linux/tools/testing/selftests/kvm/lib/x86/sev.c
Pratik R. Sampat 3bf3e0a521 KVM: selftests: Add library support for interacting with SNP
Extend the SEV library to include support for SNP ioctl() wrappers,
which aid in launching and interacting with a SEV-SNP guest.

Signed-off-by: Pratik R. Sampat <prsampat@amd.com>
Link: https://lore.kernel.org/r/20250305230000.231025-8-prsampat@amd.com
[sean: use BIT()]
Signed-off-by: Sean Christopherson <seanjc@google.com>
2025-05-02 12:32:33 -07:00

199 lines
5.2 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
#include <stdint.h>
#include <stdbool.h>
#include "sev.h"
/*
* sparsebit_next_clear() can return 0 if [x, 2**64-1] are all set, and the
* -1 would then cause an underflow back to 2**64 - 1. This is expected and
* correct.
*
* If the last range in the sparsebit is [x, y] and we try to iterate,
* sparsebit_next_set() will return 0, and sparsebit_next_clear() will try
* and find the first range, but that's correct because the condition
* expression would cause us to quit the loop.
*/
static void encrypt_region(struct kvm_vm *vm, struct userspace_mem_region *region,
uint8_t page_type, bool private)
{
const struct sparsebit *protected_phy_pages = region->protected_phy_pages;
const vm_paddr_t gpa_base = region->region.guest_phys_addr;
const sparsebit_idx_t lowest_page_in_region = gpa_base >> vm->page_shift;
sparsebit_idx_t i, j;
if (!sparsebit_any_set(protected_phy_pages))
return;
if (!is_sev_snp_vm(vm))
sev_register_encrypted_memory(vm, region);
sparsebit_for_each_set_range(protected_phy_pages, i, j) {
const uint64_t size = (j - i + 1) * vm->page_size;
const uint64_t offset = (i - lowest_page_in_region) * vm->page_size;
if (private)
vm_mem_set_private(vm, gpa_base + offset, size);
if (is_sev_snp_vm(vm))
snp_launch_update_data(vm, gpa_base + offset,
(uint64_t)addr_gpa2hva(vm, gpa_base + offset),
size, page_type);
else
sev_launch_update_data(vm, gpa_base + offset, size);
}
}
void sev_vm_init(struct kvm_vm *vm)
{
if (vm->type == KVM_X86_DEFAULT_VM) {
TEST_ASSERT_EQ(vm->arch.sev_fd, -1);
vm->arch.sev_fd = open_sev_dev_path_or_exit();
vm_sev_ioctl(vm, KVM_SEV_INIT, NULL);
} else {
struct kvm_sev_init init = { 0 };
TEST_ASSERT_EQ(vm->type, KVM_X86_SEV_VM);
vm_sev_ioctl(vm, KVM_SEV_INIT2, &init);
}
}
void sev_es_vm_init(struct kvm_vm *vm)
{
if (vm->type == KVM_X86_DEFAULT_VM) {
TEST_ASSERT_EQ(vm->arch.sev_fd, -1);
vm->arch.sev_fd = open_sev_dev_path_or_exit();
vm_sev_ioctl(vm, KVM_SEV_ES_INIT, NULL);
} else {
struct kvm_sev_init init = { 0 };
TEST_ASSERT_EQ(vm->type, KVM_X86_SEV_ES_VM);
vm_sev_ioctl(vm, KVM_SEV_INIT2, &init);
}
}
void snp_vm_init(struct kvm_vm *vm)
{
struct kvm_sev_init init = { 0 };
TEST_ASSERT_EQ(vm->type, KVM_X86_SNP_VM);
vm_sev_ioctl(vm, KVM_SEV_INIT2, &init);
}
void sev_vm_launch(struct kvm_vm *vm, uint32_t policy)
{
struct kvm_sev_launch_start launch_start = {
.policy = policy,
};
struct userspace_mem_region *region;
struct kvm_sev_guest_status status;
int ctr;
vm_sev_ioctl(vm, KVM_SEV_LAUNCH_START, &launch_start);
vm_sev_ioctl(vm, KVM_SEV_GUEST_STATUS, &status);
TEST_ASSERT_EQ(status.policy, policy);
TEST_ASSERT_EQ(status.state, SEV_GUEST_STATE_LAUNCH_UPDATE);
hash_for_each(vm->regions.slot_hash, ctr, region, slot_node)
encrypt_region(vm, region, KVM_SEV_PAGE_TYPE_INVALID, false);
if (policy & SEV_POLICY_ES)
vm_sev_ioctl(vm, KVM_SEV_LAUNCH_UPDATE_VMSA, NULL);
vm->arch.is_pt_protected = true;
}
void sev_vm_launch_measure(struct kvm_vm *vm, uint8_t *measurement)
{
struct kvm_sev_launch_measure launch_measure;
struct kvm_sev_guest_status guest_status;
launch_measure.len = 256;
launch_measure.uaddr = (__u64)measurement;
vm_sev_ioctl(vm, KVM_SEV_LAUNCH_MEASURE, &launch_measure);
vm_sev_ioctl(vm, KVM_SEV_GUEST_STATUS, &guest_status);
TEST_ASSERT_EQ(guest_status.state, SEV_GUEST_STATE_LAUNCH_SECRET);
}
void sev_vm_launch_finish(struct kvm_vm *vm)
{
struct kvm_sev_guest_status status;
vm_sev_ioctl(vm, KVM_SEV_GUEST_STATUS, &status);
TEST_ASSERT(status.state == SEV_GUEST_STATE_LAUNCH_UPDATE ||
status.state == SEV_GUEST_STATE_LAUNCH_SECRET,
"Unexpected guest state: %d", status.state);
vm_sev_ioctl(vm, KVM_SEV_LAUNCH_FINISH, NULL);
vm_sev_ioctl(vm, KVM_SEV_GUEST_STATUS, &status);
TEST_ASSERT_EQ(status.state, SEV_GUEST_STATE_RUNNING);
}
void snp_vm_launch_start(struct kvm_vm *vm, uint64_t policy)
{
struct kvm_sev_snp_launch_start launch_start = {
.policy = policy,
};
vm_sev_ioctl(vm, KVM_SEV_SNP_LAUNCH_START, &launch_start);
}
void snp_vm_launch_update(struct kvm_vm *vm)
{
struct userspace_mem_region *region;
int ctr;
hash_for_each(vm->regions.slot_hash, ctr, region, slot_node)
encrypt_region(vm, region, KVM_SEV_SNP_PAGE_TYPE_NORMAL, true);
vm->arch.is_pt_protected = true;
}
void snp_vm_launch_finish(struct kvm_vm *vm)
{
struct kvm_sev_snp_launch_finish launch_finish = { 0 };
vm_sev_ioctl(vm, KVM_SEV_SNP_LAUNCH_FINISH, &launch_finish);
}
struct kvm_vm *vm_sev_create_with_one_vcpu(uint32_t type, void *guest_code,
struct kvm_vcpu **cpu)
{
struct vm_shape shape = {
.mode = VM_MODE_DEFAULT,
.type = type,
};
struct kvm_vm *vm;
struct kvm_vcpu *cpus[1];
vm = __vm_create_with_vcpus(shape, 1, 0, guest_code, cpus);
*cpu = cpus[0];
return vm;
}
void vm_sev_launch(struct kvm_vm *vm, uint64_t policy, uint8_t *measurement)
{
if (is_sev_snp_vm(vm)) {
vm_enable_cap(vm, KVM_CAP_EXIT_HYPERCALL, BIT(KVM_HC_MAP_GPA_RANGE));
snp_vm_launch_start(vm, policy);
snp_vm_launch_update(vm);
snp_vm_launch_finish(vm);
return;
}
sev_vm_launch(vm, policy);
if (!measurement)
measurement = alloca(256);
sev_vm_launch_measure(vm, measurement);
sev_vm_launch_finish(vm);
}