mirror of
git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
synced 2025-08-05 16:54:27 +00:00

damon_nr_regions.py starts DAMON, periodically collect number of regions
in snapshots, and see if it is in the requested range. The check code
assumes the numbers are sorted on the collection list, but there is no
such guarantee. Hence this can result in false positive test success.
Sort the list before doing the check.
Link: https://lkml.kernel.org/r/20250225222333.505646-4-sj@kernel.org
Fixes: 781497347d
("selftests/damon: implement test for min/max_nr_regions")
Signed-off-by: SeongJae Park <sj@kernel.org>
Cc: Shuah Khan <shuah@kernel.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
147 lines
4.7 KiB
Python
Executable file
147 lines
4.7 KiB
Python
Executable file
#!/usr/bin/env python3
|
|
# SPDX-License-Identifier: GPL-2.0
|
|
|
|
import subprocess
|
|
import time
|
|
|
|
import _damon_sysfs
|
|
|
|
def test_nr_regions(real_nr_regions, min_nr_regions, max_nr_regions):
|
|
'''
|
|
Create process of the given 'real_nr_regions' regions, monitor it using
|
|
DAMON with given '{min,max}_nr_regions' monitoring parameter.
|
|
|
|
Exit with non-zero return code if the given {min,max}_nr_regions is not
|
|
kept.
|
|
'''
|
|
sz_region = 10 * 1024 * 1024
|
|
proc = subprocess.Popen(['./access_memory_even', '%d' % real_nr_regions,
|
|
'%d' % sz_region])
|
|
|
|
# stat every monitored regions
|
|
kdamonds = _damon_sysfs.Kdamonds([_damon_sysfs.Kdamond(
|
|
contexts=[_damon_sysfs.DamonCtx(
|
|
monitoring_attrs=_damon_sysfs.DamonAttrs(
|
|
min_nr_regions=min_nr_regions,
|
|
max_nr_regions=max_nr_regions),
|
|
ops='vaddr',
|
|
targets=[_damon_sysfs.DamonTarget(pid=proc.pid)],
|
|
schemes=[_damon_sysfs.Damos(action='stat',
|
|
)] # schemes
|
|
)] # contexts
|
|
)]) # kdamonds
|
|
|
|
err = kdamonds.start()
|
|
if err is not None:
|
|
proc.terminate()
|
|
print('kdamond start failed: %s' % err)
|
|
exit(1)
|
|
|
|
collected_nr_regions = []
|
|
while proc.poll() is None:
|
|
time.sleep(0.1)
|
|
err = kdamonds.kdamonds[0].update_schemes_tried_regions()
|
|
if err is not None:
|
|
proc.terminate()
|
|
print('tried regions update failed: %s' % err)
|
|
exit(1)
|
|
|
|
scheme = kdamonds.kdamonds[0].contexts[0].schemes[0]
|
|
if scheme.tried_regions is None:
|
|
proc.terminate()
|
|
print('tried regions is not collected')
|
|
exit(1)
|
|
|
|
nr_tried_regions = len(scheme.tried_regions)
|
|
if nr_tried_regions <= 0:
|
|
proc.terminate()
|
|
print('tried regions is not created')
|
|
exit(1)
|
|
collected_nr_regions.append(nr_tried_regions)
|
|
if len(collected_nr_regions) > 10:
|
|
break
|
|
proc.terminate()
|
|
kdamonds.stop()
|
|
|
|
test_name = 'nr_regions test with %d/%d/%d real/min/max nr_regions' % (
|
|
real_nr_regions, min_nr_regions, max_nr_regions)
|
|
collected_nr_regions.sort()
|
|
if (collected_nr_regions[0] < min_nr_regions or
|
|
collected_nr_regions[-1] > max_nr_regions):
|
|
print('fail %s' % test_name)
|
|
print('number of regions that collected are:')
|
|
for nr in collected_nr_regions:
|
|
print(nr)
|
|
exit(1)
|
|
print('pass %s ' % test_name)
|
|
|
|
def main():
|
|
# test min_nr_regions larger than real nr regions
|
|
test_nr_regions(10, 20, 100)
|
|
|
|
# test max_nr_regions smaller than real nr regions
|
|
test_nr_regions(15, 3, 10)
|
|
|
|
# test online-tuned max_nr_regions that smaller than real nr regions
|
|
sz_region = 10 * 1024 * 1024
|
|
proc = subprocess.Popen(['./access_memory_even', '14', '%d' % sz_region])
|
|
|
|
# stat every monitored regions
|
|
kdamonds = _damon_sysfs.Kdamonds([_damon_sysfs.Kdamond(
|
|
contexts=[_damon_sysfs.DamonCtx(
|
|
monitoring_attrs=_damon_sysfs.DamonAttrs(
|
|
min_nr_regions=10, max_nr_regions=1000),
|
|
ops='vaddr',
|
|
targets=[_damon_sysfs.DamonTarget(pid=proc.pid)],
|
|
schemes=[_damon_sysfs.Damos(action='stat',
|
|
)] # schemes
|
|
)] # contexts
|
|
)]) # kdamonds
|
|
|
|
err = kdamonds.start()
|
|
if err is not None:
|
|
proc.terminate()
|
|
print('kdamond start failed: %s' % err)
|
|
exit(1)
|
|
|
|
# wait until the real regions are found
|
|
time.sleep(3)
|
|
|
|
attrs = kdamonds.kdamonds[0].contexts[0].monitoring_attrs
|
|
attrs.min_nr_regions = 3
|
|
attrs.max_nr_regions = 7
|
|
attrs.update_us = 100000
|
|
err = kdamonds.kdamonds[0].commit()
|
|
if err is not None:
|
|
proc.terminate()
|
|
print('commit failed: %s' % err)
|
|
exit(1)
|
|
# wait for next merge operation is executed
|
|
time.sleep(0.3)
|
|
|
|
err = kdamonds.kdamonds[0].update_schemes_tried_regions()
|
|
if err is not None:
|
|
proc.terminate()
|
|
print('tried regions update failed: %s' % err)
|
|
exit(1)
|
|
|
|
scheme = kdamonds.kdamonds[0].contexts[0].schemes[0]
|
|
if scheme.tried_regions is None:
|
|
proc.terminate()
|
|
print('tried regions is not collected')
|
|
exit(1)
|
|
|
|
nr_tried_regions = len(scheme.tried_regions)
|
|
if nr_tried_regions <= 0:
|
|
proc.terminate()
|
|
print('tried regions is not created')
|
|
exit(1)
|
|
proc.terminate()
|
|
|
|
if nr_tried_regions > 7:
|
|
print('fail online-tuned max_nr_regions: %d > 7' % nr_tried_regions)
|
|
exit(1)
|
|
print('pass online-tuned max_nr_regions')
|
|
|
|
if __name__ == '__main__':
|
|
main()
|