mirror of
git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
synced 2025-08-05 16:54:27 +00:00

Use open_path_or_exit() helper to probe /sys/kernel/mm/page_idle/bitmap in the access tracking perf test so that a helpful/pertinent SKIP message is printed if the file exists but is inaccessible, e.g. because the file has the kernel's default 0600 permissions. Cc: James Houghton <jthoughton@google.com> Link: https://lore.kernel.org/r/20250516215909.2551628-5-seanjc@google.com Signed-off-by: Sean Christopherson <seanjc@google.com>
608 lines
18 KiB
C
608 lines
18 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* access_tracking_perf_test
|
|
*
|
|
* Copyright (C) 2021, Google, Inc.
|
|
*
|
|
* This test measures the performance effects of KVM's access tracking.
|
|
* Access tracking is driven by the MMU notifiers test_young, clear_young, and
|
|
* clear_flush_young. These notifiers do not have a direct userspace API,
|
|
* however the clear_young notifier can be triggered either by
|
|
* 1. marking a pages as idle in /sys/kernel/mm/page_idle/bitmap OR
|
|
* 2. adding a new MGLRU generation using the lru_gen debugfs file.
|
|
* This test leverages page_idle to enable access tracking on guest memory
|
|
* unless MGLRU is enabled, in which case MGLRU is used.
|
|
*
|
|
* To measure performance this test runs a VM with a configurable number of
|
|
* vCPUs that each touch every page in disjoint regions of memory. Performance
|
|
* is measured in the time it takes all vCPUs to finish touching their
|
|
* predefined region.
|
|
*
|
|
* Note that a deterministic correctness test of access tracking is not possible
|
|
* by using page_idle or MGLRU aging as it exists today. This is for a few
|
|
* reasons:
|
|
*
|
|
* 1. page_idle and MGLRU only issue clear_young notifiers, which lack a TLB flush.
|
|
* This means subsequent guest accesses are not guaranteed to see page table
|
|
* updates made by KVM until some time in the future.
|
|
*
|
|
* 2. page_idle only operates on LRU pages. Newly allocated pages are not
|
|
* immediately allocated to LRU lists. Instead they are held in a "pagevec",
|
|
* which is drained to LRU lists some time in the future. There is no
|
|
* userspace API to force this drain to occur.
|
|
*
|
|
* These limitations are worked around in this test by using a large enough
|
|
* region of memory for each vCPU such that the number of translations cached in
|
|
* the TLB and the number of pages held in pagevecs are a small fraction of the
|
|
* overall workload. And if either of those conditions are not true (for example
|
|
* in nesting, where TLB size is unlimited) this test will print a warning
|
|
* rather than silently passing.
|
|
*/
|
|
#include <inttypes.h>
|
|
#include <limits.h>
|
|
#include <pthread.h>
|
|
#include <sys/mman.h>
|
|
#include <sys/types.h>
|
|
#include <sys/stat.h>
|
|
|
|
#include "kvm_util.h"
|
|
#include "test_util.h"
|
|
#include "memstress.h"
|
|
#include "guest_modes.h"
|
|
#include "processor.h"
|
|
|
|
#include "cgroup_util.h"
|
|
#include "lru_gen_util.h"
|
|
|
|
static const char *TEST_MEMCG_NAME = "access_tracking_perf_test";
|
|
|
|
/* Global variable used to synchronize all of the vCPU threads. */
|
|
static int iteration;
|
|
|
|
/* The cgroup memory controller root. Needed for lru_gen-based aging. */
|
|
char cgroup_root[PATH_MAX];
|
|
|
|
/* Defines what vCPU threads should do during a given iteration. */
|
|
static enum {
|
|
/* Run the vCPU to access all its memory. */
|
|
ITERATION_ACCESS_MEMORY,
|
|
/* Mark the vCPU's memory idle in page_idle. */
|
|
ITERATION_MARK_IDLE,
|
|
} iteration_work;
|
|
|
|
/* The iteration that was last completed by each vCPU. */
|
|
static int vcpu_last_completed_iteration[KVM_MAX_VCPUS];
|
|
|
|
/* Whether to overlap the regions of memory vCPUs access. */
|
|
static bool overlap_memory_access;
|
|
|
|
/*
|
|
* If the test should only warn if there are too many idle pages (i.e., it is
|
|
* expected).
|
|
* -1: Not yet set.
|
|
* 0: We do not expect too many idle pages, so FAIL if too many idle pages.
|
|
* 1: Having too many idle pages is expected, so merely print a warning if
|
|
* too many idle pages are found.
|
|
*/
|
|
static int idle_pages_warn_only = -1;
|
|
|
|
/* Whether or not to use MGLRU instead of page_idle for access tracking */
|
|
static bool use_lru_gen;
|
|
|
|
/* Total number of pages to expect in the memcg after touching everything */
|
|
static long test_pages;
|
|
|
|
/* Last generation we found the pages in */
|
|
static int lru_gen_last_gen = -1;
|
|
|
|
struct test_params {
|
|
/* The backing source for the region of memory. */
|
|
enum vm_mem_backing_src_type backing_src;
|
|
|
|
/* The amount of memory to allocate for each vCPU. */
|
|
uint64_t vcpu_memory_bytes;
|
|
|
|
/* The number of vCPUs to create in the VM. */
|
|
int nr_vcpus;
|
|
};
|
|
|
|
static uint64_t pread_uint64(int fd, const char *filename, uint64_t index)
|
|
{
|
|
uint64_t value;
|
|
off_t offset = index * sizeof(value);
|
|
|
|
TEST_ASSERT(pread(fd, &value, sizeof(value), offset) == sizeof(value),
|
|
"pread from %s offset 0x%" PRIx64 " failed!",
|
|
filename, offset);
|
|
|
|
return value;
|
|
|
|
}
|
|
|
|
#define PAGEMAP_PRESENT (1ULL << 63)
|
|
#define PAGEMAP_PFN_MASK ((1ULL << 55) - 1)
|
|
|
|
static uint64_t lookup_pfn(int pagemap_fd, struct kvm_vm *vm, uint64_t gva)
|
|
{
|
|
uint64_t hva = (uint64_t) addr_gva2hva(vm, gva);
|
|
uint64_t entry;
|
|
uint64_t pfn;
|
|
|
|
entry = pread_uint64(pagemap_fd, "pagemap", hva / getpagesize());
|
|
if (!(entry & PAGEMAP_PRESENT))
|
|
return 0;
|
|
|
|
pfn = entry & PAGEMAP_PFN_MASK;
|
|
__TEST_REQUIRE(pfn, "Looking up PFNs requires CAP_SYS_ADMIN");
|
|
|
|
return pfn;
|
|
}
|
|
|
|
static bool is_page_idle(int page_idle_fd, uint64_t pfn)
|
|
{
|
|
uint64_t bits = pread_uint64(page_idle_fd, "page_idle", pfn / 64);
|
|
|
|
return !!((bits >> (pfn % 64)) & 1);
|
|
}
|
|
|
|
static void mark_page_idle(int page_idle_fd, uint64_t pfn)
|
|
{
|
|
uint64_t bits = 1ULL << (pfn % 64);
|
|
|
|
TEST_ASSERT(pwrite(page_idle_fd, &bits, 8, 8 * (pfn / 64)) == 8,
|
|
"Set page_idle bits for PFN 0x%" PRIx64, pfn);
|
|
}
|
|
|
|
static void too_many_idle_pages(long idle_pages, long total_pages, int vcpu_idx)
|
|
{
|
|
char prefix[18] = {};
|
|
|
|
if (vcpu_idx >= 0)
|
|
snprintf(prefix, 18, "vCPU%d: ", vcpu_idx);
|
|
|
|
TEST_ASSERT(idle_pages_warn_only,
|
|
"%sToo many pages still idle (%lu out of %lu)",
|
|
prefix, idle_pages, total_pages);
|
|
|
|
printf("WARNING: %sToo many pages still idle (%lu out of %lu), "
|
|
"this will affect performance results.\n",
|
|
prefix, idle_pages, total_pages);
|
|
}
|
|
|
|
static void pageidle_mark_vcpu_memory_idle(struct kvm_vm *vm,
|
|
struct memstress_vcpu_args *vcpu_args)
|
|
{
|
|
int vcpu_idx = vcpu_args->vcpu_idx;
|
|
uint64_t base_gva = vcpu_args->gva;
|
|
uint64_t pages = vcpu_args->pages;
|
|
uint64_t page;
|
|
uint64_t still_idle = 0;
|
|
uint64_t no_pfn = 0;
|
|
int page_idle_fd;
|
|
int pagemap_fd;
|
|
|
|
/* If vCPUs are using an overlapping region, let vCPU 0 mark it idle. */
|
|
if (overlap_memory_access && vcpu_idx)
|
|
return;
|
|
|
|
page_idle_fd = open("/sys/kernel/mm/page_idle/bitmap", O_RDWR);
|
|
TEST_ASSERT(page_idle_fd > 0, "Failed to open page_idle.");
|
|
|
|
pagemap_fd = open("/proc/self/pagemap", O_RDONLY);
|
|
TEST_ASSERT(pagemap_fd > 0, "Failed to open pagemap.");
|
|
|
|
for (page = 0; page < pages; page++) {
|
|
uint64_t gva = base_gva + page * memstress_args.guest_page_size;
|
|
uint64_t pfn = lookup_pfn(pagemap_fd, vm, gva);
|
|
|
|
if (!pfn) {
|
|
no_pfn++;
|
|
continue;
|
|
}
|
|
|
|
if (is_page_idle(page_idle_fd, pfn)) {
|
|
still_idle++;
|
|
continue;
|
|
}
|
|
|
|
mark_page_idle(page_idle_fd, pfn);
|
|
}
|
|
|
|
/*
|
|
* Assumption: Less than 1% of pages are going to be swapped out from
|
|
* under us during this test.
|
|
*/
|
|
TEST_ASSERT(no_pfn < pages / 100,
|
|
"vCPU %d: No PFN for %" PRIu64 " out of %" PRIu64 " pages.",
|
|
vcpu_idx, no_pfn, pages);
|
|
|
|
/*
|
|
* Check that at least 90% of memory has been marked idle (the rest
|
|
* might not be marked idle because the pages have not yet made it to an
|
|
* LRU list or the translations are still cached in the TLB). 90% is
|
|
* arbitrary; high enough that we ensure most memory access went through
|
|
* access tracking but low enough as to not make the test too brittle
|
|
* over time and across architectures.
|
|
*/
|
|
if (still_idle >= pages / 10)
|
|
too_many_idle_pages(still_idle, pages,
|
|
overlap_memory_access ? -1 : vcpu_idx);
|
|
|
|
close(page_idle_fd);
|
|
close(pagemap_fd);
|
|
}
|
|
|
|
int find_generation(struct memcg_stats *stats, long total_pages)
|
|
{
|
|
/*
|
|
* For finding the generation that contains our pages, use the same
|
|
* 90% threshold that page_idle uses.
|
|
*/
|
|
int gen = lru_gen_find_generation(stats, total_pages * 9 / 10);
|
|
|
|
if (gen >= 0)
|
|
return gen;
|
|
|
|
if (!idle_pages_warn_only) {
|
|
TEST_FAIL("Could not find a generation with 90%% of guest memory (%ld pages).",
|
|
total_pages * 9 / 10);
|
|
return gen;
|
|
}
|
|
|
|
/*
|
|
* We couldn't find a generation with 90% of guest memory, which can
|
|
* happen if access tracking is unreliable. Simply look for a majority
|
|
* of pages.
|
|
*/
|
|
puts("WARNING: Couldn't find a generation with 90% of guest memory. "
|
|
"Performance results may not be accurate.");
|
|
gen = lru_gen_find_generation(stats, total_pages / 2);
|
|
TEST_ASSERT(gen >= 0,
|
|
"Could not find a generation with 50%% of guest memory (%ld pages).",
|
|
total_pages / 2);
|
|
return gen;
|
|
}
|
|
|
|
static void lru_gen_mark_memory_idle(struct kvm_vm *vm)
|
|
{
|
|
struct timespec ts_start;
|
|
struct timespec ts_elapsed;
|
|
struct memcg_stats stats;
|
|
int new_gen;
|
|
|
|
/* Make a new generation */
|
|
clock_gettime(CLOCK_MONOTONIC, &ts_start);
|
|
lru_gen_do_aging(&stats, TEST_MEMCG_NAME);
|
|
ts_elapsed = timespec_elapsed(ts_start);
|
|
|
|
/* Check the generation again */
|
|
new_gen = find_generation(&stats, test_pages);
|
|
|
|
/*
|
|
* This function should only be invoked with newly-accessed pages,
|
|
* so pages should always move to a newer generation.
|
|
*/
|
|
if (new_gen <= lru_gen_last_gen) {
|
|
/* We did not move to a newer generation. */
|
|
long idle_pages = lru_gen_sum_memcg_stats_for_gen(lru_gen_last_gen,
|
|
&stats);
|
|
|
|
too_many_idle_pages(min_t(long, idle_pages, test_pages),
|
|
test_pages, -1);
|
|
}
|
|
pr_info("%-30s: %ld.%09lds\n",
|
|
"Mark memory idle (lru_gen)", ts_elapsed.tv_sec,
|
|
ts_elapsed.tv_nsec);
|
|
lru_gen_last_gen = new_gen;
|
|
}
|
|
|
|
static void assert_ucall(struct kvm_vcpu *vcpu, uint64_t expected_ucall)
|
|
{
|
|
struct ucall uc;
|
|
uint64_t actual_ucall = get_ucall(vcpu, &uc);
|
|
|
|
TEST_ASSERT(expected_ucall == actual_ucall,
|
|
"Guest exited unexpectedly (expected ucall %" PRIu64
|
|
", got %" PRIu64 ")",
|
|
expected_ucall, actual_ucall);
|
|
}
|
|
|
|
static bool spin_wait_for_next_iteration(int *current_iteration)
|
|
{
|
|
int last_iteration = *current_iteration;
|
|
|
|
do {
|
|
if (READ_ONCE(memstress_args.stop_vcpus))
|
|
return false;
|
|
|
|
*current_iteration = READ_ONCE(iteration);
|
|
} while (last_iteration == *current_iteration);
|
|
|
|
return true;
|
|
}
|
|
|
|
static void vcpu_thread_main(struct memstress_vcpu_args *vcpu_args)
|
|
{
|
|
struct kvm_vcpu *vcpu = vcpu_args->vcpu;
|
|
struct kvm_vm *vm = memstress_args.vm;
|
|
int vcpu_idx = vcpu_args->vcpu_idx;
|
|
int current_iteration = 0;
|
|
|
|
while (spin_wait_for_next_iteration(¤t_iteration)) {
|
|
switch (READ_ONCE(iteration_work)) {
|
|
case ITERATION_ACCESS_MEMORY:
|
|
vcpu_run(vcpu);
|
|
assert_ucall(vcpu, UCALL_SYNC);
|
|
break;
|
|
case ITERATION_MARK_IDLE:
|
|
pageidle_mark_vcpu_memory_idle(vm, vcpu_args);
|
|
break;
|
|
}
|
|
|
|
vcpu_last_completed_iteration[vcpu_idx] = current_iteration;
|
|
}
|
|
}
|
|
|
|
static void spin_wait_for_vcpu(int vcpu_idx, int target_iteration)
|
|
{
|
|
while (READ_ONCE(vcpu_last_completed_iteration[vcpu_idx]) !=
|
|
target_iteration) {
|
|
continue;
|
|
}
|
|
}
|
|
|
|
/* The type of memory accesses to perform in the VM. */
|
|
enum access_type {
|
|
ACCESS_READ,
|
|
ACCESS_WRITE,
|
|
};
|
|
|
|
static void run_iteration(struct kvm_vm *vm, int nr_vcpus, const char *description)
|
|
{
|
|
struct timespec ts_start;
|
|
struct timespec ts_elapsed;
|
|
int next_iteration, i;
|
|
|
|
/* Kick off the vCPUs by incrementing iteration. */
|
|
next_iteration = ++iteration;
|
|
|
|
clock_gettime(CLOCK_MONOTONIC, &ts_start);
|
|
|
|
/* Wait for all vCPUs to finish the iteration. */
|
|
for (i = 0; i < nr_vcpus; i++)
|
|
spin_wait_for_vcpu(i, next_iteration);
|
|
|
|
ts_elapsed = timespec_elapsed(ts_start);
|
|
pr_info("%-30s: %ld.%09lds\n",
|
|
description, ts_elapsed.tv_sec, ts_elapsed.tv_nsec);
|
|
}
|
|
|
|
static void access_memory(struct kvm_vm *vm, int nr_vcpus,
|
|
enum access_type access, const char *description)
|
|
{
|
|
memstress_set_write_percent(vm, (access == ACCESS_READ) ? 0 : 100);
|
|
iteration_work = ITERATION_ACCESS_MEMORY;
|
|
run_iteration(vm, nr_vcpus, description);
|
|
}
|
|
|
|
static void mark_memory_idle(struct kvm_vm *vm, int nr_vcpus)
|
|
{
|
|
if (use_lru_gen)
|
|
return lru_gen_mark_memory_idle(vm);
|
|
|
|
/*
|
|
* Even though this parallelizes the work across vCPUs, this is still a
|
|
* very slow operation because page_idle forces the test to mark one pfn
|
|
* at a time and the clear_young notifier may serialize on the KVM MMU
|
|
* lock.
|
|
*/
|
|
pr_debug("Marking VM memory idle (slow)...\n");
|
|
iteration_work = ITERATION_MARK_IDLE;
|
|
run_iteration(vm, nr_vcpus, "Mark memory idle (page_idle)");
|
|
}
|
|
|
|
static void run_test(enum vm_guest_mode mode, void *arg)
|
|
{
|
|
struct test_params *params = arg;
|
|
struct kvm_vm *vm;
|
|
int nr_vcpus = params->nr_vcpus;
|
|
|
|
vm = memstress_create_vm(mode, nr_vcpus, params->vcpu_memory_bytes, 1,
|
|
params->backing_src, !overlap_memory_access);
|
|
|
|
/*
|
|
* If guest_page_size is larger than the host's page size, the
|
|
* guest (memstress) will only fault in a subset of the host's pages.
|
|
*/
|
|
test_pages = params->nr_vcpus * params->vcpu_memory_bytes /
|
|
max(memstress_args.guest_page_size,
|
|
(uint64_t)getpagesize());
|
|
|
|
memstress_start_vcpu_threads(nr_vcpus, vcpu_thread_main);
|
|
|
|
pr_info("\n");
|
|
access_memory(vm, nr_vcpus, ACCESS_WRITE, "Populating memory");
|
|
|
|
if (use_lru_gen) {
|
|
struct memcg_stats stats;
|
|
|
|
/*
|
|
* Do a page table scan now. Following initial population, aging
|
|
* may not cause the pages to move to a newer generation. Do
|
|
* an aging pass now so that future aging passes always move
|
|
* pages to a newer generation.
|
|
*/
|
|
printf("Initial aging pass (lru_gen)\n");
|
|
lru_gen_do_aging(&stats, TEST_MEMCG_NAME);
|
|
TEST_ASSERT(lru_gen_sum_memcg_stats(&stats) >= test_pages,
|
|
"Not all pages accounted for (looking for %ld). "
|
|
"Was the memcg set up correctly?", test_pages);
|
|
access_memory(vm, nr_vcpus, ACCESS_WRITE, "Re-populating memory");
|
|
lru_gen_read_memcg_stats(&stats, TEST_MEMCG_NAME);
|
|
lru_gen_last_gen = find_generation(&stats, test_pages);
|
|
}
|
|
|
|
/* As a control, read and write to the populated memory first. */
|
|
access_memory(vm, nr_vcpus, ACCESS_WRITE, "Writing to populated memory");
|
|
access_memory(vm, nr_vcpus, ACCESS_READ, "Reading from populated memory");
|
|
|
|
/* Repeat on memory that has been marked as idle. */
|
|
mark_memory_idle(vm, nr_vcpus);
|
|
access_memory(vm, nr_vcpus, ACCESS_WRITE, "Writing to idle memory");
|
|
mark_memory_idle(vm, nr_vcpus);
|
|
access_memory(vm, nr_vcpus, ACCESS_READ, "Reading from idle memory");
|
|
|
|
memstress_join_vcpu_threads(nr_vcpus);
|
|
memstress_destroy_vm(vm);
|
|
}
|
|
|
|
static int access_tracking_unreliable(void)
|
|
{
|
|
#ifdef __x86_64__
|
|
/*
|
|
* When running nested, the TLB size may be effectively unlimited (for
|
|
* example, this is the case when running on KVM L0), and KVM doesn't
|
|
* explicitly flush the TLB when aging SPTEs. As a result, more pages
|
|
* are cached and the guest won't see the "idle" bit cleared.
|
|
*/
|
|
if (this_cpu_has(X86_FEATURE_HYPERVISOR)) {
|
|
puts("Skipping idle page count sanity check, because the test is run nested");
|
|
return 1;
|
|
}
|
|
#endif
|
|
/*
|
|
* When NUMA balancing is enabled, guest memory will be unmapped to get
|
|
* NUMA faults, dropping the Accessed bits.
|
|
*/
|
|
if (is_numa_balancing_enabled()) {
|
|
puts("Skipping idle page count sanity check, because NUMA balancing is enabled");
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int run_test_for_each_guest_mode(const char *cgroup, void *arg)
|
|
{
|
|
for_each_guest_mode(run_test, arg);
|
|
return 0;
|
|
}
|
|
|
|
static void help(char *name)
|
|
{
|
|
puts("");
|
|
printf("usage: %s [-h] [-m mode] [-b vcpu_bytes] [-v vcpus] [-o] [-s mem_type]\n",
|
|
name);
|
|
puts("");
|
|
printf(" -h: Display this help message.");
|
|
guest_modes_help();
|
|
printf(" -b: specify the size of the memory region which should be\n"
|
|
" dirtied by each vCPU. e.g. 10M or 3G.\n"
|
|
" (default: 1G)\n");
|
|
printf(" -v: specify the number of vCPUs to run.\n");
|
|
printf(" -o: Overlap guest memory accesses instead of partitioning\n"
|
|
" them into a separate region of memory for each vCPU.\n");
|
|
printf(" -w: Control whether the test warns or fails if more than 10%%\n"
|
|
" of pages are still seen as idle/old after accessing guest\n"
|
|
" memory. >0 == warn only, 0 == fail, <0 == auto. For auto\n"
|
|
" mode, the test fails by default, but switches to warn only\n"
|
|
" if NUMA balancing is enabled or the test detects it's running\n"
|
|
" in a VM.\n");
|
|
backing_src_help("-s");
|
|
puts("");
|
|
exit(0);
|
|
}
|
|
|
|
void destroy_cgroup(char *cg)
|
|
{
|
|
printf("Destroying cgroup: %s\n", cg);
|
|
}
|
|
|
|
int main(int argc, char *argv[])
|
|
{
|
|
struct test_params params = {
|
|
.backing_src = DEFAULT_VM_MEM_SRC,
|
|
.vcpu_memory_bytes = DEFAULT_PER_VCPU_MEM_SIZE,
|
|
.nr_vcpus = 1,
|
|
};
|
|
char *new_cg = NULL;
|
|
int page_idle_fd;
|
|
int opt;
|
|
|
|
guest_modes_append_default();
|
|
|
|
while ((opt = getopt(argc, argv, "hm:b:v:os:w:")) != -1) {
|
|
switch (opt) {
|
|
case 'm':
|
|
guest_modes_cmdline(optarg);
|
|
break;
|
|
case 'b':
|
|
params.vcpu_memory_bytes = parse_size(optarg);
|
|
break;
|
|
case 'v':
|
|
params.nr_vcpus = atoi_positive("Number of vCPUs", optarg);
|
|
break;
|
|
case 'o':
|
|
overlap_memory_access = true;
|
|
break;
|
|
case 's':
|
|
params.backing_src = parse_backing_src_type(optarg);
|
|
break;
|
|
case 'w':
|
|
idle_pages_warn_only =
|
|
atoi_non_negative("Idle pages warning",
|
|
optarg);
|
|
break;
|
|
case 'h':
|
|
default:
|
|
help(argv[0]);
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (idle_pages_warn_only == -1)
|
|
idle_pages_warn_only = access_tracking_unreliable();
|
|
|
|
if (lru_gen_usable()) {
|
|
bool cg_created = true;
|
|
int ret;
|
|
|
|
puts("Using lru_gen for aging");
|
|
use_lru_gen = true;
|
|
|
|
if (cg_find_controller_root(cgroup_root, sizeof(cgroup_root), "memory"))
|
|
ksft_exit_skip("Cannot find memory cgroup controller\n");
|
|
|
|
new_cg = cg_name(cgroup_root, TEST_MEMCG_NAME);
|
|
printf("Creating cgroup: %s\n", new_cg);
|
|
if (cg_create(new_cg)) {
|
|
if (errno == EEXIST) {
|
|
printf("Found existing cgroup");
|
|
cg_created = false;
|
|
} else {
|
|
ksft_exit_skip("could not create new cgroup: %s\n", new_cg);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* This will fork off a new process to run the test within
|
|
* a new memcg, so we need to properly propagate the return
|
|
* value up.
|
|
*/
|
|
ret = cg_run(new_cg, &run_test_for_each_guest_mode, ¶ms);
|
|
if (cg_created)
|
|
cg_destroy(new_cg);
|
|
if (ret < 0)
|
|
TEST_FAIL("child did not spawn or was abnormally killed");
|
|
if (ret)
|
|
return ret;
|
|
} else {
|
|
page_idle_fd = __open_path_or_exit("/sys/kernel/mm/page_idle/bitmap", O_RDWR,
|
|
"Is CONFIG_IDLE_PAGE_TRACKING enabled?");
|
|
close(page_idle_fd);
|
|
|
|
puts("Using page_idle for aging");
|
|
run_test_for_each_guest_mode(NULL, ¶ms);
|
|
}
|
|
|
|
return 0;
|
|
}
|