA32_VMX_TRUE_PROCBASED_CTLS));
|
|
GUEST_ASSERT(!sec_exec_ctl);
|
|
}
|
|
|
|
vmwrite(EXCEPTION_BITMAP, 0);
|
|
vmwrite(PAGE_FAULT_ERROR_CODE_MASK, 0);
|
|
vmwrite(PAGE_FAULT_ERROR_CODE_MATCH, -1); /* Never match */
|
|
vmwrite(CR3_TARGET_COUNT, 0);
|
|
vmwrite(VM_EXIT_CONTROLS, rdmsr(MSR_IA32_VMX_EXIT_CTLS) |
|
|
VM_EXIT_HOST_ADDR_SPACE_SIZE); /* 64-bit host */
|
|
vmwrite(VM_EXIT_MSR_STORE_COUNT, 0);
|
|
vmwrite(VM_EXIT_MSR_LOAD_COUNT, 0);
|
|
vmwrite(VM_ENTRY_CONTROLS, rdmsr(MSR_IA32_VMX_ENTRY_CTLS) |
|
|
VM_ENTRY_IA32E_MODE); /* 64-bit guest */
|
|
vmwrite(VM_ENTRY_MSR_LOAD_COUNT, 0);
|
|
vmwrite(VM_ENTRY_INTR_INFO_FIELD, 0);
|
|
vmwrite(TPR_THRESHOLD, 0);
|
|
|
|
vmwrite(CR0_GUEST_HOST_MASK, 0);
|
|
vmwrite(CR4_GUEST_HOST_MASK, 0);
|
|
vmwrite(CR0_READ_SHADOW, get_cr0());
|
|
vmwrite(CR4_READ_SHADOW, get_cr4());
|
|
|
|
vmwrite(MSR_BITMAP, vmx->msr_gpa);
|
|
vmwrite(VMREAD_BITMAP, vmx->vmread_gpa);
|
|
vmwrite(VMWRITE_BITMAP, vmx->vmwrite_gpa);
|
|
}
|
|
|
|
/*
|
|
* Initialize the host state fields based on the current host state, with
|
|
* the exception of HOST_RSP and HOST_RIP, which should be set by vmlaunch
|
|
* or vmresume.
|
|
*/
|
|
static inline void init_vmcs_host_state(void)
|
|
{
|
|
uint32_t exit_controls = vmreadz(VM_EXIT_CONTROLS);
|
|
|
|
vmwrite(HOST_ES_SELECTOR, get_es());
|
|
vmwrite(HOST_CS_SELECTOR, get_cs());
|
|
vmwrite(HOST_SS_SELECTOR, get_ss());
|
|
vmwrite(HOST_DS_SELECTOR, get_ds());
|
|
vmwrite(HOST_FS_SELECTOR, get_fs());
|
|
vmwrite(HOST_GS_SELECTOR, get_gs());
|
|
vmwrite(HOST_TR_SELECTOR, get_tr());
|
|
|
|
if (exit_controls & VM_EXIT_LOAD_IA32_PAT)
|
|
vmwrite(HOST_IA32_PAT, rdmsr(MSR_IA32_CR_PAT));
|
|
if (exit_controls & VM_EXIT_LOAD_IA32_EFER)
|
|
vmwrite(HOST_IA32_EFER, rdmsr(MSR_EFER));
|
|
if (exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
|
|
vmwrite(HOST_IA32_PERF_GLOBAL_CTRL,
|
|
rdmsr(MSR_CORE_PERF_GLOBAL_CTRL));
|
|
|
|
vmwrite(HOST_IA32_SYSENTER_CS, rdmsr(MSR_IA32_SYSENTER_CS));
|
|
|
|
vmwrite(HOST_CR0, get_cr0());
|
|
vmwrite(HOST_CR3, get_cr3());
|
|
vmwrite(HOST_CR4, get_cr4());
|
|
vmwrite(HOST_FS_BASE, rdmsr(MSR_FS_BASE));
|
|
vmwrite(HOST_GS_BASE, rdmsr(MSR_GS_BASE));
|
|
vmwrite(HOST_TR_BASE,
|
|
get_desc64_base((struct desc64 *)(get_gdt().address + get_tr())));
|
|
vmwrite(HOST_GDTR_BASE, get_gdt().address);
|
|
vmwrite(HOST_IDTR_BASE, get_idt().address);
|
|
vmwrite(HOST_IA32_SYSENTER_ESP, rdmsr(MSR_IA32_SYSENTER_ESP));
|
|
vmwrite(HOST_IA32_SYSENTER_EIP, rdmsr(MSR_IA32_SYSENTER_EIP));
|
|
}
|
|
|
|
/*
|
|
* Initialize the guest state fields essentially as a clone of
|
|
* the host state fields. Some host state fields have fixed
|
|
* values, and we set the corresponding guest state fields accordingly.
|
|
*/
|
|
static inline void init_vmcs_guest_state(void *rip, void *rsp)
|
|
{
|
|
vmwrite(GUEST_ES_SELECTOR, vmreadz(HOST_ES_SELECTOR));
|
|
vmwrite(GUEST_CS_SELECTOR, vmreadz(HOST_CS_SELECTOR));
|
|
vmwrite(GUEST_SS_SELECTOR, vmreadz(HOST_SS_SELECTOR));
|
|
vmwrite(GUEST_DS_SELECTOR, vmreadz(HOST_DS_SELECTOR));
|
|
vmwrite(GUEST_FS_SELECTOR, vmreadz(HOST_FS_SELECTOR));
|
|
vmwrite(GUEST_GS_SELECTOR, vmreadz(HOST_GS_SELECTOR));
|
|
vmwrite(GUEST_LDTR_SELECTOR, 0);
|
|
vmwrite(GUEST_TR_SELECTOR, vmreadz(HOST_TR_SELECTOR));
|
|
vmwrite(GUEST_INTR_STATUS, 0);
|
|
vmwrite(GUEST_PML_INDEX, 0);
|
|
|
|
vmwrite(VMCS_LINK_POINTER, -1ll);
|
|
vmwrite(GUEST_IA32_DEBUGCTL, 0);
|
|
vmwrite(GUEST_IA32_PAT, vmreadz(HOST_IA32_PAT));
|
|
vmwrite(GUEST_IA32_EFER, vmreadz(HOST_IA32_EFER));
|
|
vmwrite(GUEST_IA32_PERF_GLOBAL_CTRL,
|
|
vmreadz(HOST_IA32_PERF_GLOBAL_CTRL));
|
|
|
|
vmwrite(GUEST_ES_LIMIT, -1);
|
|
vmwrite(GUEST_CS_LIMIT, -1);
|
|
vmwrite(GUEST_SS_LIMIT, -1);
|
|
vmwrite(GUEST_DS_LIMIT, -1);
|
|
vmwrite(GUEST_FS_LIMIT, -1);
|
|
vmwrite(GUEST_GS_LIMIT, -1);
|
|
vmwrite(GUEST_LDTR_LIMIT, -1);
|
|
vmwrite(GUEST_TR_LIMIT, 0x67);
|
|
vmwrite(GUEST_GDTR_LIMIT, 0xffff);
|
|
vmwrite(GUEST_IDTR_LIMIT, 0xffff);
|
|
vmwrite(GUEST_ES_AR_BYTES,
|
|
vmreadz(GUEST_ES_SELECTOR) == 0 ? 0x10000 : 0xc093);
|
|
vmwrite(GUEST_CS_AR_BYTES, 0xa09b);
|
|
vmwrite(GUEST_SS_AR_BYTES, 0xc093);
|
|
vmwrite(GUEST_DS_AR_BYTES,
|
|
vmreadz(GUEST_DS_SELECTOR) == 0 ? 0x10000 : 0xc093);
|
|
vmwrite(GUEST_FS_AR_BYTES,
|
|
vmreadz(GUEST_FS_SELECTOR) == 0 ? 0x10000 : 0xc093);
|
|
vmwrite(GUEST_GS_AR_BYTES,
|
|
vmreadz(GUEST_GS_SELECTOR) == 0 ? 0x10000 : 0xc093);
|
|
vmwrite(GUEST_LDTR_AR_BYTES, 0x10000);
|
|
vmwrite(GUEST_TR_AR_BYTES, 0x8b);
|
|
vmwrite(GUEST_INTERRUPTIBILITY_INFO, 0);
|
|
vmwrite(GUEST_ACTIVITY_STATE, 0);
|
|
vmwrite(GUEST_SYSENTER_CS, vmreadz(HOST_IA32_SYSENTER_CS));
|
|
vmwrite(VMX_PREEMPTION_TIMER_VALUE, 0);
|
|
|
|
vmwrite(GUEST_CR0, vmreadz(HOST_CR0));
|
|
vmwrite(GUEST_CR3, vmreadz(HOST_CR3));
|
|
vmwrite(GUEST_CR4, vmreadz(HOST_CR4));
|
|
vmwrite(GUEST_ES_BASE, 0);
|
|
vmwrite(GUEST_CS_BASE, 0);
|
|
vmwrite(GUEST_SS_BASE, 0);
|
|
vmwrite(GUEST_DS_BASE, 0);
|
|
vmwrite(GUEST_FS_BASE, vmreadz(HOST_FS_BASE));
|
|
vmwrite(GUEST_GS_BASE, vmreadz(HOST_GS_BASE));
|
|
vmwrite(GUEST_LDTR_BASE, 0);
|
|
vmwrite(GUEST_TR_BASE, vmreadz(HOST_TR_BASE));
|
|
vmwrite(GUEST_GDTR_BASE, vmreadz(HOST_GDTR_BASE));
|
|
vmwrite(GUEST_IDTR_BASE, vmreadz(HOST_IDTR_BASE));
|
|
vmwrite(GUEST_DR7, 0x400);
|
|
vmwrite(GUEST_RSP, (uint64_t)rsp);
|
|
vmwrite(GUEST_RIP, (uint64_t)rip);
|
|
vmwrite(GUEST_RFLAGS, 2);
|
|
vmwrite(GUEST_PENDING_DBG_EXCEPTIONS, 0);
|
|
vmwrite(GUEST_SYSENTER_ESP, vmreadz(HOST_IA32_SYSENTER_ESP));
|
|
vmwrite(GUEST_SYSENTER_EIP, vmreadz(HOST_IA32_SYSENTER_EIP));
|
|
}
|
|
|
|
void prepare_vmcs(struct vmx_pages *vmx, void *guest_rip, void *guest_rsp)
|
|
{
|
|
init_vmcs_control_fields(vmx);
|
|
init_vmcs_host_state();
|
|
init_vmcs_guest_state(guest_rip, guest_rsp);
|
|
}
|
|
|
|
static void nested_create_pte(struct kvm_vm *vm,
|
|
struct eptPageTableEntry *pte,
|
|
uint64_t nested_paddr,
|
|
uint64_t paddr,
|
|
int current_level,
|
|
int target_level)
|
|
{
|
|
if (!pte->readable) {
|
|
pte->writable = true;
|
|
pte->readable = true;
|
|
pte->executable = true;
|
|
pte->page_size = (current_level == target_level);
|
|
if (pte->page_size)
|
|
pte->address = paddr >> vm->page_shift;
|
|
else
|
|
pte->address = vm_alloc_page_table(vm) >> vm->page_shift;
|
|
} else {
|
|
/*
|
|
* Entry already present. Assert that the caller doesn't want
|
|
* a hugepage at this level, and that there isn't a hugepage at
|
|
* this level.
|
|
*/
|
|
TEST_ASSERT(current_level != target_level,
|
|
"Cannot create hugepage at level: %u, nested_paddr: 0x%lx",
|
|
current_level, nested_paddr);
|
|
TEST_ASSERT(!pte->page_size,
|
|
"Cannot create page table at level: %u, nested_paddr: 0x%lx",
|
|
current_level, nested_paddr);
|
|
}
|
|
}
|
|
|
|
|
|
void __nested_pg_map(struct vmx_pages *vmx, struct kvm_vm *vm,
|
|
uint64_t nested_paddr, uint64_t paddr, int target_level)
|
|
{
|
|
const uint64_t page_size = PG_LEVEL_SIZE(target_level);
|
|
struct eptPageTableEntry *pt = vmx->eptp_hva, *pte;
|
|
uint16_t index;
|
|
|
|
TEST_ASSERT(vm->mode == VM_MODE_PXXV48_4K, "Attempt to use "
|
|
"unknown or unsupported guest mode, mode: 0x%x", vm->mode);
|
|
|
|
TEST_ASSERT((nested_paddr >> 48) == 0,
|
|
"Nested physical address 0x%lx requires 5-level paging",
|
|
nested_paddr);
|
|
TEST_ASSERT((nested_paddr % page_size) == 0,
|
|
"Nested physical address not on page boundary,\n"
|
|
" nested_paddr: 0x%lx page_size: 0x%lx",
|
|
nested_paddr, page_size);
|
|
TEST_ASSERT((nested_paddr >> vm->page_shift) <= vm->max_gfn,
|
|
"Physical address beyond beyond maximum supported,\n"
|
|
" nested_paddr: 0x%lx vm->max_gfn: 0x%lx vm->page_size: 0x%x",
|
|
paddr, vm->max_gfn, vm->page_size);
|
|
TEST_ASSERT((paddr % page_size) == 0,
|
|
"Physical address not on page boundary,\n"
|
|
" paddr: 0x%lx page_size: 0x%lx",
|
|
paddr, page_size);
|
|
TEST_ASSERT((paddr >> vm->page_shift) <= vm->max_gfn,
|
|
"Physical address beyond beyond maximum supported,\n"
|
|
" paddr: 0x%lx vm->max_gfn: 0x%lx vm->page_size: 0x%x",
|
|
paddr, vm->max_gfn, vm->page_size);
|
|
|
|
for (int level = PG_LEVEL_512G; level >= PG_LEVEL_4K; level--) {
|
|
index = (nested_paddr >> PG_LEVEL_SHIFT(level)) & 0x1ffu;
|
|
pte = &pt[index];
|
|
|
|
nested_create_pte(vm, pte, nested_paddr, paddr, level, target_level);
|
|
|
|
if (pte->page_size)
|
|
break;
|
|
|
|
pt = addr_gpa2hva(vm, pte->address * vm->page_size);
|
|
}
|
|
|
|
/*
|
|
* For now mark these as accessed and dirty because the only
|
|
* testcase we have needs that. Can be reconsidered later.
|
|
*/
|
|
pte->accessed = true;
|
|
pte->dirty = true;
|
|
|
|
}
|
|
|
|
void nested_pg_map(struct vmx_pages *vmx, struct kvm_vm *vm,
|
|
uint64_t nested_paddr, uint64_t paddr)
|
|
{
|
|
__nested_pg_map(vmx, vm, nested_paddr, paddr, PG_LEVEL_4K);
|
|
}
|
|
|
|
/*
|
|
* Map a range of EPT guest physical addresses to the VM's physical address
|
|
*
|
|
* Input Args:
|
|
* vm - Virtual Machine
|
|
* nested_paddr - Nested guest physical address to map
|
|
* paddr - VM Physical Address
|
|
* size - The size of the range to map
|
|
* level - The level at which to map the range
|
|
*
|
|
* Output Args: None
|
|
*
|
|
* Return: None
|
|
*
|
|
* Within the VM given by vm, creates a nested guest translation for the
|
|
* page range starting at nested_paddr to the page range starting at paddr.
|
|
*/
|
|
void __nested_map(struct vmx_pages *vmx, struct kvm_vm *vm,
|
|
uint64_t nested_paddr, uint64_t paddr, uint64_t size,
|
|
int level)
|
|
{
|
|
size_t page_size = PG_LEVEL_SIZE(level);
|
|
size_t npages = size / page_size;
|
|
|
|
TEST_ASSERT(nested_paddr + size > nested_paddr, "Vaddr overflow");
|
|
TEST_ASSERT(paddr + size > paddr, "Paddr overflow");
|
|
|
|
while (npages--) {
|
|
__nested_pg_map(vmx, vm, nested_paddr, paddr, level);
|
|
nested_paddr += page_size;
|
|
paddr += page_size;
|
|
}
|
|
}
|
|
|
|
void nested_map(struct vmx_pages *vmx, struct kvm_vm *vm,
|
|
uint64_t nested_paddr, uint64_t paddr, uint64_t size)
|
|
{
|
|
__nested_map(vmx, vm, nested_paddr, paddr, size, PG_LEVEL_4K);
|
|
}
|
|
|
|
/* Prepare an identity extended page table that maps all the
|
|
* physical pages in VM.
|
|
*/
|
|
void nested_map_memslot(struct vmx_pages *vmx, struct kvm_vm *vm,
|
|
uint32_t memslot)
|
|
{
|
|
sparsebit_idx_t i, last;
|
|
struct userspace_mem_region *region =
|
|
memslot2region(vm, memslot);
|
|
|
|
i = (region->region.guest_phys_addr >> vm->page_shift) - 1;
|
|
last = i + (region->region.memory_size >> vm->page_shift);
|
|
for (;;) {
|
|
i = sparsebit_next_clear(region->unused_phy_pages, i);
|
|
if (i > last)
|
|
break;
|
|
|
|
nested_map(vmx, vm,
|
|
(uint64_t)i << vm->page_shift,
|
|
(uint64_t)i << vm->page_shift,
|
|
1 << vm->page_shift);
|
|
}
|
|
}
|
|
|
|
/* Identity map a region with 1GiB Pages. */
|
|
void nested_identity_map_1g(struct vmx_pages *vmx, struct kvm_vm *vm,
|
|
uint64_t addr, uint64_t size)
|
|
{
|
|
__nested_map(vmx, vm, addr, addr, size, PG_LEVEL_1G);
|
|
}
|
|
|
|
bool kvm_cpu_has_ept(void)
|
|
{
|
|
uint64_t ctrl;
|
|
|
|
ctrl = kvm_get_feature_msr(MSR_IA32_VMX_TRUE_PROCBASED_CTLS) >> 32;
|
|
if (!(ctrl & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS))
|
|
return false;
|
|
|
|
ctrl = kvm_get_feature_msr(MSR_IA32_VMX_PROCBASED_CTLS2) >> 32;
|
|
return ctrl & SECONDARY_EXEC_ENABLE_EPT;
|
|
}
|
|
|
|
void prepare_eptp(struct vmx_pages *vmx, struct kvm_vm *vm,
|
|
uint32_t eptp_memslot)
|
|
{
|
|
TEST_ASSERT(kvm_cpu_has_ept(), "KVM doesn't support nested EPT");
|
|
|
|
vmx->eptp = (void *)vm_vaddr_alloc_page(vm);
|
|
vmx->eptp_hva = addr_gva2hva(vm, (uintptr_t)vmx->eptp);
|
|
vmx->eptp_gpa = addr_gva2gpa(vm, (uintptr_t)vmx->eptp);
|
|
}
|
|
|
|
void prepare_virtualize_apic_accesses(struct vmx_pages *vmx, struct kvm_vm *vm)
|
|
{
|
|
vmx->apic_access = (void *)vm_vaddr_alloc_page(vm);
|
|
vmx->apic_access_hva = addr_gva2hva(vm, (uintptr_t)vmx->apic_access);
|
|
vmx->apic_access_gpa = addr_gva2gpa(vm, (uintptr_t)vmx->apic_access);
|
|
}
|