mirror of
git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
synced 2025-08-05 16:54:27 +00:00

This is to slow down lock acquistion (on contention locks) deliberately. A possible use case is to estimate impact on application performance by optimization of kernel locking behavior. By delaying the lock it can simulate the worse condition as a control group, and then compare with the current behavior as a optimized condition. The syntax is 'time@function' and the time can have unit suffix like "us" and "ms". For example, I ran a simple test like below. $ sudo perf lock con -abl -L tasklist_lock -- \ sh -c 'for i in $(seq 1000); do sleep 1 & done; wait' contended total wait max wait avg wait address symbol 92 1.18 ms 199.54 us 12.79 us ffffffff8a806080 tasklist_lock (rwlock) The contention count was 92 and the average wait time was around 10 us. But if I add 100 usec of delay to the tasklist_lock, $ sudo perf lock con -abl -L tasklist_lock -J 100us@tasklist_lock -- \ sh -c 'for i in $(seq 1000); do sleep 1 & done; wait' contended total wait max wait avg wait address symbol 190 15.67 ms 230.10 us 82.46 us ffffffff8a806080 tasklist_lock (rwlock) The contention count increased and the average wait time was up closed to 100 usec. If I increase the delay even more, $ sudo perf lock con -abl -L tasklist_lock -J 1ms@tasklist_lock -- \ sh -c 'for i in $(seq 1000); do sleep 1 & done; wait' contended total wait max wait avg wait address symbol 1002 2.80 s 3.01 ms 2.80 ms ffffffff8a806080 tasklist_lock (rwlock) Now every sleep process had contention and the wait time was more than 1 msec. This is on my 4 CPU laptop so I guess one CPU has the lock while other 3 are waiting for it mostly. For simplicity, it only supports global locks for now. Committer testing: root@number:~# grep -m1 'model name' /proc/cpuinfo model name : AMD Ryzen 9 9950X3D 16-Core Processor root@number:~# perf lock con -abl -L tasklist_lock -- sh -c 'for i in $(seq 1000); do sleep 1 & done; wait' contended total wait max wait avg wait address symbol 142 453.85 us 25.39 us 3.20 us ffffffffae808080 tasklist_lock (rwlock) root@number:~# perf lock con -abl -L tasklist_lock -J 100us@tasklist_lock -- sh -c 'for i in $(seq 1000); do sleep 1 & done; wait' contended total wait max wait avg wait address symbol 1040 2.39 s 3.11 ms 2.30 ms ffffffffae808080 tasklist_lock (rwlock) root@number:~# perf lock con -abl -L tasklist_lock -J 1ms@tasklist_lock -- sh -c 'for i in $(seq 1000); do sleep 1 & done; wait' contended total wait max wait avg wait address symbol 1025 24.72 s 31.01 ms 24.12 ms ffffffffae808080 tasklist_lock (rwlock) root@number:~# Suggested-by: Stephane Eranian <eranian@google.com> Signed-off-by: Namhyung Kim <namhyung@kernel.org> Tested-by: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Adrian Hunter <adrian.hunter@intel.com> Cc: Ian Rogers <irogers@google.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Jiri Olsa <jolsa@kernel.org> Cc: Kan Liang <kan.liang@linux.intel.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Song Liu <song@kernel.org> Link: https://lore.kernel.org/r/20250509171950.183591-1-namhyung@kernel.org Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
989 lines
23 KiB
C
989 lines
23 KiB
C
// SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause)
|
|
// Copyright (c) 2022 Google
|
|
#include "vmlinux.h"
|
|
#include <bpf/bpf_helpers.h>
|
|
#include <bpf/bpf_tracing.h>
|
|
#include <bpf/bpf_core_read.h>
|
|
#include <asm-generic/errno-base.h>
|
|
|
|
#include "lock_data.h"
|
|
|
|
/* for collect_lock_syms(). 4096 was rejected by the verifier */
|
|
#define MAX_CPUS 1024
|
|
|
|
/* for collect_zone_lock(). It should be more than the actual zones. */
|
|
#define MAX_ZONES 10
|
|
|
|
/* for do_lock_delay(). Arbitrarily set to 1 million. */
|
|
#define MAX_LOOP (1U << 20)
|
|
|
|
/* lock contention flags from include/trace/events/lock.h */
|
|
#define LCB_F_SPIN (1U << 0)
|
|
#define LCB_F_READ (1U << 1)
|
|
#define LCB_F_WRITE (1U << 2)
|
|
#define LCB_F_RT (1U << 3)
|
|
#define LCB_F_PERCPU (1U << 4)
|
|
#define LCB_F_MUTEX (1U << 5)
|
|
|
|
/* callstack storage */
|
|
struct {
|
|
__uint(type, BPF_MAP_TYPE_STACK_TRACE);
|
|
__uint(key_size, sizeof(__u32));
|
|
__uint(value_size, sizeof(__u64));
|
|
__uint(max_entries, MAX_ENTRIES);
|
|
} stacks SEC(".maps");
|
|
|
|
/* buffer for owner stacktrace */
|
|
struct {
|
|
__uint(type, BPF_MAP_TYPE_PERCPU_ARRAY);
|
|
__uint(key_size, sizeof(__u32));
|
|
__uint(value_size, sizeof(__u64));
|
|
__uint(max_entries, 1);
|
|
} stack_buf SEC(".maps");
|
|
|
|
/* a map for tracing owner stacktrace to owner stack id */
|
|
struct {
|
|
__uint(type, BPF_MAP_TYPE_HASH);
|
|
__uint(key_size, sizeof(__u64)); // owner stacktrace
|
|
__uint(value_size, sizeof(__s32)); // owner stack id
|
|
__uint(max_entries, 1);
|
|
} owner_stacks SEC(".maps");
|
|
|
|
/* a map for tracing lock address to owner data */
|
|
struct {
|
|
__uint(type, BPF_MAP_TYPE_HASH);
|
|
__uint(key_size, sizeof(__u64)); // lock address
|
|
__uint(value_size, sizeof(struct owner_tracing_data));
|
|
__uint(max_entries, 1);
|
|
} owner_data SEC(".maps");
|
|
|
|
/* a map for contention_key (stores owner stack id) to contention data */
|
|
struct {
|
|
__uint(type, BPF_MAP_TYPE_HASH);
|
|
__uint(key_size, sizeof(struct contention_key));
|
|
__uint(value_size, sizeof(struct contention_data));
|
|
__uint(max_entries, 1);
|
|
} owner_stat SEC(".maps");
|
|
|
|
/* maintain timestamp at the beginning of contention */
|
|
struct {
|
|
__uint(type, BPF_MAP_TYPE_HASH);
|
|
__type(key, int);
|
|
__type(value, struct tstamp_data);
|
|
__uint(max_entries, MAX_ENTRIES);
|
|
} tstamp SEC(".maps");
|
|
|
|
/* maintain per-CPU timestamp at the beginning of contention */
|
|
struct {
|
|
__uint(type, BPF_MAP_TYPE_PERCPU_ARRAY);
|
|
__uint(key_size, sizeof(__u32));
|
|
__uint(value_size, sizeof(struct tstamp_data));
|
|
__uint(max_entries, 1);
|
|
} tstamp_cpu SEC(".maps");
|
|
|
|
/* actual lock contention statistics */
|
|
struct {
|
|
__uint(type, BPF_MAP_TYPE_HASH);
|
|
__uint(key_size, sizeof(struct contention_key));
|
|
__uint(value_size, sizeof(struct contention_data));
|
|
__uint(max_entries, MAX_ENTRIES);
|
|
} lock_stat SEC(".maps");
|
|
|
|
struct {
|
|
__uint(type, BPF_MAP_TYPE_HASH);
|
|
__uint(key_size, sizeof(__u32));
|
|
__uint(value_size, sizeof(struct contention_task_data));
|
|
__uint(max_entries, MAX_ENTRIES);
|
|
} task_data SEC(".maps");
|
|
|
|
struct {
|
|
__uint(type, BPF_MAP_TYPE_HASH);
|
|
__uint(key_size, sizeof(__u64));
|
|
__uint(value_size, sizeof(__u32));
|
|
__uint(max_entries, MAX_ENTRIES);
|
|
} lock_syms SEC(".maps");
|
|
|
|
struct {
|
|
__uint(type, BPF_MAP_TYPE_HASH);
|
|
__uint(key_size, sizeof(__u32));
|
|
__uint(value_size, sizeof(__u8));
|
|
__uint(max_entries, 1);
|
|
} cpu_filter SEC(".maps");
|
|
|
|
struct {
|
|
__uint(type, BPF_MAP_TYPE_HASH);
|
|
__uint(key_size, sizeof(__u32));
|
|
__uint(value_size, sizeof(__u8));
|
|
__uint(max_entries, 1);
|
|
} task_filter SEC(".maps");
|
|
|
|
struct {
|
|
__uint(type, BPF_MAP_TYPE_HASH);
|
|
__uint(key_size, sizeof(__u32));
|
|
__uint(value_size, sizeof(__u8));
|
|
__uint(max_entries, 1);
|
|
} type_filter SEC(".maps");
|
|
|
|
struct {
|
|
__uint(type, BPF_MAP_TYPE_HASH);
|
|
__uint(key_size, sizeof(__u64));
|
|
__uint(value_size, sizeof(__u8));
|
|
__uint(max_entries, 1);
|
|
} addr_filter SEC(".maps");
|
|
|
|
struct {
|
|
__uint(type, BPF_MAP_TYPE_HASH);
|
|
__uint(key_size, sizeof(__u64));
|
|
__uint(value_size, sizeof(__u8));
|
|
__uint(max_entries, 1);
|
|
} cgroup_filter SEC(".maps");
|
|
|
|
struct {
|
|
__uint(type, BPF_MAP_TYPE_HASH);
|
|
__uint(key_size, sizeof(long));
|
|
__uint(value_size, sizeof(__u8));
|
|
__uint(max_entries, 1);
|
|
} slab_filter SEC(".maps");
|
|
|
|
struct {
|
|
__uint(type, BPF_MAP_TYPE_HASH);
|
|
__uint(key_size, sizeof(long));
|
|
__uint(value_size, sizeof(struct slab_cache_data));
|
|
__uint(max_entries, 1);
|
|
} slab_caches SEC(".maps");
|
|
|
|
struct {
|
|
__uint(type, BPF_MAP_TYPE_HASH);
|
|
__uint(key_size, sizeof(__u64));
|
|
__uint(value_size, sizeof(__u64));
|
|
__uint(max_entries, 1);
|
|
} lock_delays SEC(".maps");
|
|
|
|
struct rw_semaphore___old {
|
|
struct task_struct *owner;
|
|
} __attribute__((preserve_access_index));
|
|
|
|
struct rw_semaphore___new {
|
|
atomic_long_t owner;
|
|
} __attribute__((preserve_access_index));
|
|
|
|
struct mm_struct___old {
|
|
struct rw_semaphore mmap_sem;
|
|
} __attribute__((preserve_access_index));
|
|
|
|
struct mm_struct___new {
|
|
struct rw_semaphore mmap_lock;
|
|
} __attribute__((preserve_access_index));
|
|
|
|
extern struct kmem_cache *bpf_get_kmem_cache(u64 addr) __ksym __weak;
|
|
|
|
/* control flags */
|
|
const volatile int has_cpu;
|
|
const volatile int has_task;
|
|
const volatile int has_type;
|
|
const volatile int has_addr;
|
|
const volatile int has_cgroup;
|
|
const volatile int has_slab;
|
|
const volatile int needs_callstack;
|
|
const volatile int stack_skip;
|
|
const volatile int lock_owner;
|
|
const volatile int use_cgroup_v2;
|
|
const volatile int max_stack;
|
|
const volatile int lock_delay;
|
|
|
|
/* determine the key of lock stat */
|
|
const volatile int aggr_mode;
|
|
|
|
int enabled;
|
|
|
|
int perf_subsys_id = -1;
|
|
|
|
__u64 end_ts;
|
|
|
|
__u32 slab_cache_id;
|
|
|
|
/* error stat */
|
|
int task_fail;
|
|
int stack_fail;
|
|
int time_fail;
|
|
int data_fail;
|
|
|
|
int task_map_full;
|
|
int data_map_full;
|
|
|
|
struct task_struct *bpf_task_from_pid(s32 pid) __ksym __weak;
|
|
void bpf_task_release(struct task_struct *p) __ksym __weak;
|
|
|
|
static inline __u64 get_current_cgroup_id(void)
|
|
{
|
|
struct task_struct *task;
|
|
struct cgroup *cgrp;
|
|
|
|
if (use_cgroup_v2)
|
|
return bpf_get_current_cgroup_id();
|
|
|
|
task = bpf_get_current_task_btf();
|
|
|
|
if (perf_subsys_id == -1) {
|
|
#if __has_builtin(__builtin_preserve_enum_value)
|
|
perf_subsys_id = bpf_core_enum_value(enum cgroup_subsys_id,
|
|
perf_event_cgrp_id);
|
|
#else
|
|
perf_subsys_id = perf_event_cgrp_id;
|
|
#endif
|
|
}
|
|
|
|
cgrp = BPF_CORE_READ(task, cgroups, subsys[perf_subsys_id], cgroup);
|
|
return BPF_CORE_READ(cgrp, kn, id);
|
|
}
|
|
|
|
static inline int can_record(u64 *ctx)
|
|
{
|
|
if (has_cpu) {
|
|
__u32 cpu = bpf_get_smp_processor_id();
|
|
__u8 *ok;
|
|
|
|
ok = bpf_map_lookup_elem(&cpu_filter, &cpu);
|
|
if (!ok)
|
|
return 0;
|
|
}
|
|
|
|
if (has_task) {
|
|
__u8 *ok;
|
|
__u32 pid = bpf_get_current_pid_tgid();
|
|
|
|
ok = bpf_map_lookup_elem(&task_filter, &pid);
|
|
if (!ok)
|
|
return 0;
|
|
}
|
|
|
|
if (has_type) {
|
|
__u8 *ok;
|
|
__u32 flags = (__u32)ctx[1];
|
|
|
|
ok = bpf_map_lookup_elem(&type_filter, &flags);
|
|
if (!ok)
|
|
return 0;
|
|
}
|
|
|
|
if (has_addr) {
|
|
__u8 *ok;
|
|
__u64 addr = ctx[0];
|
|
|
|
ok = bpf_map_lookup_elem(&addr_filter, &addr);
|
|
if (!ok && !has_slab)
|
|
return 0;
|
|
}
|
|
|
|
if (has_cgroup) {
|
|
__u8 *ok;
|
|
__u64 cgrp = get_current_cgroup_id();
|
|
|
|
ok = bpf_map_lookup_elem(&cgroup_filter, &cgrp);
|
|
if (!ok)
|
|
return 0;
|
|
}
|
|
|
|
if (has_slab && bpf_get_kmem_cache) {
|
|
__u8 *ok;
|
|
__u64 addr = ctx[0];
|
|
long kmem_cache_addr;
|
|
|
|
kmem_cache_addr = (long)bpf_get_kmem_cache(addr);
|
|
ok = bpf_map_lookup_elem(&slab_filter, &kmem_cache_addr);
|
|
if (!ok)
|
|
return 0;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
static inline int update_task_data(struct task_struct *task)
|
|
{
|
|
struct contention_task_data *p;
|
|
int pid, err;
|
|
|
|
err = bpf_core_read(&pid, sizeof(pid), &task->pid);
|
|
if (err)
|
|
return -1;
|
|
|
|
p = bpf_map_lookup_elem(&task_data, &pid);
|
|
if (p == NULL && !task_map_full) {
|
|
struct contention_task_data data = {};
|
|
|
|
BPF_CORE_READ_STR_INTO(&data.comm, task, comm);
|
|
if (bpf_map_update_elem(&task_data, &pid, &data, BPF_NOEXIST) == -E2BIG)
|
|
task_map_full = 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
#ifndef __has_builtin
|
|
# define __has_builtin(x) 0
|
|
#endif
|
|
|
|
static inline struct task_struct *get_lock_owner(__u64 lock, __u32 flags)
|
|
{
|
|
struct task_struct *task;
|
|
__u64 owner = 0;
|
|
|
|
if (flags & LCB_F_MUTEX) {
|
|
struct mutex *mutex = (void *)lock;
|
|
owner = BPF_CORE_READ(mutex, owner.counter);
|
|
} else if (flags == LCB_F_READ || flags == LCB_F_WRITE) {
|
|
/*
|
|
* Support for the BPF_TYPE_MATCHES argument to the
|
|
* __builtin_preserve_type_info builtin was added at some point during
|
|
* development of clang 15 and it's what is needed for
|
|
* bpf_core_type_matches.
|
|
*/
|
|
#if __has_builtin(__builtin_preserve_type_info) && __clang_major__ >= 15
|
|
if (bpf_core_type_matches(struct rw_semaphore___old)) {
|
|
struct rw_semaphore___old *rwsem = (void *)lock;
|
|
owner = (unsigned long)BPF_CORE_READ(rwsem, owner);
|
|
} else if (bpf_core_type_matches(struct rw_semaphore___new)) {
|
|
struct rw_semaphore___new *rwsem = (void *)lock;
|
|
owner = BPF_CORE_READ(rwsem, owner.counter);
|
|
}
|
|
#else
|
|
/* assume new struct */
|
|
struct rw_semaphore *rwsem = (void *)lock;
|
|
owner = BPF_CORE_READ(rwsem, owner.counter);
|
|
#endif
|
|
}
|
|
|
|
if (!owner)
|
|
return NULL;
|
|
|
|
task = (void *)(owner & ~7UL);
|
|
return task;
|
|
}
|
|
|
|
static inline __u32 check_lock_type(__u64 lock, __u32 flags)
|
|
{
|
|
struct task_struct *curr;
|
|
struct mm_struct___old *mm_old;
|
|
struct mm_struct___new *mm_new;
|
|
struct sighand_struct *sighand;
|
|
|
|
switch (flags) {
|
|
case LCB_F_READ: /* rwsem */
|
|
case LCB_F_WRITE:
|
|
curr = bpf_get_current_task_btf();
|
|
if (curr->mm == NULL)
|
|
break;
|
|
mm_new = (void *)curr->mm;
|
|
if (bpf_core_field_exists(mm_new->mmap_lock)) {
|
|
if (&mm_new->mmap_lock == (void *)lock)
|
|
return LCD_F_MMAP_LOCK;
|
|
break;
|
|
}
|
|
mm_old = (void *)curr->mm;
|
|
if (bpf_core_field_exists(mm_old->mmap_sem)) {
|
|
if (&mm_old->mmap_sem == (void *)lock)
|
|
return LCD_F_MMAP_LOCK;
|
|
}
|
|
break;
|
|
case LCB_F_SPIN: /* spinlock */
|
|
curr = bpf_get_current_task_btf();
|
|
sighand = curr->sighand;
|
|
|
|
if (sighand && &sighand->siglock == (void *)lock)
|
|
return LCD_F_SIGHAND_LOCK;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static inline long delay_callback(__u64 idx, void *arg)
|
|
{
|
|
__u64 target = *(__u64 *)arg;
|
|
|
|
if (target <= bpf_ktime_get_ns())
|
|
return 1;
|
|
|
|
/* just to kill time */
|
|
(void)bpf_get_prandom_u32();
|
|
|
|
return 0;
|
|
}
|
|
|
|
static inline void do_lock_delay(__u64 duration)
|
|
{
|
|
__u64 target = bpf_ktime_get_ns() + duration;
|
|
|
|
bpf_loop(MAX_LOOP, delay_callback, &target, /*flags=*/0);
|
|
}
|
|
|
|
static inline void check_lock_delay(__u64 lock)
|
|
{
|
|
__u64 *delay;
|
|
|
|
delay = bpf_map_lookup_elem(&lock_delays, &lock);
|
|
if (delay)
|
|
do_lock_delay(*delay);
|
|
}
|
|
|
|
static inline struct tstamp_data *get_tstamp_elem(__u32 flags)
|
|
{
|
|
__u32 pid;
|
|
struct tstamp_data *pelem;
|
|
|
|
/* Use per-cpu array map for spinlock and rwlock */
|
|
if ((flags & (LCB_F_SPIN | LCB_F_MUTEX)) == LCB_F_SPIN) {
|
|
__u32 idx = 0;
|
|
|
|
pelem = bpf_map_lookup_elem(&tstamp_cpu, &idx);
|
|
/* Do not update the element for nested locks */
|
|
if (pelem && pelem->lock)
|
|
pelem = NULL;
|
|
return pelem;
|
|
}
|
|
|
|
pid = bpf_get_current_pid_tgid();
|
|
pelem = bpf_map_lookup_elem(&tstamp, &pid);
|
|
/* Do not update the element for nested locks */
|
|
if (pelem && pelem->lock)
|
|
return NULL;
|
|
|
|
if (pelem == NULL) {
|
|
struct tstamp_data zero = {};
|
|
|
|
if (bpf_map_update_elem(&tstamp, &pid, &zero, BPF_NOEXIST) < 0) {
|
|
__sync_fetch_and_add(&task_fail, 1);
|
|
return NULL;
|
|
}
|
|
|
|
pelem = bpf_map_lookup_elem(&tstamp, &pid);
|
|
if (pelem == NULL) {
|
|
__sync_fetch_and_add(&task_fail, 1);
|
|
return NULL;
|
|
}
|
|
}
|
|
return pelem;
|
|
}
|
|
|
|
static inline s32 get_owner_stack_id(u64 *stacktrace)
|
|
{
|
|
s32 *id, new_id;
|
|
static s64 id_gen = 1;
|
|
|
|
id = bpf_map_lookup_elem(&owner_stacks, stacktrace);
|
|
if (id)
|
|
return *id;
|
|
|
|
new_id = (s32)__sync_fetch_and_add(&id_gen, 1);
|
|
|
|
bpf_map_update_elem(&owner_stacks, stacktrace, &new_id, BPF_NOEXIST);
|
|
|
|
id = bpf_map_lookup_elem(&owner_stacks, stacktrace);
|
|
if (id)
|
|
return *id;
|
|
|
|
return -1;
|
|
}
|
|
|
|
static inline void update_contention_data(struct contention_data *data, u64 duration, u32 count)
|
|
{
|
|
__sync_fetch_and_add(&data->total_time, duration);
|
|
__sync_fetch_and_add(&data->count, count);
|
|
|
|
/* FIXME: need atomic operations */
|
|
if (data->max_time < duration)
|
|
data->max_time = duration;
|
|
if (data->min_time > duration)
|
|
data->min_time = duration;
|
|
}
|
|
|
|
static inline void update_owner_stat(u32 id, u64 duration, u32 flags)
|
|
{
|
|
struct contention_key key = {
|
|
.stack_id = id,
|
|
.pid = 0,
|
|
.lock_addr_or_cgroup = 0,
|
|
};
|
|
struct contention_data *data = bpf_map_lookup_elem(&owner_stat, &key);
|
|
|
|
if (!data) {
|
|
struct contention_data first = {
|
|
.total_time = duration,
|
|
.max_time = duration,
|
|
.min_time = duration,
|
|
.count = 1,
|
|
.flags = flags,
|
|
};
|
|
bpf_map_update_elem(&owner_stat, &key, &first, BPF_NOEXIST);
|
|
} else {
|
|
update_contention_data(data, duration, 1);
|
|
}
|
|
}
|
|
|
|
SEC("tp_btf/contention_begin")
|
|
int contention_begin(u64 *ctx)
|
|
{
|
|
struct tstamp_data *pelem;
|
|
|
|
if (!enabled || !can_record(ctx))
|
|
return 0;
|
|
|
|
pelem = get_tstamp_elem(ctx[1]);
|
|
if (pelem == NULL)
|
|
return 0;
|
|
|
|
pelem->timestamp = bpf_ktime_get_ns();
|
|
pelem->lock = (__u64)ctx[0];
|
|
pelem->flags = (__u32)ctx[1];
|
|
|
|
if (needs_callstack) {
|
|
u32 i = 0;
|
|
u32 id = 0;
|
|
int owner_pid;
|
|
u64 *buf;
|
|
struct task_struct *task;
|
|
struct owner_tracing_data *otdata;
|
|
|
|
if (!lock_owner)
|
|
goto skip_owner;
|
|
|
|
task = get_lock_owner(pelem->lock, pelem->flags);
|
|
if (!task)
|
|
goto skip_owner;
|
|
|
|
owner_pid = BPF_CORE_READ(task, pid);
|
|
|
|
buf = bpf_map_lookup_elem(&stack_buf, &i);
|
|
if (!buf)
|
|
goto skip_owner;
|
|
for (i = 0; i < max_stack; i++)
|
|
buf[i] = 0x0;
|
|
|
|
if (!bpf_task_from_pid)
|
|
goto skip_owner;
|
|
|
|
task = bpf_task_from_pid(owner_pid);
|
|
if (!task)
|
|
goto skip_owner;
|
|
|
|
bpf_get_task_stack(task, buf, max_stack * sizeof(unsigned long), 0);
|
|
bpf_task_release(task);
|
|
|
|
otdata = bpf_map_lookup_elem(&owner_data, &pelem->lock);
|
|
id = get_owner_stack_id(buf);
|
|
|
|
/*
|
|
* Contention just happens, or corner case `lock` is owned by process not
|
|
* `owner_pid`. For the corner case we treat it as unexpected internal error and
|
|
* just ignore the precvious tracing record.
|
|
*/
|
|
if (!otdata || otdata->pid != owner_pid) {
|
|
struct owner_tracing_data first = {
|
|
.pid = owner_pid,
|
|
.timestamp = pelem->timestamp,
|
|
.count = 1,
|
|
.stack_id = id,
|
|
};
|
|
bpf_map_update_elem(&owner_data, &pelem->lock, &first, BPF_ANY);
|
|
}
|
|
/* Contention is ongoing and new waiter joins */
|
|
else {
|
|
__sync_fetch_and_add(&otdata->count, 1);
|
|
|
|
/*
|
|
* The owner is the same, but stacktrace might be changed. In this case we
|
|
* store/update `owner_stat` based on current owner stack id.
|
|
*/
|
|
if (id != otdata->stack_id) {
|
|
update_owner_stat(id, pelem->timestamp - otdata->timestamp,
|
|
pelem->flags);
|
|
|
|
otdata->timestamp = pelem->timestamp;
|
|
otdata->stack_id = id;
|
|
}
|
|
}
|
|
skip_owner:
|
|
pelem->stack_id = bpf_get_stackid(ctx, &stacks,
|
|
BPF_F_FAST_STACK_CMP | stack_skip);
|
|
if (pelem->stack_id < 0)
|
|
__sync_fetch_and_add(&stack_fail, 1);
|
|
} else if (aggr_mode == LOCK_AGGR_TASK) {
|
|
struct task_struct *task;
|
|
|
|
if (lock_owner) {
|
|
task = get_lock_owner(pelem->lock, pelem->flags);
|
|
|
|
/* The flags is not used anymore. Pass the owner pid. */
|
|
if (task)
|
|
pelem->flags = BPF_CORE_READ(task, pid);
|
|
else
|
|
pelem->flags = -1U;
|
|
|
|
} else {
|
|
task = bpf_get_current_task_btf();
|
|
}
|
|
|
|
if (task) {
|
|
if (update_task_data(task) < 0 && lock_owner)
|
|
pelem->flags = -1U;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
SEC("tp_btf/contention_end")
|
|
int contention_end(u64 *ctx)
|
|
{
|
|
__u32 pid = 0, idx = 0;
|
|
struct tstamp_data *pelem;
|
|
struct contention_key key = {};
|
|
struct contention_data *data;
|
|
__u64 timestamp;
|
|
__u64 duration;
|
|
bool need_delete = false;
|
|
|
|
if (!enabled)
|
|
return 0;
|
|
|
|
/*
|
|
* For spinlock and rwlock, it needs to get the timestamp for the
|
|
* per-cpu map. However, contention_end does not have the flags
|
|
* so it cannot know whether it reads percpu or hash map.
|
|
*
|
|
* Try per-cpu map first and check if there's active contention.
|
|
* If it is, do not read hash map because it cannot go to sleeping
|
|
* locks before releasing the spinning locks.
|
|
*/
|
|
pelem = bpf_map_lookup_elem(&tstamp_cpu, &idx);
|
|
if (pelem && pelem->lock) {
|
|
if (pelem->lock != ctx[0])
|
|
return 0;
|
|
} else {
|
|
pid = bpf_get_current_pid_tgid();
|
|
pelem = bpf_map_lookup_elem(&tstamp, &pid);
|
|
if (!pelem || pelem->lock != ctx[0])
|
|
return 0;
|
|
need_delete = true;
|
|
}
|
|
|
|
timestamp = bpf_ktime_get_ns();
|
|
duration = timestamp - pelem->timestamp;
|
|
if ((__s64)duration < 0) {
|
|
__sync_fetch_and_add(&time_fail, 1);
|
|
goto out;
|
|
}
|
|
|
|
if (needs_callstack && lock_owner) {
|
|
struct owner_tracing_data *otdata = bpf_map_lookup_elem(&owner_data, &pelem->lock);
|
|
|
|
if (!otdata)
|
|
goto skip_owner;
|
|
|
|
/* Update `owner_stat` */
|
|
update_owner_stat(otdata->stack_id, timestamp - otdata->timestamp, pelem->flags);
|
|
|
|
/* No contention is occurring, delete `lock` entry in `owner_data` */
|
|
if (otdata->count <= 1)
|
|
bpf_map_delete_elem(&owner_data, &pelem->lock);
|
|
/*
|
|
* Contention is still ongoing, with a new owner (current task). `owner_data`
|
|
* should be updated accordingly.
|
|
*/
|
|
else {
|
|
u32 i = 0;
|
|
s32 ret = (s32)ctx[1];
|
|
u64 *buf;
|
|
|
|
otdata->timestamp = timestamp;
|
|
__sync_fetch_and_add(&otdata->count, -1);
|
|
|
|
buf = bpf_map_lookup_elem(&stack_buf, &i);
|
|
if (!buf)
|
|
goto skip_owner;
|
|
for (i = 0; i < (u32)max_stack; i++)
|
|
buf[i] = 0x0;
|
|
|
|
/*
|
|
* `ret` has the return code of the lock function.
|
|
* If `ret` is negative, the current task terminates lock waiting without
|
|
* acquiring it. Owner is not changed, but we still need to update the owner
|
|
* stack.
|
|
*/
|
|
if (ret < 0) {
|
|
s32 id = 0;
|
|
struct task_struct *task;
|
|
|
|
if (!bpf_task_from_pid)
|
|
goto skip_owner;
|
|
|
|
task = bpf_task_from_pid(otdata->pid);
|
|
if (!task)
|
|
goto skip_owner;
|
|
|
|
bpf_get_task_stack(task, buf,
|
|
max_stack * sizeof(unsigned long), 0);
|
|
bpf_task_release(task);
|
|
|
|
id = get_owner_stack_id(buf);
|
|
|
|
/*
|
|
* If owner stack is changed, update owner stack id for this lock.
|
|
*/
|
|
if (id != otdata->stack_id)
|
|
otdata->stack_id = id;
|
|
}
|
|
/*
|
|
* Otherwise, update tracing data with the current task, which is the new
|
|
* owner.
|
|
*/
|
|
else {
|
|
otdata->pid = pid;
|
|
/*
|
|
* We don't want to retrieve callstack here, since it is where the
|
|
* current task acquires the lock and provides no additional
|
|
* information. We simply assign -1 to invalidate it.
|
|
*/
|
|
otdata->stack_id = -1;
|
|
}
|
|
}
|
|
}
|
|
skip_owner:
|
|
switch (aggr_mode) {
|
|
case LOCK_AGGR_CALLER:
|
|
key.stack_id = pelem->stack_id;
|
|
break;
|
|
case LOCK_AGGR_TASK:
|
|
if (lock_owner)
|
|
key.pid = pelem->flags;
|
|
else {
|
|
if (!need_delete)
|
|
pid = bpf_get_current_pid_tgid();
|
|
key.pid = pid;
|
|
}
|
|
if (needs_callstack)
|
|
key.stack_id = pelem->stack_id;
|
|
break;
|
|
case LOCK_AGGR_ADDR:
|
|
key.lock_addr_or_cgroup = pelem->lock;
|
|
if (needs_callstack)
|
|
key.stack_id = pelem->stack_id;
|
|
break;
|
|
case LOCK_AGGR_CGROUP:
|
|
key.lock_addr_or_cgroup = get_current_cgroup_id();
|
|
break;
|
|
default:
|
|
/* should not happen */
|
|
return 0;
|
|
}
|
|
|
|
data = bpf_map_lookup_elem(&lock_stat, &key);
|
|
if (!data) {
|
|
if (data_map_full) {
|
|
__sync_fetch_and_add(&data_fail, 1);
|
|
goto out;
|
|
}
|
|
|
|
struct contention_data first = {
|
|
.total_time = duration,
|
|
.max_time = duration,
|
|
.min_time = duration,
|
|
.count = 1,
|
|
.flags = pelem->flags,
|
|
};
|
|
int err;
|
|
|
|
if (aggr_mode == LOCK_AGGR_ADDR) {
|
|
first.flags |= check_lock_type(pelem->lock,
|
|
pelem->flags & LCB_F_TYPE_MASK);
|
|
|
|
/* Check if it's from a slab object */
|
|
if (bpf_get_kmem_cache) {
|
|
struct kmem_cache *s;
|
|
struct slab_cache_data *d;
|
|
|
|
s = bpf_get_kmem_cache(pelem->lock);
|
|
if (s != NULL) {
|
|
/*
|
|
* Save the ID of the slab cache in the flags
|
|
* (instead of full address) to reduce the
|
|
* space in the contention_data.
|
|
*/
|
|
d = bpf_map_lookup_elem(&slab_caches, &s);
|
|
if (d != NULL)
|
|
first.flags |= d->id;
|
|
}
|
|
}
|
|
}
|
|
|
|
err = bpf_map_update_elem(&lock_stat, &key, &first, BPF_NOEXIST);
|
|
if (err < 0) {
|
|
if (err == -EEXIST) {
|
|
/* it lost the race, try to get it again */
|
|
data = bpf_map_lookup_elem(&lock_stat, &key);
|
|
if (data != NULL)
|
|
goto found;
|
|
}
|
|
if (err == -E2BIG)
|
|
data_map_full = 1;
|
|
__sync_fetch_and_add(&data_fail, 1);
|
|
}
|
|
goto out;
|
|
}
|
|
|
|
found:
|
|
update_contention_data(data, duration, 1);
|
|
|
|
out:
|
|
if (lock_delay)
|
|
check_lock_delay(pelem->lock);
|
|
|
|
pelem->lock = 0;
|
|
if (need_delete)
|
|
bpf_map_delete_elem(&tstamp, &pid);
|
|
return 0;
|
|
}
|
|
|
|
extern struct rq runqueues __ksym;
|
|
|
|
const volatile __u64 contig_page_data_addr;
|
|
const volatile __u64 node_data_addr;
|
|
const volatile int nr_nodes;
|
|
const volatile int sizeof_zone;
|
|
|
|
struct rq___old {
|
|
raw_spinlock_t lock;
|
|
} __attribute__((preserve_access_index));
|
|
|
|
struct rq___new {
|
|
raw_spinlock_t __lock;
|
|
} __attribute__((preserve_access_index));
|
|
|
|
static void collect_zone_lock(void)
|
|
{
|
|
__u64 nr_zones, zone_off;
|
|
__u64 lock_addr, lock_off;
|
|
__u32 lock_flag = LOCK_CLASS_ZONE_LOCK;
|
|
|
|
zone_off = offsetof(struct pglist_data, node_zones);
|
|
lock_off = offsetof(struct zone, lock);
|
|
|
|
if (contig_page_data_addr) {
|
|
struct pglist_data *contig_page_data;
|
|
|
|
contig_page_data = (void *)(long)contig_page_data_addr;
|
|
nr_zones = BPF_CORE_READ(contig_page_data, nr_zones);
|
|
|
|
for (int i = 0; i < MAX_ZONES; i++) {
|
|
__u64 zone_addr;
|
|
|
|
if (i >= nr_zones)
|
|
break;
|
|
|
|
zone_addr = contig_page_data_addr + (sizeof_zone * i) + zone_off;
|
|
lock_addr = zone_addr + lock_off;
|
|
|
|
bpf_map_update_elem(&lock_syms, &lock_addr, &lock_flag, BPF_ANY);
|
|
}
|
|
} else if (nr_nodes > 0) {
|
|
struct pglist_data **node_data = (void *)(long)node_data_addr;
|
|
|
|
for (int i = 0; i < nr_nodes; i++) {
|
|
struct pglist_data *pgdat = NULL;
|
|
int err;
|
|
|
|
err = bpf_core_read(&pgdat, sizeof(pgdat), &node_data[i]);
|
|
if (err < 0 || pgdat == NULL)
|
|
break;
|
|
|
|
nr_zones = BPF_CORE_READ(pgdat, nr_zones);
|
|
for (int k = 0; k < MAX_ZONES; k++) {
|
|
__u64 zone_addr;
|
|
|
|
if (k >= nr_zones)
|
|
break;
|
|
|
|
zone_addr = (__u64)(void *)pgdat + (sizeof_zone * k) + zone_off;
|
|
lock_addr = zone_addr + lock_off;
|
|
|
|
bpf_map_update_elem(&lock_syms, &lock_addr, &lock_flag, BPF_ANY);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
SEC("raw_tp/bpf_test_finish")
|
|
int BPF_PROG(collect_lock_syms)
|
|
{
|
|
__u64 lock_addr, lock_off;
|
|
__u32 lock_flag;
|
|
|
|
if (bpf_core_field_exists(struct rq___new, __lock))
|
|
lock_off = offsetof(struct rq___new, __lock);
|
|
else
|
|
lock_off = offsetof(struct rq___old, lock);
|
|
|
|
for (int i = 0; i < MAX_CPUS; i++) {
|
|
struct rq *rq = bpf_per_cpu_ptr(&runqueues, i);
|
|
|
|
if (rq == NULL)
|
|
break;
|
|
|
|
lock_addr = (__u64)(void *)rq + lock_off;
|
|
lock_flag = LOCK_CLASS_RQLOCK;
|
|
bpf_map_update_elem(&lock_syms, &lock_addr, &lock_flag, BPF_ANY);
|
|
}
|
|
|
|
collect_zone_lock();
|
|
|
|
return 0;
|
|
}
|
|
|
|
SEC("raw_tp/bpf_test_finish")
|
|
int BPF_PROG(end_timestamp)
|
|
{
|
|
end_ts = bpf_ktime_get_ns();
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* bpf_iter__kmem_cache added recently so old kernels don't have it in the
|
|
* vmlinux.h. But we cannot add it here since it will cause a compiler error
|
|
* due to redefinition of the struct on later kernels.
|
|
*
|
|
* So it uses a CO-RE trick to access the member only if it has the type.
|
|
* This will support both old and new kernels without compiler errors.
|
|
*/
|
|
struct bpf_iter__kmem_cache___new {
|
|
struct kmem_cache *s;
|
|
} __attribute__((preserve_access_index));
|
|
|
|
SEC("iter/kmem_cache")
|
|
int slab_cache_iter(void *ctx)
|
|
{
|
|
struct kmem_cache *s = NULL;
|
|
struct slab_cache_data d;
|
|
const char *nameptr;
|
|
|
|
if (bpf_core_type_exists(struct bpf_iter__kmem_cache)) {
|
|
struct bpf_iter__kmem_cache___new *iter = ctx;
|
|
|
|
s = iter->s;
|
|
}
|
|
|
|
if (s == NULL)
|
|
return 0;
|
|
|
|
nameptr = s->name;
|
|
bpf_probe_read_kernel_str(d.name, sizeof(d.name), nameptr);
|
|
|
|
d.id = ++slab_cache_id << LCB_F_SLAB_ID_SHIFT;
|
|
if (d.id >= LCB_F_SLAB_ID_END)
|
|
return 0;
|
|
|
|
bpf_map_update_elem(&slab_caches, &s, &d, BPF_NOEXIST);
|
|
return 0;
|
|
}
|
|
|
|
char LICENSE[] SEC("license") = "Dual BSD/GPL";
|