linux/sound/soc/soc-ops.c
Arnd Bergmann 7e10d7242e
ASoC: ops: dynamically allocate struct snd_ctl_elem_value
This structure is really too larget to be allocated on the stack:

sound/soc/soc-ops.c:435:5: error: stack frame size (1296) exceeds limit (1280) in 'snd_soc_limit_volume' [-Werror,-Wframe-larger-than]

Change the function to dynamically allocate it instead.

There is probably a better way to do it since only two integer fields
inside of that structure are actually used, but this is the simplest
rework for the moment.

Fixes: 783db6851c ("ASoC: ops: Enforce platform maximum on initial value")
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Link: https://patch.msgid.link/20250610093057.2643233-1-arnd@kernel.org
Signed-off-by: Mark Brown <broonie@kernel.org>
2025-06-10 12:46:33 +01:00

802 lines
21 KiB
C

// SPDX-License-Identifier: GPL-2.0+
//
// soc-ops.c -- Generic ASoC operations
//
// Copyright 2005 Wolfson Microelectronics PLC.
// Copyright 2005 Openedhand Ltd.
// Copyright (C) 2010 Slimlogic Ltd.
// Copyright (C) 2010 Texas Instruments Inc.
//
// Author: Liam Girdwood <lrg@slimlogic.co.uk>
// with code, comments and ideas from :-
// Richard Purdie <richard@openedhand.com>
#include <linux/cleanup.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/init.h>
#include <linux/pm.h>
#include <linux/bitops.h>
#include <linux/ctype.h>
#include <linux/slab.h>
#include <sound/core.h>
#include <sound/jack.h>
#include <sound/pcm.h>
#include <sound/pcm_params.h>
#include <sound/soc.h>
#include <sound/initval.h>
/**
* snd_soc_info_enum_double - enumerated double mixer info callback
* @kcontrol: mixer control
* @uinfo: control element information
*
* Callback to provide information about a double enumerated
* mixer control.
*
* Returns 0 for success.
*/
int snd_soc_info_enum_double(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
return snd_ctl_enum_info(uinfo, e->shift_l == e->shift_r ? 1 : 2,
e->items, e->texts);
}
EXPORT_SYMBOL_GPL(snd_soc_info_enum_double);
/**
* snd_soc_get_enum_double - enumerated double mixer get callback
* @kcontrol: mixer control
* @ucontrol: control element information
*
* Callback to get the value of a double enumerated mixer.
*
* Returns 0 for success.
*/
int snd_soc_get_enum_double(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
unsigned int val, item;
unsigned int reg_val;
reg_val = snd_soc_component_read(component, e->reg);
val = (reg_val >> e->shift_l) & e->mask;
item = snd_soc_enum_val_to_item(e, val);
ucontrol->value.enumerated.item[0] = item;
if (e->shift_l != e->shift_r) {
val = (reg_val >> e->shift_r) & e->mask;
item = snd_soc_enum_val_to_item(e, val);
ucontrol->value.enumerated.item[1] = item;
}
return 0;
}
EXPORT_SYMBOL_GPL(snd_soc_get_enum_double);
/**
* snd_soc_put_enum_double - enumerated double mixer put callback
* @kcontrol: mixer control
* @ucontrol: control element information
*
* Callback to set the value of a double enumerated mixer.
*
* Returns 0 for success.
*/
int snd_soc_put_enum_double(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
unsigned int *item = ucontrol->value.enumerated.item;
unsigned int val;
unsigned int mask;
if (item[0] >= e->items)
return -EINVAL;
val = snd_soc_enum_item_to_val(e, item[0]) << e->shift_l;
mask = e->mask << e->shift_l;
if (e->shift_l != e->shift_r) {
if (item[1] >= e->items)
return -EINVAL;
val |= snd_soc_enum_item_to_val(e, item[1]) << e->shift_r;
mask |= e->mask << e->shift_r;
}
return snd_soc_component_update_bits(component, e->reg, mask, val);
}
EXPORT_SYMBOL_GPL(snd_soc_put_enum_double);
static int soc_mixer_reg_to_ctl(struct soc_mixer_control *mc, unsigned int reg_val,
unsigned int mask, unsigned int shift, int max)
{
int val = (reg_val >> shift) & mask;
if (mc->sign_bit)
val = sign_extend32(val, mc->sign_bit);
val -= mc->min;
if (mc->invert)
val = max - val;
return val & mask;
}
static unsigned int soc_mixer_ctl_to_reg(struct soc_mixer_control *mc, int val,
unsigned int mask, unsigned int shift,
int max)
{
unsigned int reg_val;
if (mc->invert)
val = max - val;
reg_val = val + mc->min;
return (reg_val & mask) << shift;
}
static int soc_mixer_valid_ctl(struct soc_mixer_control *mc, long val, int max)
{
if (val < 0)
return -EINVAL;
if (mc->platform_max && val > mc->platform_max)
return -EINVAL;
if (val > max)
return -EINVAL;
return 0;
}
static int soc_mixer_mask(struct soc_mixer_control *mc)
{
if (mc->sign_bit)
return GENMASK(mc->sign_bit, 0);
else
return GENMASK(fls(mc->max) - 1, 0);
}
static int soc_mixer_sx_mask(struct soc_mixer_control *mc)
{
// min + max will take us 1-bit over the size of the mask
return GENMASK(fls(mc->min + mc->max) - 2, 0);
}
static int soc_info_volsw(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo,
struct soc_mixer_control *mc, int max)
{
uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
if (max == 1) {
/* Even two value controls ending in Volume should be integer */
const char *vol_string = strstr(kcontrol->id.name, " Volume");
if (!vol_string || strcmp(vol_string, " Volume"))
uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
}
if (mc->platform_max && mc->platform_max < max)
max = mc->platform_max;
uinfo->count = snd_soc_volsw_is_stereo(mc) ? 2 : 1;
uinfo->value.integer.min = 0;
uinfo->value.integer.max = max;
return 0;
}
static int soc_put_volsw(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol,
struct soc_mixer_control *mc, int mask, int max)
{
struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
unsigned int val1, val_mask;
unsigned int val2 = 0;
bool double_r = false;
int ret;
ret = soc_mixer_valid_ctl(mc, ucontrol->value.integer.value[0], max);
if (ret)
return ret;
val1 = soc_mixer_ctl_to_reg(mc, ucontrol->value.integer.value[0],
mask, mc->shift, max);
val_mask = mask << mc->shift;
if (snd_soc_volsw_is_stereo(mc)) {
ret = soc_mixer_valid_ctl(mc, ucontrol->value.integer.value[1], max);
if (ret)
return ret;
if (mc->reg == mc->rreg) {
val1 |= soc_mixer_ctl_to_reg(mc,
ucontrol->value.integer.value[1],
mask, mc->rshift, max);
val_mask |= mask << mc->rshift;
} else {
val2 = soc_mixer_ctl_to_reg(mc,
ucontrol->value.integer.value[1],
mask, mc->shift, max);
double_r = true;
}
}
ret = snd_soc_component_update_bits(component, mc->reg, val_mask, val1);
if (ret < 0)
return ret;
if (double_r) {
int err = snd_soc_component_update_bits(component, mc->rreg,
val_mask, val2);
/* Don't drop change flag */
if (err)
return err;
}
return ret;
}
static int soc_get_volsw(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol,
struct soc_mixer_control *mc, int mask, int max)
{
struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
unsigned int reg_val;
int val;
reg_val = snd_soc_component_read(component, mc->reg);
val = soc_mixer_reg_to_ctl(mc, reg_val, mask, mc->shift, max);
ucontrol->value.integer.value[0] = val;
if (snd_soc_volsw_is_stereo(mc)) {
if (mc->reg == mc->rreg) {
val = soc_mixer_reg_to_ctl(mc, reg_val, mask, mc->rshift, max);
} else {
reg_val = snd_soc_component_read(component, mc->rreg);
val = soc_mixer_reg_to_ctl(mc, reg_val, mask, mc->shift, max);
}
ucontrol->value.integer.value[1] = val;
}
return 0;
}
/**
* snd_soc_info_volsw - single mixer info callback with range.
* @kcontrol: mixer control
* @uinfo: control element information
*
* Callback to provide information, with a range, about a single mixer control,
* or a double mixer control that spans 2 registers.
*
* Returns 0 for success.
*/
int snd_soc_info_volsw(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
struct soc_mixer_control *mc =
(struct soc_mixer_control *)kcontrol->private_value;
return soc_info_volsw(kcontrol, uinfo, mc, mc->max - mc->min);
}
EXPORT_SYMBOL_GPL(snd_soc_info_volsw);
/**
* snd_soc_info_volsw_sx - Mixer info callback for SX TLV controls
* @kcontrol: mixer control
* @uinfo: control element information
*
* Callback to provide information about a single mixer control, or a double
* mixer control that spans 2 registers of the SX TLV type. SX TLV controls
* have a range that represents both positive and negative values either side
* of zero but without a sign bit. min is the minimum register value, max is
* the number of steps.
*
* Returns 0 for success.
*/
int snd_soc_info_volsw_sx(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
struct soc_mixer_control *mc =
(struct soc_mixer_control *)kcontrol->private_value;
return soc_info_volsw(kcontrol, uinfo, mc, mc->max);
}
EXPORT_SYMBOL_GPL(snd_soc_info_volsw_sx);
/**
* snd_soc_get_volsw - single mixer get callback with range
* @kcontrol: mixer control
* @ucontrol: control element information
*
* Callback to get the value, within a range, of a single mixer control, or a
* double mixer control that spans 2 registers.
*
* Returns 0 for success.
*/
int snd_soc_get_volsw(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct soc_mixer_control *mc =
(struct soc_mixer_control *)kcontrol->private_value;
unsigned int mask = soc_mixer_mask(mc);
return soc_get_volsw(kcontrol, ucontrol, mc, mask, mc->max - mc->min);
}
EXPORT_SYMBOL_GPL(snd_soc_get_volsw);
/**
* snd_soc_put_volsw - single mixer put callback with range
* @kcontrol: mixer control
* @ucontrol: control element information
*
* Callback to set the value , within a range, of a single mixer control, or
* a double mixer control that spans 2 registers.
*
* Returns 0 for success.
*/
int snd_soc_put_volsw(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct soc_mixer_control *mc =
(struct soc_mixer_control *)kcontrol->private_value;
unsigned int mask = soc_mixer_mask(mc);
return soc_put_volsw(kcontrol, ucontrol, mc, mask, mc->max - mc->min);
}
EXPORT_SYMBOL_GPL(snd_soc_put_volsw);
/**
* snd_soc_get_volsw_sx - single mixer get callback
* @kcontrol: mixer control
* @ucontrol: control element information
*
* Callback to get the value of a single mixer control, or a double mixer
* control that spans 2 registers.
*
* Returns 0 for success.
*/
int snd_soc_get_volsw_sx(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct soc_mixer_control *mc =
(struct soc_mixer_control *)kcontrol->private_value;
unsigned int mask = soc_mixer_sx_mask(mc);
return soc_get_volsw(kcontrol, ucontrol, mc, mask, mc->max);
}
EXPORT_SYMBOL_GPL(snd_soc_get_volsw_sx);
/**
* snd_soc_put_volsw_sx - double mixer set callback
* @kcontrol: mixer control
* @ucontrol: control element information
*
* Callback to set the value of a double mixer control that spans 2 registers.
*
* Returns 0 for success.
*/
int snd_soc_put_volsw_sx(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct soc_mixer_control *mc =
(struct soc_mixer_control *)kcontrol->private_value;
unsigned int mask = soc_mixer_sx_mask(mc);
return soc_put_volsw(kcontrol, ucontrol, mc, mask, mc->max);
}
EXPORT_SYMBOL_GPL(snd_soc_put_volsw_sx);
static int snd_soc_clip_to_platform_max(struct snd_kcontrol *kctl)
{
struct soc_mixer_control *mc = (struct soc_mixer_control *)kctl->private_value;
struct snd_ctl_elem_value *uctl;
int ret;
if (!mc->platform_max)
return 0;
uctl = kzalloc(sizeof(*uctl), GFP_KERNEL);
if (!uctl)
return -ENOMEM;
ret = kctl->get(kctl, uctl);
if (ret < 0)
goto out;
if (uctl->value.integer.value[0] > mc->platform_max)
uctl->value.integer.value[0] = mc->platform_max;
if (snd_soc_volsw_is_stereo(mc) &&
uctl->value.integer.value[1] > mc->platform_max)
uctl->value.integer.value[1] = mc->platform_max;
ret = kctl->put(kctl, uctl);
out:
kfree(uctl);
return ret;
}
/**
* snd_soc_limit_volume - Set new limit to an existing volume control.
*
* @card: where to look for the control
* @name: Name of the control
* @max: new maximum limit
*
* Return 0 for success, else error.
*/
int snd_soc_limit_volume(struct snd_soc_card *card, const char *name, int max)
{
struct snd_kcontrol *kctl;
int ret = -EINVAL;
/* Sanity check for name and max */
if (unlikely(!name || max <= 0))
return -EINVAL;
kctl = snd_soc_card_get_kcontrol(card, name);
if (kctl) {
struct soc_mixer_control *mc =
(struct soc_mixer_control *)kctl->private_value;
if (max <= mc->max - mc->min) {
mc->platform_max = max;
ret = snd_soc_clip_to_platform_max(kctl);
}
}
return ret;
}
EXPORT_SYMBOL_GPL(snd_soc_limit_volume);
int snd_soc_bytes_info(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
struct soc_bytes *params = (void *)kcontrol->private_value;
uinfo->type = SNDRV_CTL_ELEM_TYPE_BYTES;
uinfo->count = params->num_regs * component->val_bytes;
return 0;
}
EXPORT_SYMBOL_GPL(snd_soc_bytes_info);
int snd_soc_bytes_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
struct soc_bytes *params = (void *)kcontrol->private_value;
int ret;
if (component->regmap)
ret = regmap_raw_read(component->regmap, params->base,
ucontrol->value.bytes.data,
params->num_regs * component->val_bytes);
else
ret = -EINVAL;
/* Hide any masked bytes to ensure consistent data reporting */
if (ret == 0 && params->mask) {
switch (component->val_bytes) {
case 1:
ucontrol->value.bytes.data[0] &= ~params->mask;
break;
case 2:
((u16 *)(&ucontrol->value.bytes.data))[0]
&= cpu_to_be16(~params->mask);
break;
case 4:
((u32 *)(&ucontrol->value.bytes.data))[0]
&= cpu_to_be32(~params->mask);
break;
default:
return -EINVAL;
}
}
return ret;
}
EXPORT_SYMBOL_GPL(snd_soc_bytes_get);
int snd_soc_bytes_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
struct soc_bytes *params = (void *)kcontrol->private_value;
unsigned int val, mask;
int ret, len;
if (!component->regmap || !params->num_regs)
return -EINVAL;
len = params->num_regs * component->val_bytes;
void *data __free(kfree) = kmemdup(ucontrol->value.bytes.data, len,
GFP_KERNEL | GFP_DMA);
if (!data)
return -ENOMEM;
/*
* If we've got a mask then we need to preserve the register
* bits. We shouldn't modify the incoming data so take a
* copy.
*/
if (params->mask) {
ret = regmap_read(component->regmap, params->base, &val);
if (ret != 0)
return ret;
val &= params->mask;
switch (component->val_bytes) {
case 1:
((u8 *)data)[0] &= ~params->mask;
((u8 *)data)[0] |= val;
break;
case 2:
mask = ~params->mask;
ret = regmap_parse_val(component->regmap, &mask, &mask);
if (ret != 0)
return ret;
((u16 *)data)[0] &= mask;
ret = regmap_parse_val(component->regmap, &val, &val);
if (ret != 0)
return ret;
((u16 *)data)[0] |= val;
break;
case 4:
mask = ~params->mask;
ret = regmap_parse_val(component->regmap, &mask, &mask);
if (ret != 0)
return ret;
((u32 *)data)[0] &= mask;
ret = regmap_parse_val(component->regmap, &val, &val);
if (ret != 0)
return ret;
((u32 *)data)[0] |= val;
break;
default:
return -EINVAL;
}
}
return regmap_raw_write(component->regmap, params->base, data, len);
}
EXPORT_SYMBOL_GPL(snd_soc_bytes_put);
int snd_soc_bytes_info_ext(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *ucontrol)
{
struct soc_bytes_ext *params = (void *)kcontrol->private_value;
ucontrol->type = SNDRV_CTL_ELEM_TYPE_BYTES;
ucontrol->count = params->max;
return 0;
}
EXPORT_SYMBOL_GPL(snd_soc_bytes_info_ext);
int snd_soc_bytes_tlv_callback(struct snd_kcontrol *kcontrol, int op_flag,
unsigned int size, unsigned int __user *tlv)
{
struct soc_bytes_ext *params = (void *)kcontrol->private_value;
unsigned int count = size < params->max ? size : params->max;
int ret = -ENXIO;
switch (op_flag) {
case SNDRV_CTL_TLV_OP_READ:
if (params->get)
ret = params->get(kcontrol, tlv, count);
break;
case SNDRV_CTL_TLV_OP_WRITE:
if (params->put)
ret = params->put(kcontrol, tlv, count);
break;
}
return ret;
}
EXPORT_SYMBOL_GPL(snd_soc_bytes_tlv_callback);
/**
* snd_soc_info_xr_sx - signed multi register info callback
* @kcontrol: mreg control
* @uinfo: control element information
*
* Callback to provide information of a control that can span multiple
* codec registers which together forms a single signed value. Note
* that unlike the non-xr variant of sx controls these may or may not
* include the sign bit, depending on nbits, and there is no shift.
*
* Returns 0 for success.
*/
int snd_soc_info_xr_sx(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
struct soc_mreg_control *mc =
(struct soc_mreg_control *)kcontrol->private_value;
uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
uinfo->count = 1;
uinfo->value.integer.min = mc->min;
uinfo->value.integer.max = mc->max;
return 0;
}
EXPORT_SYMBOL_GPL(snd_soc_info_xr_sx);
/**
* snd_soc_get_xr_sx - signed multi register get callback
* @kcontrol: mreg control
* @ucontrol: control element information
*
* Callback to get the value of a control that can span multiple codec
* registers which together forms a single signed value. The control
* supports specifying total no of bits used to allow for bitfields
* across the multiple codec registers. Note that unlike the non-xr
* variant of sx controls these may or may not include the sign bit,
* depending on nbits, and there is no shift.
*
* Returns 0 for success.
*/
int snd_soc_get_xr_sx(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
struct soc_mreg_control *mc =
(struct soc_mreg_control *)kcontrol->private_value;
unsigned int regbase = mc->regbase;
unsigned int regcount = mc->regcount;
unsigned int regwshift = component->val_bytes * BITS_PER_BYTE;
unsigned int regwmask = GENMASK(regwshift - 1, 0);
unsigned long mask = GENMASK(mc->nbits - 1, 0);
long val = 0;
unsigned int i;
for (i = 0; i < regcount; i++) {
unsigned int regval = snd_soc_component_read(component, regbase + i);
val |= (regval & regwmask) << (regwshift * (regcount - i - 1));
}
val &= mask;
if (mc->min < 0 && val > mc->max)
val |= ~mask;
if (mc->invert)
val = mc->max - val;
ucontrol->value.integer.value[0] = val;
return 0;
}
EXPORT_SYMBOL_GPL(snd_soc_get_xr_sx);
/**
* snd_soc_put_xr_sx - signed multi register get callback
* @kcontrol: mreg control
* @ucontrol: control element information
*
* Callback to set the value of a control that can span multiple codec
* registers which together forms a single signed value. The control
* supports specifying total no of bits used to allow for bitfields
* across the multiple codec registers. Note that unlike the non-xr
* variant of sx controls these may or may not include the sign bit,
* depending on nbits, and there is no shift.
*
* Returns 0 for success.
*/
int snd_soc_put_xr_sx(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
struct soc_mreg_control *mc =
(struct soc_mreg_control *)kcontrol->private_value;
unsigned int regbase = mc->regbase;
unsigned int regcount = mc->regcount;
unsigned int regwshift = component->val_bytes * BITS_PER_BYTE;
unsigned int regwmask = GENMASK(regwshift - 1, 0);
unsigned long mask = GENMASK(mc->nbits - 1, 0);
long val = ucontrol->value.integer.value[0];
int ret = 0;
unsigned int i;
if (val < mc->min || val > mc->max)
return -EINVAL;
if (mc->invert)
val = mc->max - val;
val &= mask;
for (i = 0; i < regcount; i++) {
unsigned int regval = (val >> (regwshift * (regcount - i - 1))) &
regwmask;
unsigned int regmask = (mask >> (regwshift * (regcount - i - 1))) &
regwmask;
int err = snd_soc_component_update_bits(component, regbase + i,
regmask, regval);
if (err < 0)
return err;
if (err > 0)
ret = err;
}
return ret;
}
EXPORT_SYMBOL_GPL(snd_soc_put_xr_sx);
/**
* snd_soc_get_strobe - strobe get callback
* @kcontrol: mixer control
* @ucontrol: control element information
*
* Callback get the value of a strobe mixer control.
*
* Returns 0 for success.
*/
int snd_soc_get_strobe(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
struct soc_mixer_control *mc =
(struct soc_mixer_control *)kcontrol->private_value;
unsigned int invert = mc->invert != 0;
unsigned int mask = BIT(mc->shift);
unsigned int val;
val = snd_soc_component_read(component, mc->reg);
val &= mask;
if (mc->shift != 0 && val != 0)
val = val >> mc->shift;
ucontrol->value.enumerated.item[0] = val ^ invert;
return 0;
}
EXPORT_SYMBOL_GPL(snd_soc_get_strobe);
/**
* snd_soc_put_strobe - strobe put callback
* @kcontrol: mixer control
* @ucontrol: control element information
*
* Callback strobe a register bit to high then low (or the inverse)
* in one pass of a single mixer enum control.
*
* Returns 1 for success.
*/
int snd_soc_put_strobe(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
struct soc_mixer_control *mc =
(struct soc_mixer_control *)kcontrol->private_value;
unsigned int strobe = ucontrol->value.enumerated.item[0] != 0;
unsigned int invert = mc->invert != 0;
unsigned int mask = BIT(mc->shift);
unsigned int val1 = (strobe ^ invert) ? mask : 0;
unsigned int val2 = (strobe ^ invert) ? 0 : mask;
int ret;
ret = snd_soc_component_update_bits(component, mc->reg, mask, val1);
if (ret < 0)
return ret;
return snd_soc_component_update_bits(component, mc->reg, mask, val2);
}
EXPORT_SYMBOL_GPL(snd_soc_put_strobe);