linux/tools/perf/util/bpf_skel/lock_contention.bpf.c
Namhyung Kim c42e219942 perf lock contention: Add -J/--inject-delay option
This is to slow down lock acquistion (on contention locks) deliberately.

A possible use case is to estimate impact on application performance by
optimization of kernel locking behavior.  By delaying the lock it can
simulate the worse condition as a control group, and then compare with
the current behavior as a optimized condition.

The syntax is 'time@function' and the time can have unit suffix like
"us" and "ms".  For example, I ran a simple test like below.

  $ sudo perf lock con -abl -L tasklist_lock -- \
    sh -c 'for i in $(seq 1000); do sleep 1 & done; wait'
   contended   total wait     max wait     avg wait            address   symbol

          92      1.18 ms    199.54 us     12.79 us   ffffffff8a806080   tasklist_lock (rwlock)

The contention count was 92 and the average wait time was around 10 us.
But if I add 100 usec of delay to the tasklist_lock,

  $ sudo perf lock con -abl -L tasklist_lock -J 100us@tasklist_lock -- \
    sh -c 'for i in $(seq 1000); do sleep 1 & done; wait'
   contended   total wait     max wait     avg wait            address   symbol

         190     15.67 ms    230.10 us     82.46 us   ffffffff8a806080   tasklist_lock (rwlock)

The contention count increased and the average wait time was up closed
to 100 usec.  If I increase the delay even more,

  $ sudo perf lock con -abl -L tasklist_lock -J 1ms@tasklist_lock -- \
    sh -c 'for i in $(seq 1000); do sleep 1 & done; wait'
   contended   total wait     max wait     avg wait            address   symbol

        1002      2.80 s       3.01 ms      2.80 ms   ffffffff8a806080   tasklist_lock (rwlock)

Now every sleep process had contention and the wait time was more than 1
msec.  This is on my 4 CPU laptop so I guess one CPU has the lock while
other 3 are waiting for it mostly.

For simplicity, it only supports global locks for now.

Committer testing:

  root@number:~# grep -m1 'model name' /proc/cpuinfo
  model name : AMD Ryzen 9 9950X3D 16-Core Processor
  root@number:~# perf lock con -abl -L tasklist_lock -- sh -c 'for i in $(seq 1000); do sleep 1 & done; wait'
   contended  total wait   max wait  avg wait           address  symbol

         142   453.85 us   25.39 us   3.20 us  ffffffffae808080  tasklist_lock (rwlock)
  root@number:~# perf lock con -abl -L tasklist_lock -J 100us@tasklist_lock -- sh -c 'for i in $(seq 1000); do sleep 1 & done; wait'
   contended  total wait   max wait  avg wait           address  symbol

        1040     2.39 s     3.11 ms   2.30 ms  ffffffffae808080  tasklist_lock (rwlock)
  root@number:~# perf lock con -abl -L tasklist_lock -J 1ms@tasklist_lock -- sh -c 'for i in $(seq 1000); do sleep 1 & done; wait'
   contended  total wait   max wait  avg wait           address  symbol

        1025    24.72 s    31.01 ms  24.12 ms  ffffffffae808080  tasklist_lock (rwlock)
  root@number:~#

Suggested-by: Stephane Eranian <eranian@google.com>
Signed-off-by: Namhyung Kim <namhyung@kernel.org>
Tested-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Adrian Hunter <adrian.hunter@intel.com>
Cc: Ian Rogers <irogers@google.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Jiri Olsa <jolsa@kernel.org>
Cc: Kan Liang <kan.liang@linux.intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Song Liu <song@kernel.org>
Link: https://lore.kernel.org/r/20250509171950.183591-1-namhyung@kernel.org
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2025-05-09 14:32:15 -03:00

989 lines
23 KiB
C

// SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause)
// Copyright (c) 2022 Google
#include "vmlinux.h"
#include <bpf/bpf_helpers.h>
#include <bpf/bpf_tracing.h>
#include <bpf/bpf_core_read.h>
#include <asm-generic/errno-base.h>
#include "lock_data.h"
/* for collect_lock_syms(). 4096 was rejected by the verifier */
#define MAX_CPUS 1024
/* for collect_zone_lock(). It should be more than the actual zones. */
#define MAX_ZONES 10
/* for do_lock_delay(). Arbitrarily set to 1 million. */
#define MAX_LOOP (1U << 20)
/* lock contention flags from include/trace/events/lock.h */
#define LCB_F_SPIN (1U << 0)
#define LCB_F_READ (1U << 1)
#define LCB_F_WRITE (1U << 2)
#define LCB_F_RT (1U << 3)
#define LCB_F_PERCPU (1U << 4)
#define LCB_F_MUTEX (1U << 5)
/* callstack storage */
struct {
__uint(type, BPF_MAP_TYPE_STACK_TRACE);
__uint(key_size, sizeof(__u32));
__uint(value_size, sizeof(__u64));
__uint(max_entries, MAX_ENTRIES);
} stacks SEC(".maps");
/* buffer for owner stacktrace */
struct {
__uint(type, BPF_MAP_TYPE_PERCPU_ARRAY);
__uint(key_size, sizeof(__u32));
__uint(value_size, sizeof(__u64));
__uint(max_entries, 1);
} stack_buf SEC(".maps");
/* a map for tracing owner stacktrace to owner stack id */
struct {
__uint(type, BPF_MAP_TYPE_HASH);
__uint(key_size, sizeof(__u64)); // owner stacktrace
__uint(value_size, sizeof(__s32)); // owner stack id
__uint(max_entries, 1);
} owner_stacks SEC(".maps");
/* a map for tracing lock address to owner data */
struct {
__uint(type, BPF_MAP_TYPE_HASH);
__uint(key_size, sizeof(__u64)); // lock address
__uint(value_size, sizeof(struct owner_tracing_data));
__uint(max_entries, 1);
} owner_data SEC(".maps");
/* a map for contention_key (stores owner stack id) to contention data */
struct {
__uint(type, BPF_MAP_TYPE_HASH);
__uint(key_size, sizeof(struct contention_key));
__uint(value_size, sizeof(struct contention_data));
__uint(max_entries, 1);
} owner_stat SEC(".maps");
/* maintain timestamp at the beginning of contention */
struct {
__uint(type, BPF_MAP_TYPE_HASH);
__type(key, int);
__type(value, struct tstamp_data);
__uint(max_entries, MAX_ENTRIES);
} tstamp SEC(".maps");
/* maintain per-CPU timestamp at the beginning of contention */
struct {
__uint(type, BPF_MAP_TYPE_PERCPU_ARRAY);
__uint(key_size, sizeof(__u32));
__uint(value_size, sizeof(struct tstamp_data));
__uint(max_entries, 1);
} tstamp_cpu SEC(".maps");
/* actual lock contention statistics */
struct {
__uint(type, BPF_MAP_TYPE_HASH);
__uint(key_size, sizeof(struct contention_key));
__uint(value_size, sizeof(struct contention_data));
__uint(max_entries, MAX_ENTRIES);
} lock_stat SEC(".maps");
struct {
__uint(type, BPF_MAP_TYPE_HASH);
__uint(key_size, sizeof(__u32));
__uint(value_size, sizeof(struct contention_task_data));
__uint(max_entries, MAX_ENTRIES);
} task_data SEC(".maps");
struct {
__uint(type, BPF_MAP_TYPE_HASH);
__uint(key_size, sizeof(__u64));
__uint(value_size, sizeof(__u32));
__uint(max_entries, MAX_ENTRIES);
} lock_syms SEC(".maps");
struct {
__uint(type, BPF_MAP_TYPE_HASH);
__uint(key_size, sizeof(__u32));
__uint(value_size, sizeof(__u8));
__uint(max_entries, 1);
} cpu_filter SEC(".maps");
struct {
__uint(type, BPF_MAP_TYPE_HASH);
__uint(key_size, sizeof(__u32));
__uint(value_size, sizeof(__u8));
__uint(max_entries, 1);
} task_filter SEC(".maps");
struct {
__uint(type, BPF_MAP_TYPE_HASH);
__uint(key_size, sizeof(__u32));
__uint(value_size, sizeof(__u8));
__uint(max_entries, 1);
} type_filter SEC(".maps");
struct {
__uint(type, BPF_MAP_TYPE_HASH);
__uint(key_size, sizeof(__u64));
__uint(value_size, sizeof(__u8));
__uint(max_entries, 1);
} addr_filter SEC(".maps");
struct {
__uint(type, BPF_MAP_TYPE_HASH);
__uint(key_size, sizeof(__u64));
__uint(value_size, sizeof(__u8));
__uint(max_entries, 1);
} cgroup_filter SEC(".maps");
struct {
__uint(type, BPF_MAP_TYPE_HASH);
__uint(key_size, sizeof(long));
__uint(value_size, sizeof(__u8));
__uint(max_entries, 1);
} slab_filter SEC(".maps");
struct {
__uint(type, BPF_MAP_TYPE_HASH);
__uint(key_size, sizeof(long));
__uint(value_size, sizeof(struct slab_cache_data));
__uint(max_entries, 1);
} slab_caches SEC(".maps");
struct {
__uint(type, BPF_MAP_TYPE_HASH);
__uint(key_size, sizeof(__u64));
__uint(value_size, sizeof(__u64));
__uint(max_entries, 1);
} lock_delays SEC(".maps");
struct rw_semaphore___old {
struct task_struct *owner;
} __attribute__((preserve_access_index));
struct rw_semaphore___new {
atomic_long_t owner;
} __attribute__((preserve_access_index));
struct mm_struct___old {
struct rw_semaphore mmap_sem;
} __attribute__((preserve_access_index));
struct mm_struct___new {
struct rw_semaphore mmap_lock;
} __attribute__((preserve_access_index));
extern struct kmem_cache *bpf_get_kmem_cache(u64 addr) __ksym __weak;
/* control flags */
const volatile int has_cpu;
const volatile int has_task;
const volatile int has_type;
const volatile int has_addr;
const volatile int has_cgroup;
const volatile int has_slab;
const volatile int needs_callstack;
const volatile int stack_skip;
const volatile int lock_owner;
const volatile int use_cgroup_v2;
const volatile int max_stack;
const volatile int lock_delay;
/* determine the key of lock stat */
const volatile int aggr_mode;
int enabled;
int perf_subsys_id = -1;
__u64 end_ts;
__u32 slab_cache_id;
/* error stat */
int task_fail;
int stack_fail;
int time_fail;
int data_fail;
int task_map_full;
int data_map_full;
struct task_struct *bpf_task_from_pid(s32 pid) __ksym __weak;
void bpf_task_release(struct task_struct *p) __ksym __weak;
static inline __u64 get_current_cgroup_id(void)
{
struct task_struct *task;
struct cgroup *cgrp;
if (use_cgroup_v2)
return bpf_get_current_cgroup_id();
task = bpf_get_current_task_btf();
if (perf_subsys_id == -1) {
#if __has_builtin(__builtin_preserve_enum_value)
perf_subsys_id = bpf_core_enum_value(enum cgroup_subsys_id,
perf_event_cgrp_id);
#else
perf_subsys_id = perf_event_cgrp_id;
#endif
}
cgrp = BPF_CORE_READ(task, cgroups, subsys[perf_subsys_id], cgroup);
return BPF_CORE_READ(cgrp, kn, id);
}
static inline int can_record(u64 *ctx)
{
if (has_cpu) {
__u32 cpu = bpf_get_smp_processor_id();
__u8 *ok;
ok = bpf_map_lookup_elem(&cpu_filter, &cpu);
if (!ok)
return 0;
}
if (has_task) {
__u8 *ok;
__u32 pid = bpf_get_current_pid_tgid();
ok = bpf_map_lookup_elem(&task_filter, &pid);
if (!ok)
return 0;
}
if (has_type) {
__u8 *ok;
__u32 flags = (__u32)ctx[1];
ok = bpf_map_lookup_elem(&type_filter, &flags);
if (!ok)
return 0;
}
if (has_addr) {
__u8 *ok;
__u64 addr = ctx[0];
ok = bpf_map_lookup_elem(&addr_filter, &addr);
if (!ok && !has_slab)
return 0;
}
if (has_cgroup) {
__u8 *ok;
__u64 cgrp = get_current_cgroup_id();
ok = bpf_map_lookup_elem(&cgroup_filter, &cgrp);
if (!ok)
return 0;
}
if (has_slab && bpf_get_kmem_cache) {
__u8 *ok;
__u64 addr = ctx[0];
long kmem_cache_addr;
kmem_cache_addr = (long)bpf_get_kmem_cache(addr);
ok = bpf_map_lookup_elem(&slab_filter, &kmem_cache_addr);
if (!ok)
return 0;
}
return 1;
}
static inline int update_task_data(struct task_struct *task)
{
struct contention_task_data *p;
int pid, err;
err = bpf_core_read(&pid, sizeof(pid), &task->pid);
if (err)
return -1;
p = bpf_map_lookup_elem(&task_data, &pid);
if (p == NULL && !task_map_full) {
struct contention_task_data data = {};
BPF_CORE_READ_STR_INTO(&data.comm, task, comm);
if (bpf_map_update_elem(&task_data, &pid, &data, BPF_NOEXIST) == -E2BIG)
task_map_full = 1;
}
return 0;
}
#ifndef __has_builtin
# define __has_builtin(x) 0
#endif
static inline struct task_struct *get_lock_owner(__u64 lock, __u32 flags)
{
struct task_struct *task;
__u64 owner = 0;
if (flags & LCB_F_MUTEX) {
struct mutex *mutex = (void *)lock;
owner = BPF_CORE_READ(mutex, owner.counter);
} else if (flags == LCB_F_READ || flags == LCB_F_WRITE) {
/*
* Support for the BPF_TYPE_MATCHES argument to the
* __builtin_preserve_type_info builtin was added at some point during
* development of clang 15 and it's what is needed for
* bpf_core_type_matches.
*/
#if __has_builtin(__builtin_preserve_type_info) && __clang_major__ >= 15
if (bpf_core_type_matches(struct rw_semaphore___old)) {
struct rw_semaphore___old *rwsem = (void *)lock;
owner = (unsigned long)BPF_CORE_READ(rwsem, owner);
} else if (bpf_core_type_matches(struct rw_semaphore___new)) {
struct rw_semaphore___new *rwsem = (void *)lock;
owner = BPF_CORE_READ(rwsem, owner.counter);
}
#else
/* assume new struct */
struct rw_semaphore *rwsem = (void *)lock;
owner = BPF_CORE_READ(rwsem, owner.counter);
#endif
}
if (!owner)
return NULL;
task = (void *)(owner & ~7UL);
return task;
}
static inline __u32 check_lock_type(__u64 lock, __u32 flags)
{
struct task_struct *curr;
struct mm_struct___old *mm_old;
struct mm_struct___new *mm_new;
struct sighand_struct *sighand;
switch (flags) {
case LCB_F_READ: /* rwsem */
case LCB_F_WRITE:
curr = bpf_get_current_task_btf();
if (curr->mm == NULL)
break;
mm_new = (void *)curr->mm;
if (bpf_core_field_exists(mm_new->mmap_lock)) {
if (&mm_new->mmap_lock == (void *)lock)
return LCD_F_MMAP_LOCK;
break;
}
mm_old = (void *)curr->mm;
if (bpf_core_field_exists(mm_old->mmap_sem)) {
if (&mm_old->mmap_sem == (void *)lock)
return LCD_F_MMAP_LOCK;
}
break;
case LCB_F_SPIN: /* spinlock */
curr = bpf_get_current_task_btf();
sighand = curr->sighand;
if (sighand && &sighand->siglock == (void *)lock)
return LCD_F_SIGHAND_LOCK;
break;
default:
break;
}
return 0;
}
static inline long delay_callback(__u64 idx, void *arg)
{
__u64 target = *(__u64 *)arg;
if (target <= bpf_ktime_get_ns())
return 1;
/* just to kill time */
(void)bpf_get_prandom_u32();
return 0;
}
static inline void do_lock_delay(__u64 duration)
{
__u64 target = bpf_ktime_get_ns() + duration;
bpf_loop(MAX_LOOP, delay_callback, &target, /*flags=*/0);
}
static inline void check_lock_delay(__u64 lock)
{
__u64 *delay;
delay = bpf_map_lookup_elem(&lock_delays, &lock);
if (delay)
do_lock_delay(*delay);
}
static inline struct tstamp_data *get_tstamp_elem(__u32 flags)
{
__u32 pid;
struct tstamp_data *pelem;
/* Use per-cpu array map for spinlock and rwlock */
if ((flags & (LCB_F_SPIN | LCB_F_MUTEX)) == LCB_F_SPIN) {
__u32 idx = 0;
pelem = bpf_map_lookup_elem(&tstamp_cpu, &idx);
/* Do not update the element for nested locks */
if (pelem && pelem->lock)
pelem = NULL;
return pelem;
}
pid = bpf_get_current_pid_tgid();
pelem = bpf_map_lookup_elem(&tstamp, &pid);
/* Do not update the element for nested locks */
if (pelem && pelem->lock)
return NULL;
if (pelem == NULL) {
struct tstamp_data zero = {};
if (bpf_map_update_elem(&tstamp, &pid, &zero, BPF_NOEXIST) < 0) {
__sync_fetch_and_add(&task_fail, 1);
return NULL;
}
pelem = bpf_map_lookup_elem(&tstamp, &pid);
if (pelem == NULL) {
__sync_fetch_and_add(&task_fail, 1);
return NULL;
}
}
return pelem;
}
static inline s32 get_owner_stack_id(u64 *stacktrace)
{
s32 *id, new_id;
static s64 id_gen = 1;
id = bpf_map_lookup_elem(&owner_stacks, stacktrace);
if (id)
return *id;
new_id = (s32)__sync_fetch_and_add(&id_gen, 1);
bpf_map_update_elem(&owner_stacks, stacktrace, &new_id, BPF_NOEXIST);
id = bpf_map_lookup_elem(&owner_stacks, stacktrace);
if (id)
return *id;
return -1;
}
static inline void update_contention_data(struct contention_data *data, u64 duration, u32 count)
{
__sync_fetch_and_add(&data->total_time, duration);
__sync_fetch_and_add(&data->count, count);
/* FIXME: need atomic operations */
if (data->max_time < duration)
data->max_time = duration;
if (data->min_time > duration)
data->min_time = duration;
}
static inline void update_owner_stat(u32 id, u64 duration, u32 flags)
{
struct contention_key key = {
.stack_id = id,
.pid = 0,
.lock_addr_or_cgroup = 0,
};
struct contention_data *data = bpf_map_lookup_elem(&owner_stat, &key);
if (!data) {
struct contention_data first = {
.total_time = duration,
.max_time = duration,
.min_time = duration,
.count = 1,
.flags = flags,
};
bpf_map_update_elem(&owner_stat, &key, &first, BPF_NOEXIST);
} else {
update_contention_data(data, duration, 1);
}
}
SEC("tp_btf/contention_begin")
int contention_begin(u64 *ctx)
{
struct tstamp_data *pelem;
if (!enabled || !can_record(ctx))
return 0;
pelem = get_tstamp_elem(ctx[1]);
if (pelem == NULL)
return 0;
pelem->timestamp = bpf_ktime_get_ns();
pelem->lock = (__u64)ctx[0];
pelem->flags = (__u32)ctx[1];
if (needs_callstack) {
u32 i = 0;
u32 id = 0;
int owner_pid;
u64 *buf;
struct task_struct *task;
struct owner_tracing_data *otdata;
if (!lock_owner)
goto skip_owner;
task = get_lock_owner(pelem->lock, pelem->flags);
if (!task)
goto skip_owner;
owner_pid = BPF_CORE_READ(task, pid);
buf = bpf_map_lookup_elem(&stack_buf, &i);
if (!buf)
goto skip_owner;
for (i = 0; i < max_stack; i++)
buf[i] = 0x0;
if (!bpf_task_from_pid)
goto skip_owner;
task = bpf_task_from_pid(owner_pid);
if (!task)
goto skip_owner;
bpf_get_task_stack(task, buf, max_stack * sizeof(unsigned long), 0);
bpf_task_release(task);
otdata = bpf_map_lookup_elem(&owner_data, &pelem->lock);
id = get_owner_stack_id(buf);
/*
* Contention just happens, or corner case `lock` is owned by process not
* `owner_pid`. For the corner case we treat it as unexpected internal error and
* just ignore the precvious tracing record.
*/
if (!otdata || otdata->pid != owner_pid) {
struct owner_tracing_data first = {
.pid = owner_pid,
.timestamp = pelem->timestamp,
.count = 1,
.stack_id = id,
};
bpf_map_update_elem(&owner_data, &pelem->lock, &first, BPF_ANY);
}
/* Contention is ongoing and new waiter joins */
else {
__sync_fetch_and_add(&otdata->count, 1);
/*
* The owner is the same, but stacktrace might be changed. In this case we
* store/update `owner_stat` based on current owner stack id.
*/
if (id != otdata->stack_id) {
update_owner_stat(id, pelem->timestamp - otdata->timestamp,
pelem->flags);
otdata->timestamp = pelem->timestamp;
otdata->stack_id = id;
}
}
skip_owner:
pelem->stack_id = bpf_get_stackid(ctx, &stacks,
BPF_F_FAST_STACK_CMP | stack_skip);
if (pelem->stack_id < 0)
__sync_fetch_and_add(&stack_fail, 1);
} else if (aggr_mode == LOCK_AGGR_TASK) {
struct task_struct *task;
if (lock_owner) {
task = get_lock_owner(pelem->lock, pelem->flags);
/* The flags is not used anymore. Pass the owner pid. */
if (task)
pelem->flags = BPF_CORE_READ(task, pid);
else
pelem->flags = -1U;
} else {
task = bpf_get_current_task_btf();
}
if (task) {
if (update_task_data(task) < 0 && lock_owner)
pelem->flags = -1U;
}
}
return 0;
}
SEC("tp_btf/contention_end")
int contention_end(u64 *ctx)
{
__u32 pid = 0, idx = 0;
struct tstamp_data *pelem;
struct contention_key key = {};
struct contention_data *data;
__u64 timestamp;
__u64 duration;
bool need_delete = false;
if (!enabled)
return 0;
/*
* For spinlock and rwlock, it needs to get the timestamp for the
* per-cpu map. However, contention_end does not have the flags
* so it cannot know whether it reads percpu or hash map.
*
* Try per-cpu map first and check if there's active contention.
* If it is, do not read hash map because it cannot go to sleeping
* locks before releasing the spinning locks.
*/
pelem = bpf_map_lookup_elem(&tstamp_cpu, &idx);
if (pelem && pelem->lock) {
if (pelem->lock != ctx[0])
return 0;
} else {
pid = bpf_get_current_pid_tgid();
pelem = bpf_map_lookup_elem(&tstamp, &pid);
if (!pelem || pelem->lock != ctx[0])
return 0;
need_delete = true;
}
timestamp = bpf_ktime_get_ns();
duration = timestamp - pelem->timestamp;
if ((__s64)duration < 0) {
__sync_fetch_and_add(&time_fail, 1);
goto out;
}
if (needs_callstack && lock_owner) {
struct owner_tracing_data *otdata = bpf_map_lookup_elem(&owner_data, &pelem->lock);
if (!otdata)
goto skip_owner;
/* Update `owner_stat` */
update_owner_stat(otdata->stack_id, timestamp - otdata->timestamp, pelem->flags);
/* No contention is occurring, delete `lock` entry in `owner_data` */
if (otdata->count <= 1)
bpf_map_delete_elem(&owner_data, &pelem->lock);
/*
* Contention is still ongoing, with a new owner (current task). `owner_data`
* should be updated accordingly.
*/
else {
u32 i = 0;
s32 ret = (s32)ctx[1];
u64 *buf;
otdata->timestamp = timestamp;
__sync_fetch_and_add(&otdata->count, -1);
buf = bpf_map_lookup_elem(&stack_buf, &i);
if (!buf)
goto skip_owner;
for (i = 0; i < (u32)max_stack; i++)
buf[i] = 0x0;
/*
* `ret` has the return code of the lock function.
* If `ret` is negative, the current task terminates lock waiting without
* acquiring it. Owner is not changed, but we still need to update the owner
* stack.
*/
if (ret < 0) {
s32 id = 0;
struct task_struct *task;
if (!bpf_task_from_pid)
goto skip_owner;
task = bpf_task_from_pid(otdata->pid);
if (!task)
goto skip_owner;
bpf_get_task_stack(task, buf,
max_stack * sizeof(unsigned long), 0);
bpf_task_release(task);
id = get_owner_stack_id(buf);
/*
* If owner stack is changed, update owner stack id for this lock.
*/
if (id != otdata->stack_id)
otdata->stack_id = id;
}
/*
* Otherwise, update tracing data with the current task, which is the new
* owner.
*/
else {
otdata->pid = pid;
/*
* We don't want to retrieve callstack here, since it is where the
* current task acquires the lock and provides no additional
* information. We simply assign -1 to invalidate it.
*/
otdata->stack_id = -1;
}
}
}
skip_owner:
switch (aggr_mode) {
case LOCK_AGGR_CALLER:
key.stack_id = pelem->stack_id;
break;
case LOCK_AGGR_TASK:
if (lock_owner)
key.pid = pelem->flags;
else {
if (!need_delete)
pid = bpf_get_current_pid_tgid();
key.pid = pid;
}
if (needs_callstack)
key.stack_id = pelem->stack_id;
break;
case LOCK_AGGR_ADDR:
key.lock_addr_or_cgroup = pelem->lock;
if (needs_callstack)
key.stack_id = pelem->stack_id;
break;
case LOCK_AGGR_CGROUP:
key.lock_addr_or_cgroup = get_current_cgroup_id();
break;
default:
/* should not happen */
return 0;
}
data = bpf_map_lookup_elem(&lock_stat, &key);
if (!data) {
if (data_map_full) {
__sync_fetch_and_add(&data_fail, 1);
goto out;
}
struct contention_data first = {
.total_time = duration,
.max_time = duration,
.min_time = duration,
.count = 1,
.flags = pelem->flags,
};
int err;
if (aggr_mode == LOCK_AGGR_ADDR) {
first.flags |= check_lock_type(pelem->lock,
pelem->flags & LCB_F_TYPE_MASK);
/* Check if it's from a slab object */
if (bpf_get_kmem_cache) {
struct kmem_cache *s;
struct slab_cache_data *d;
s = bpf_get_kmem_cache(pelem->lock);
if (s != NULL) {
/*
* Save the ID of the slab cache in the flags
* (instead of full address) to reduce the
* space in the contention_data.
*/
d = bpf_map_lookup_elem(&slab_caches, &s);
if (d != NULL)
first.flags |= d->id;
}
}
}
err = bpf_map_update_elem(&lock_stat, &key, &first, BPF_NOEXIST);
if (err < 0) {
if (err == -EEXIST) {
/* it lost the race, try to get it again */
data = bpf_map_lookup_elem(&lock_stat, &key);
if (data != NULL)
goto found;
}
if (err == -E2BIG)
data_map_full = 1;
__sync_fetch_and_add(&data_fail, 1);
}
goto out;
}
found:
update_contention_data(data, duration, 1);
out:
if (lock_delay)
check_lock_delay(pelem->lock);
pelem->lock = 0;
if (need_delete)
bpf_map_delete_elem(&tstamp, &pid);
return 0;
}
extern struct rq runqueues __ksym;
const volatile __u64 contig_page_data_addr;
const volatile __u64 node_data_addr;
const volatile int nr_nodes;
const volatile int sizeof_zone;
struct rq___old {
raw_spinlock_t lock;
} __attribute__((preserve_access_index));
struct rq___new {
raw_spinlock_t __lock;
} __attribute__((preserve_access_index));
static void collect_zone_lock(void)
{
__u64 nr_zones, zone_off;
__u64 lock_addr, lock_off;
__u32 lock_flag = LOCK_CLASS_ZONE_LOCK;
zone_off = offsetof(struct pglist_data, node_zones);
lock_off = offsetof(struct zone, lock);
if (contig_page_data_addr) {
struct pglist_data *contig_page_data;
contig_page_data = (void *)(long)contig_page_data_addr;
nr_zones = BPF_CORE_READ(contig_page_data, nr_zones);
for (int i = 0; i < MAX_ZONES; i++) {
__u64 zone_addr;
if (i >= nr_zones)
break;
zone_addr = contig_page_data_addr + (sizeof_zone * i) + zone_off;
lock_addr = zone_addr + lock_off;
bpf_map_update_elem(&lock_syms, &lock_addr, &lock_flag, BPF_ANY);
}
} else if (nr_nodes > 0) {
struct pglist_data **node_data = (void *)(long)node_data_addr;
for (int i = 0; i < nr_nodes; i++) {
struct pglist_data *pgdat = NULL;
int err;
err = bpf_core_read(&pgdat, sizeof(pgdat), &node_data[i]);
if (err < 0 || pgdat == NULL)
break;
nr_zones = BPF_CORE_READ(pgdat, nr_zones);
for (int k = 0; k < MAX_ZONES; k++) {
__u64 zone_addr;
if (k >= nr_zones)
break;
zone_addr = (__u64)(void *)pgdat + (sizeof_zone * k) + zone_off;
lock_addr = zone_addr + lock_off;
bpf_map_update_elem(&lock_syms, &lock_addr, &lock_flag, BPF_ANY);
}
}
}
}
SEC("raw_tp/bpf_test_finish")
int BPF_PROG(collect_lock_syms)
{
__u64 lock_addr, lock_off;
__u32 lock_flag;
if (bpf_core_field_exists(struct rq___new, __lock))
lock_off = offsetof(struct rq___new, __lock);
else
lock_off = offsetof(struct rq___old, lock);
for (int i = 0; i < MAX_CPUS; i++) {
struct rq *rq = bpf_per_cpu_ptr(&runqueues, i);
if (rq == NULL)
break;
lock_addr = (__u64)(void *)rq + lock_off;
lock_flag = LOCK_CLASS_RQLOCK;
bpf_map_update_elem(&lock_syms, &lock_addr, &lock_flag, BPF_ANY);
}
collect_zone_lock();
return 0;
}
SEC("raw_tp/bpf_test_finish")
int BPF_PROG(end_timestamp)
{
end_ts = bpf_ktime_get_ns();
return 0;
}
/*
* bpf_iter__kmem_cache added recently so old kernels don't have it in the
* vmlinux.h. But we cannot add it here since it will cause a compiler error
* due to redefinition of the struct on later kernels.
*
* So it uses a CO-RE trick to access the member only if it has the type.
* This will support both old and new kernels without compiler errors.
*/
struct bpf_iter__kmem_cache___new {
struct kmem_cache *s;
} __attribute__((preserve_access_index));
SEC("iter/kmem_cache")
int slab_cache_iter(void *ctx)
{
struct kmem_cache *s = NULL;
struct slab_cache_data d;
const char *nameptr;
if (bpf_core_type_exists(struct bpf_iter__kmem_cache)) {
struct bpf_iter__kmem_cache___new *iter = ctx;
s = iter->s;
}
if (s == NULL)
return 0;
nameptr = s->name;
bpf_probe_read_kernel_str(d.name, sizeof(d.name), nameptr);
d.id = ++slab_cache_id << LCB_F_SLAB_ID_SHIFT;
if (d.id >= LCB_F_SLAB_ID_END)
return 0;
bpf_map_update_elem(&slab_caches, &s, &d, BPF_NOEXIST);
return 0;
}
char LICENSE[] SEC("license") = "Dual BSD/GPL";