linux/rust/kernel/list.rs
Tamir Duberstein c77f85b347 rust: list: remove OFFSET constants
Replace `ListLinksSelfPtr::LIST_LINKS_SELF_PTR_OFFSET` with `unsafe fn
raw_get_self_ptr` which returns a pointer to the field rather than
requiring the caller to do pointer arithmetic.

Implement `HasListLinks::raw_get_list_links` in `impl_has_list_links!`,
narrowing the interface of `HasListLinks` and replacing pointer
arithmetic with `container_of!`.

Modify `impl_list_item` to also invoke `impl_has_list_links!` or
`impl_has_list_links_self_ptr!`. This is necessary to allow
`impl_list_item` to see more of the tokens used by
`impl_has_list_links{,_self_ptr}!`.

A similar API change was discussed on the hrtimer series[1].

Link: https://lore.kernel.org/all/20250224-hrtimer-v3-v6-12-rc2-v9-1-5bd3bf0ce6cc@kernel.org/ [1]
Tested-by: Alice Ryhl <aliceryhl@google.com>
Reviewed-by: Alice Ryhl <aliceryhl@google.com>
Signed-off-by: Tamir Duberstein <tamird@gmail.com>
Link: https://lore.kernel.org/r/20250709-list-no-offset-v4-6-a429e75840a9@gmail.com
[ Fixed broken intra-doc links. Used the renamed
  `Opaque::cast_into`. - Miguel ]
Signed-off-by: Miguel Ojeda <ojeda@kernel.org>
2025-07-19 23:18:18 +02:00

1083 lines
40 KiB
Rust

// SPDX-License-Identifier: GPL-2.0
// Copyright (C) 2024 Google LLC.
//! A linked list implementation.
use crate::sync::ArcBorrow;
use crate::types::Opaque;
use core::iter::{DoubleEndedIterator, FusedIterator};
use core::marker::PhantomData;
use core::ptr;
use pin_init::PinInit;
mod impl_list_item_mod;
pub use self::impl_list_item_mod::{
impl_has_list_links, impl_has_list_links_self_ptr, impl_list_item, HasListLinks, HasSelfPtr,
};
mod arc;
pub use self::arc::{impl_list_arc_safe, AtomicTracker, ListArc, ListArcSafe, TryNewListArc};
mod arc_field;
pub use self::arc_field::{define_list_arc_field_getter, ListArcField};
/// A linked list.
///
/// All elements in this linked list will be [`ListArc`] references to the value. Since a value can
/// only have one `ListArc` (for each pair of prev/next pointers), this ensures that the same
/// prev/next pointers are not used for several linked lists.
///
/// # Invariants
///
/// * If the list is empty, then `first` is null. Otherwise, `first` points at the `ListLinks`
/// field of the first element in the list.
/// * All prev/next pointers in `ListLinks` fields of items in the list are valid and form a cycle.
/// * For every item in the list, the list owns the associated [`ListArc`] reference and has
/// exclusive access to the `ListLinks` field.
///
/// # Examples
///
/// ```
/// use kernel::list::*;
///
/// #[pin_data]
/// struct BasicItem {
/// value: i32,
/// #[pin]
/// links: ListLinks,
/// }
///
/// impl BasicItem {
/// fn new(value: i32) -> Result<ListArc<Self>> {
/// ListArc::pin_init(try_pin_init!(Self {
/// value,
/// links <- ListLinks::new(),
/// }), GFP_KERNEL)
/// }
/// }
///
/// impl_list_arc_safe! {
/// impl ListArcSafe<0> for BasicItem { untracked; }
/// }
/// impl_list_item! {
/// impl ListItem<0> for BasicItem { using ListLinks { self.links }; }
/// }
///
/// // Create a new empty list.
/// let mut list = List::new();
/// {
/// assert!(list.is_empty());
/// }
///
/// // Insert 3 elements using `push_back()`.
/// list.push_back(BasicItem::new(15)?);
/// list.push_back(BasicItem::new(10)?);
/// list.push_back(BasicItem::new(30)?);
///
/// // Iterate over the list to verify the nodes were inserted correctly.
/// // [15, 10, 30]
/// {
/// let mut iter = list.iter();
/// assert_eq!(iter.next().ok_or(EINVAL)?.value, 15);
/// assert_eq!(iter.next().ok_or(EINVAL)?.value, 10);
/// assert_eq!(iter.next().ok_or(EINVAL)?.value, 30);
/// assert!(iter.next().is_none());
///
/// // Verify the length of the list.
/// assert_eq!(list.iter().count(), 3);
/// }
///
/// // Pop the items from the list using `pop_back()` and verify the content.
/// {
/// assert_eq!(list.pop_back().ok_or(EINVAL)?.value, 30);
/// assert_eq!(list.pop_back().ok_or(EINVAL)?.value, 10);
/// assert_eq!(list.pop_back().ok_or(EINVAL)?.value, 15);
/// }
///
/// // Insert 3 elements using `push_front()`.
/// list.push_front(BasicItem::new(15)?);
/// list.push_front(BasicItem::new(10)?);
/// list.push_front(BasicItem::new(30)?);
///
/// // Iterate over the list to verify the nodes were inserted correctly.
/// // [30, 10, 15]
/// {
/// let mut iter = list.iter();
/// assert_eq!(iter.next().ok_or(EINVAL)?.value, 30);
/// assert_eq!(iter.next().ok_or(EINVAL)?.value, 10);
/// assert_eq!(iter.next().ok_or(EINVAL)?.value, 15);
/// assert!(iter.next().is_none());
///
/// // Verify the length of the list.
/// assert_eq!(list.iter().count(), 3);
/// }
///
/// // Pop the items from the list using `pop_front()` and verify the content.
/// {
/// assert_eq!(list.pop_front().ok_or(EINVAL)?.value, 30);
/// assert_eq!(list.pop_front().ok_or(EINVAL)?.value, 10);
/// }
///
/// // Push `list2` to `list` through `push_all_back()`.
/// // list: [15]
/// // list2: [25, 35]
/// {
/// let mut list2 = List::new();
/// list2.push_back(BasicItem::new(25)?);
/// list2.push_back(BasicItem::new(35)?);
///
/// list.push_all_back(&mut list2);
///
/// // list: [15, 25, 35]
/// // list2: []
/// let mut iter = list.iter();
/// assert_eq!(iter.next().ok_or(EINVAL)?.value, 15);
/// assert_eq!(iter.next().ok_or(EINVAL)?.value, 25);
/// assert_eq!(iter.next().ok_or(EINVAL)?.value, 35);
/// assert!(iter.next().is_none());
/// assert!(list2.is_empty());
/// }
/// # Result::<(), Error>::Ok(())
/// ```
pub struct List<T: ?Sized + ListItem<ID>, const ID: u64 = 0> {
first: *mut ListLinksFields,
_ty: PhantomData<ListArc<T, ID>>,
}
// SAFETY: This is a container of `ListArc<T, ID>`, and access to the container allows the same
// type of access to the `ListArc<T, ID>` elements.
unsafe impl<T, const ID: u64> Send for List<T, ID>
where
ListArc<T, ID>: Send,
T: ?Sized + ListItem<ID>,
{
}
// SAFETY: This is a container of `ListArc<T, ID>`, and access to the container allows the same
// type of access to the `ListArc<T, ID>` elements.
unsafe impl<T, const ID: u64> Sync for List<T, ID>
where
ListArc<T, ID>: Sync,
T: ?Sized + ListItem<ID>,
{
}
/// Implemented by types where a [`ListArc<Self>`] can be inserted into a [`List`].
///
/// # Safety
///
/// Implementers must ensure that they provide the guarantees documented on methods provided by
/// this trait.
///
/// [`ListArc<Self>`]: ListArc
pub unsafe trait ListItem<const ID: u64 = 0>: ListArcSafe<ID> {
/// Views the [`ListLinks`] for this value.
///
/// # Guarantees
///
/// If there is a previous call to `prepare_to_insert` and there is no call to `post_remove`
/// since the most recent such call, then this returns the same pointer as the one returned by
/// the most recent call to `prepare_to_insert`.
///
/// Otherwise, the returned pointer points at a read-only [`ListLinks`] with two null pointers.
///
/// # Safety
///
/// The provided pointer must point at a valid value. (It need not be in an `Arc`.)
unsafe fn view_links(me: *const Self) -> *mut ListLinks<ID>;
/// View the full value given its [`ListLinks`] field.
///
/// Can only be used when the value is in a list.
///
/// # Guarantees
///
/// * Returns the same pointer as the one passed to the most recent call to `prepare_to_insert`.
/// * The returned pointer is valid until the next call to `post_remove`.
///
/// # Safety
///
/// * The provided pointer must originate from the most recent call to `prepare_to_insert`, or
/// from a call to `view_links` that happened after the most recent call to
/// `prepare_to_insert`.
/// * Since the most recent call to `prepare_to_insert`, the `post_remove` method must not have
/// been called.
unsafe fn view_value(me: *mut ListLinks<ID>) -> *const Self;
/// This is called when an item is inserted into a [`List`].
///
/// # Guarantees
///
/// The caller is granted exclusive access to the returned [`ListLinks`] until `post_remove` is
/// called.
///
/// # Safety
///
/// * The provided pointer must point at a valid value in an [`Arc`].
/// * Calls to `prepare_to_insert` and `post_remove` on the same value must alternate.
/// * The caller must own the [`ListArc`] for this value.
/// * The caller must not give up ownership of the [`ListArc`] unless `post_remove` has been
/// called after this call to `prepare_to_insert`.
///
/// [`Arc`]: crate::sync::Arc
unsafe fn prepare_to_insert(me: *const Self) -> *mut ListLinks<ID>;
/// This undoes a previous call to `prepare_to_insert`.
///
/// # Guarantees
///
/// The returned pointer is the pointer that was originally passed to `prepare_to_insert`.
///
/// # Safety
///
/// The provided pointer must be the pointer returned by the most recent call to
/// `prepare_to_insert`.
unsafe fn post_remove(me: *mut ListLinks<ID>) -> *const Self;
}
#[repr(C)]
#[derive(Copy, Clone)]
struct ListLinksFields {
next: *mut ListLinksFields,
prev: *mut ListLinksFields,
}
/// The prev/next pointers for an item in a linked list.
///
/// # Invariants
///
/// The fields are null if and only if this item is not in a list.
#[repr(transparent)]
pub struct ListLinks<const ID: u64 = 0> {
// This type is `!Unpin` for aliasing reasons as the pointers are part of an intrusive linked
// list.
inner: Opaque<ListLinksFields>,
}
// SAFETY: The only way to access/modify the pointers inside of `ListLinks<ID>` is via holding the
// associated `ListArc<T, ID>`. Since that type correctly implements `Send`, it is impossible to
// move this an instance of this type to a different thread if the pointees are `!Send`.
unsafe impl<const ID: u64> Send for ListLinks<ID> {}
// SAFETY: The type is opaque so immutable references to a ListLinks are useless. Therefore, it's
// okay to have immutable access to a ListLinks from several threads at once.
unsafe impl<const ID: u64> Sync for ListLinks<ID> {}
impl<const ID: u64> ListLinks<ID> {
/// Creates a new initializer for this type.
pub fn new() -> impl PinInit<Self> {
// INVARIANT: Pin-init initializers can't be used on an existing `Arc`, so this value will
// not be constructed in an `Arc` that already has a `ListArc`.
ListLinks {
inner: Opaque::new(ListLinksFields {
prev: ptr::null_mut(),
next: ptr::null_mut(),
}),
}
}
/// # Safety
///
/// `me` must be dereferenceable.
#[inline]
unsafe fn fields(me: *mut Self) -> *mut ListLinksFields {
// SAFETY: The caller promises that the pointer is valid.
unsafe { Opaque::cast_into(ptr::addr_of!((*me).inner)) }
}
/// # Safety
///
/// `me` must be dereferenceable.
#[inline]
unsafe fn from_fields(me: *mut ListLinksFields) -> *mut Self {
me.cast()
}
}
/// Similar to [`ListLinks`], but also contains a pointer to the full value.
///
/// This type can be used instead of [`ListLinks`] to support lists with trait objects.
#[repr(C)]
pub struct ListLinksSelfPtr<T: ?Sized, const ID: u64 = 0> {
/// The `ListLinks` field inside this value.
///
/// This is public so that it can be used with `impl_has_list_links!`.
pub inner: ListLinks<ID>,
// UnsafeCell is not enough here because we use `Opaque::uninit` as a dummy value, and
// `ptr::null()` doesn't work for `T: ?Sized`.
self_ptr: Opaque<*const T>,
}
// SAFETY: The fields of a ListLinksSelfPtr can be moved across thread boundaries.
unsafe impl<T: ?Sized + Send, const ID: u64> Send for ListLinksSelfPtr<T, ID> {}
// SAFETY: The type is opaque so immutable references to a ListLinksSelfPtr are useless. Therefore,
// it's okay to have immutable access to a ListLinks from several threads at once.
//
// Note that `inner` being a public field does not prevent this type from being opaque, since
// `inner` is a opaque type.
unsafe impl<T: ?Sized + Sync, const ID: u64> Sync for ListLinksSelfPtr<T, ID> {}
impl<T: ?Sized, const ID: u64> ListLinksSelfPtr<T, ID> {
/// Creates a new initializer for this type.
pub fn new() -> impl PinInit<Self> {
// INVARIANT: Pin-init initializers can't be used on an existing `Arc`, so this value will
// not be constructed in an `Arc` that already has a `ListArc`.
Self {
inner: ListLinks {
inner: Opaque::new(ListLinksFields {
prev: ptr::null_mut(),
next: ptr::null_mut(),
}),
},
self_ptr: Opaque::uninit(),
}
}
/// Returns a pointer to the self pointer.
///
/// # Safety
///
/// The provided pointer must point at a valid struct of type `Self`.
pub unsafe fn raw_get_self_ptr(me: *const Self) -> *const Opaque<*const T> {
// SAFETY: The caller promises that the pointer is valid.
unsafe { ptr::addr_of!((*me).self_ptr) }
}
}
impl<T: ?Sized + ListItem<ID>, const ID: u64> List<T, ID> {
/// Creates a new empty list.
pub const fn new() -> Self {
Self {
first: ptr::null_mut(),
_ty: PhantomData,
}
}
/// Returns whether this list is empty.
pub fn is_empty(&self) -> bool {
self.first.is_null()
}
/// Inserts `item` before `next` in the cycle.
///
/// Returns a pointer to the newly inserted element. Never changes `self.first` unless the list
/// is empty.
///
/// # Safety
///
/// * `next` must be an element in this list or null.
/// * if `next` is null, then the list must be empty.
unsafe fn insert_inner(
&mut self,
item: ListArc<T, ID>,
next: *mut ListLinksFields,
) -> *mut ListLinksFields {
let raw_item = ListArc::into_raw(item);
// SAFETY:
// * We just got `raw_item` from a `ListArc`, so it's in an `Arc`.
// * Since we have ownership of the `ListArc`, `post_remove` must have been called after
// the most recent call to `prepare_to_insert`, if any.
// * We own the `ListArc`.
// * Removing items from this list is always done using `remove_internal_inner`, which
// calls `post_remove` before giving up ownership.
let list_links = unsafe { T::prepare_to_insert(raw_item) };
// SAFETY: We have not yet called `post_remove`, so `list_links` is still valid.
let item = unsafe { ListLinks::fields(list_links) };
// Check if the list is empty.
if next.is_null() {
// SAFETY: The caller just gave us ownership of these fields.
// INVARIANT: A linked list with one item should be cyclic.
unsafe {
(*item).next = item;
(*item).prev = item;
}
self.first = item;
} else {
// SAFETY: By the type invariant, this pointer is valid or null. We just checked that
// it's not null, so it must be valid.
let prev = unsafe { (*next).prev };
// SAFETY: Pointers in a linked list are never dangling, and the caller just gave us
// ownership of the fields on `item`.
// INVARIANT: This correctly inserts `item` between `prev` and `next`.
unsafe {
(*item).next = next;
(*item).prev = prev;
(*prev).next = item;
(*next).prev = item;
}
}
item
}
/// Add the provided item to the back of the list.
pub fn push_back(&mut self, item: ListArc<T, ID>) {
// SAFETY:
// * `self.first` is null or in the list.
// * `self.first` is only null if the list is empty.
unsafe { self.insert_inner(item, self.first) };
}
/// Add the provided item to the front of the list.
pub fn push_front(&mut self, item: ListArc<T, ID>) {
// SAFETY:
// * `self.first` is null or in the list.
// * `self.first` is only null if the list is empty.
let new_elem = unsafe { self.insert_inner(item, self.first) };
// INVARIANT: `new_elem` is in the list because we just inserted it.
self.first = new_elem;
}
/// Removes the last item from this list.
pub fn pop_back(&mut self) -> Option<ListArc<T, ID>> {
if self.is_empty() {
return None;
}
// SAFETY: We just checked that the list is not empty.
let last = unsafe { (*self.first).prev };
// SAFETY: The last item of this list is in this list.
Some(unsafe { self.remove_internal(last) })
}
/// Removes the first item from this list.
pub fn pop_front(&mut self) -> Option<ListArc<T, ID>> {
if self.is_empty() {
return None;
}
// SAFETY: The first item of this list is in this list.
Some(unsafe { self.remove_internal(self.first) })
}
/// Removes the provided item from this list and returns it.
///
/// This returns `None` if the item is not in the list. (Note that by the safety requirements,
/// this means that the item is not in any list.)
///
/// # Safety
///
/// `item` must not be in a different linked list (with the same id).
pub unsafe fn remove(&mut self, item: &T) -> Option<ListArc<T, ID>> {
// SAFETY: TODO.
let mut item = unsafe { ListLinks::fields(T::view_links(item)) };
// SAFETY: The user provided a reference, and reference are never dangling.
//
// As for why this is not a data race, there are two cases:
//
// * If `item` is not in any list, then these fields are read-only and null.
// * If `item` is in this list, then we have exclusive access to these fields since we
// have a mutable reference to the list.
//
// In either case, there's no race.
let ListLinksFields { next, prev } = unsafe { *item };
debug_assert_eq!(next.is_null(), prev.is_null());
if !next.is_null() {
// This is really a no-op, but this ensures that `item` is a raw pointer that was
// obtained without going through a pointer->reference->pointer conversion roundtrip.
// This ensures that the list is valid under the more restrictive strict provenance
// ruleset.
//
// SAFETY: We just checked that `next` is not null, and it's not dangling by the
// list invariants.
unsafe {
debug_assert_eq!(item, (*next).prev);
item = (*next).prev;
}
// SAFETY: We just checked that `item` is in a list, so the caller guarantees that it
// is in this list. The pointers are in the right order.
Some(unsafe { self.remove_internal_inner(item, next, prev) })
} else {
None
}
}
/// Removes the provided item from the list.
///
/// # Safety
///
/// `item` must point at an item in this list.
unsafe fn remove_internal(&mut self, item: *mut ListLinksFields) -> ListArc<T, ID> {
// SAFETY: The caller promises that this pointer is not dangling, and there's no data race
// since we have a mutable reference to the list containing `item`.
let ListLinksFields { next, prev } = unsafe { *item };
// SAFETY: The pointers are ok and in the right order.
unsafe { self.remove_internal_inner(item, next, prev) }
}
/// Removes the provided item from the list.
///
/// # Safety
///
/// The `item` pointer must point at an item in this list, and we must have `(*item).next ==
/// next` and `(*item).prev == prev`.
unsafe fn remove_internal_inner(
&mut self,
item: *mut ListLinksFields,
next: *mut ListLinksFields,
prev: *mut ListLinksFields,
) -> ListArc<T, ID> {
// SAFETY: We have exclusive access to the pointers of items in the list, and the prev/next
// pointers are always valid for items in a list.
//
// INVARIANT: There are three cases:
// * If the list has at least three items, then after removing the item, `prev` and `next`
// will be next to each other.
// * If the list has two items, then the remaining item will point at itself.
// * If the list has one item, then `next == prev == item`, so these writes have no
// effect. The list remains unchanged and `item` is still in the list for now.
unsafe {
(*next).prev = prev;
(*prev).next = next;
}
// SAFETY: We have exclusive access to items in the list.
// INVARIANT: `item` is being removed, so the pointers should be null.
unsafe {
(*item).prev = ptr::null_mut();
(*item).next = ptr::null_mut();
}
// INVARIANT: There are three cases:
// * If `item` was not the first item, then `self.first` should remain unchanged.
// * If `item` was the first item and there is another item, then we just updated
// `prev->next` to `next`, which is the new first item, and setting `item->next` to null
// did not modify `prev->next`.
// * If `item` was the only item in the list, then `prev == item`, and we just set
// `item->next` to null, so this correctly sets `first` to null now that the list is
// empty.
if self.first == item {
// SAFETY: The `prev` pointer is the value that `item->prev` had when it was in this
// list, so it must be valid. There is no race since `prev` is still in the list and we
// still have exclusive access to the list.
self.first = unsafe { (*prev).next };
}
// SAFETY: `item` used to be in the list, so it is dereferenceable by the type invariants
// of `List`.
let list_links = unsafe { ListLinks::from_fields(item) };
// SAFETY: Any pointer in the list originates from a `prepare_to_insert` call.
let raw_item = unsafe { T::post_remove(list_links) };
// SAFETY: The above call to `post_remove` guarantees that we can recreate the `ListArc`.
unsafe { ListArc::from_raw(raw_item) }
}
/// Moves all items from `other` into `self`.
///
/// The items of `other` are added to the back of `self`, so the last item of `other` becomes
/// the last item of `self`.
pub fn push_all_back(&mut self, other: &mut List<T, ID>) {
// First, we insert the elements into `self`. At the end, we make `other` empty.
if self.is_empty() {
// INVARIANT: All of the elements in `other` become elements of `self`.
self.first = other.first;
} else if !other.is_empty() {
let other_first = other.first;
// SAFETY: The other list is not empty, so this pointer is valid.
let other_last = unsafe { (*other_first).prev };
let self_first = self.first;
// SAFETY: The self list is not empty, so this pointer is valid.
let self_last = unsafe { (*self_first).prev };
// SAFETY: We have exclusive access to both lists, so we can update the pointers.
// INVARIANT: This correctly sets the pointers to merge both lists. We do not need to
// update `self.first` because the first element of `self` does not change.
unsafe {
(*self_first).prev = other_last;
(*other_last).next = self_first;
(*self_last).next = other_first;
(*other_first).prev = self_last;
}
}
// INVARIANT: The other list is now empty, so update its pointer.
other.first = ptr::null_mut();
}
/// Returns a cursor that points before the first element of the list.
pub fn cursor_front(&mut self) -> Cursor<'_, T, ID> {
// INVARIANT: `self.first` is in this list.
Cursor {
next: self.first,
list: self,
}
}
/// Returns a cursor that points after the last element in the list.
pub fn cursor_back(&mut self) -> Cursor<'_, T, ID> {
// INVARIANT: `next` is allowed to be null.
Cursor {
next: core::ptr::null_mut(),
list: self,
}
}
/// Creates an iterator over the list.
pub fn iter(&self) -> Iter<'_, T, ID> {
// INVARIANT: If the list is empty, both pointers are null. Otherwise, both pointers point
// at the first element of the same list.
Iter {
current: self.first,
stop: self.first,
_ty: PhantomData,
}
}
}
impl<T: ?Sized + ListItem<ID>, const ID: u64> Default for List<T, ID> {
fn default() -> Self {
List::new()
}
}
impl<T: ?Sized + ListItem<ID>, const ID: u64> Drop for List<T, ID> {
fn drop(&mut self) {
while let Some(item) = self.pop_front() {
drop(item);
}
}
}
/// An iterator over a [`List`].
///
/// # Invariants
///
/// * There must be a [`List`] that is immutably borrowed for the duration of `'a`.
/// * The `current` pointer is null or points at a value in that [`List`].
/// * The `stop` pointer is equal to the `first` field of that [`List`].
#[derive(Clone)]
pub struct Iter<'a, T: ?Sized + ListItem<ID>, const ID: u64 = 0> {
current: *mut ListLinksFields,
stop: *mut ListLinksFields,
_ty: PhantomData<&'a ListArc<T, ID>>,
}
impl<'a, T: ?Sized + ListItem<ID>, const ID: u64> Iterator for Iter<'a, T, ID> {
type Item = ArcBorrow<'a, T>;
fn next(&mut self) -> Option<ArcBorrow<'a, T>> {
if self.current.is_null() {
return None;
}
let current = self.current;
// SAFETY: We just checked that `current` is not null, so it is in a list, and hence not
// dangling. There's no race because the iterator holds an immutable borrow to the list.
let next = unsafe { (*current).next };
// INVARIANT: If `current` was the last element of the list, then this updates it to null.
// Otherwise, we update it to the next element.
self.current = if next != self.stop {
next
} else {
ptr::null_mut()
};
// SAFETY: The `current` pointer points at a value in the list.
let item = unsafe { T::view_value(ListLinks::from_fields(current)) };
// SAFETY:
// * All values in a list are stored in an `Arc`.
// * The value cannot be removed from the list for the duration of the lifetime annotated
// on the returned `ArcBorrow`, because removing it from the list would require mutable
// access to the list. However, the `ArcBorrow` is annotated with the iterator's
// lifetime, and the list is immutably borrowed for that lifetime.
// * Values in a list never have a `UniqueArc` reference.
Some(unsafe { ArcBorrow::from_raw(item) })
}
}
/// A cursor into a [`List`].
///
/// A cursor always rests between two elements in the list. This means that a cursor has a previous
/// and next element, but no current element. It also means that it's possible to have a cursor
/// into an empty list.
///
/// # Examples
///
/// ```
/// use kernel::prelude::*;
/// use kernel::list::{List, ListArc, ListLinks};
///
/// #[pin_data]
/// struct ListItem {
/// value: u32,
/// #[pin]
/// links: ListLinks,
/// }
///
/// impl ListItem {
/// fn new(value: u32) -> Result<ListArc<Self>> {
/// ListArc::pin_init(try_pin_init!(Self {
/// value,
/// links <- ListLinks::new(),
/// }), GFP_KERNEL)
/// }
/// }
///
/// kernel::list::impl_list_arc_safe! {
/// impl ListArcSafe<0> for ListItem { untracked; }
/// }
/// kernel::list::impl_list_item! {
/// impl ListItem<0> for ListItem { using ListLinks { self.links }; }
/// }
///
/// // Use a cursor to remove the first element with the given value.
/// fn remove_first(list: &mut List<ListItem>, value: u32) -> Option<ListArc<ListItem>> {
/// let mut cursor = list.cursor_front();
/// while let Some(next) = cursor.peek_next() {
/// if next.value == value {
/// return Some(next.remove());
/// }
/// cursor.move_next();
/// }
/// None
/// }
///
/// // Use a cursor to remove the last element with the given value.
/// fn remove_last(list: &mut List<ListItem>, value: u32) -> Option<ListArc<ListItem>> {
/// let mut cursor = list.cursor_back();
/// while let Some(prev) = cursor.peek_prev() {
/// if prev.value == value {
/// return Some(prev.remove());
/// }
/// cursor.move_prev();
/// }
/// None
/// }
///
/// // Use a cursor to remove all elements with the given value. The removed elements are moved to
/// // a new list.
/// fn remove_all(list: &mut List<ListItem>, value: u32) -> List<ListItem> {
/// let mut out = List::new();
/// let mut cursor = list.cursor_front();
/// while let Some(next) = cursor.peek_next() {
/// if next.value == value {
/// out.push_back(next.remove());
/// } else {
/// cursor.move_next();
/// }
/// }
/// out
/// }
///
/// // Use a cursor to insert a value at a specific index. Returns an error if the index is out of
/// // bounds.
/// fn insert_at(list: &mut List<ListItem>, new: ListArc<ListItem>, idx: usize) -> Result {
/// let mut cursor = list.cursor_front();
/// for _ in 0..idx {
/// if !cursor.move_next() {
/// return Err(EINVAL);
/// }
/// }
/// cursor.insert_next(new);
/// Ok(())
/// }
///
/// // Merge two sorted lists into a single sorted list.
/// fn merge_sorted(list: &mut List<ListItem>, merge: List<ListItem>) {
/// let mut cursor = list.cursor_front();
/// for to_insert in merge {
/// while let Some(next) = cursor.peek_next() {
/// if to_insert.value < next.value {
/// break;
/// }
/// cursor.move_next();
/// }
/// cursor.insert_prev(to_insert);
/// }
/// }
///
/// let mut list = List::new();
/// list.push_back(ListItem::new(14)?);
/// list.push_back(ListItem::new(12)?);
/// list.push_back(ListItem::new(10)?);
/// list.push_back(ListItem::new(12)?);
/// list.push_back(ListItem::new(15)?);
/// list.push_back(ListItem::new(14)?);
/// assert_eq!(remove_all(&mut list, 12).iter().count(), 2);
/// // [14, 10, 15, 14]
/// assert!(remove_first(&mut list, 14).is_some());
/// // [10, 15, 14]
/// insert_at(&mut list, ListItem::new(12)?, 2)?;
/// // [10, 15, 12, 14]
/// assert!(remove_last(&mut list, 15).is_some());
/// // [10, 12, 14]
///
/// let mut list2 = List::new();
/// list2.push_back(ListItem::new(11)?);
/// list2.push_back(ListItem::new(13)?);
/// merge_sorted(&mut list, list2);
///
/// let mut items = list.into_iter();
/// assert_eq!(items.next().ok_or(EINVAL)?.value, 10);
/// assert_eq!(items.next().ok_or(EINVAL)?.value, 11);
/// assert_eq!(items.next().ok_or(EINVAL)?.value, 12);
/// assert_eq!(items.next().ok_or(EINVAL)?.value, 13);
/// assert_eq!(items.next().ok_or(EINVAL)?.value, 14);
/// assert!(items.next().is_none());
/// # Result::<(), Error>::Ok(())
/// ```
///
/// # Invariants
///
/// The `next` pointer is null or points a value in `list`.
pub struct Cursor<'a, T: ?Sized + ListItem<ID>, const ID: u64 = 0> {
list: &'a mut List<T, ID>,
/// Points at the element after this cursor, or null if the cursor is after the last element.
next: *mut ListLinksFields,
}
impl<'a, T: ?Sized + ListItem<ID>, const ID: u64> Cursor<'a, T, ID> {
/// Returns a pointer to the element before the cursor.
///
/// Returns null if there is no element before the cursor.
fn prev_ptr(&self) -> *mut ListLinksFields {
let mut next = self.next;
let first = self.list.first;
if next == first {
// We are before the first element.
return core::ptr::null_mut();
}
if next.is_null() {
// We are after the last element, so we need a pointer to the last element, which is
// the same as `(*first).prev`.
next = first;
}
// SAFETY: `next` can't be null, because then `first` must also be null, but in that case
// we would have exited at the `next == first` check. Thus, `next` is an element in the
// list, so we can access its `prev` pointer.
unsafe { (*next).prev }
}
/// Access the element after this cursor.
pub fn peek_next(&mut self) -> Option<CursorPeek<'_, 'a, T, true, ID>> {
if self.next.is_null() {
return None;
}
// INVARIANT:
// * We just checked that `self.next` is non-null, so it must be in `self.list`.
// * `ptr` is equal to `self.next`.
Some(CursorPeek {
ptr: self.next,
cursor: self,
})
}
/// Access the element before this cursor.
pub fn peek_prev(&mut self) -> Option<CursorPeek<'_, 'a, T, false, ID>> {
let prev = self.prev_ptr();
if prev.is_null() {
return None;
}
// INVARIANT:
// * We just checked that `prev` is non-null, so it must be in `self.list`.
// * `self.prev_ptr()` never returns `self.next`.
Some(CursorPeek {
ptr: prev,
cursor: self,
})
}
/// Move the cursor one element forward.
///
/// If the cursor is after the last element, then this call does nothing. This call returns
/// `true` if the cursor's position was changed.
pub fn move_next(&mut self) -> bool {
if self.next.is_null() {
return false;
}
// SAFETY: `self.next` is an element in the list and we borrow the list mutably, so we can
// access the `next` field.
let mut next = unsafe { (*self.next).next };
if next == self.list.first {
next = core::ptr::null_mut();
}
// INVARIANT: `next` is either null or the next element after an element in the list.
self.next = next;
true
}
/// Move the cursor one element backwards.
///
/// If the cursor is before the first element, then this call does nothing. This call returns
/// `true` if the cursor's position was changed.
pub fn move_prev(&mut self) -> bool {
if self.next == self.list.first {
return false;
}
// INVARIANT: `prev_ptr()` always returns a pointer that is null or in the list.
self.next = self.prev_ptr();
true
}
/// Inserts an element where the cursor is pointing and get a pointer to the new element.
fn insert_inner(&mut self, item: ListArc<T, ID>) -> *mut ListLinksFields {
let ptr = if self.next.is_null() {
self.list.first
} else {
self.next
};
// SAFETY:
// * `ptr` is an element in the list or null.
// * if `ptr` is null, then `self.list.first` is null so the list is empty.
let item = unsafe { self.list.insert_inner(item, ptr) };
if self.next == self.list.first {
// INVARIANT: We just inserted `item`, so it's a member of list.
self.list.first = item;
}
item
}
/// Insert an element at this cursor's location.
pub fn insert(mut self, item: ListArc<T, ID>) {
// This is identical to `insert_prev`, but consumes the cursor. This is helpful because it
// reduces confusion when the last operation on the cursor is an insertion; in that case,
// you just want to insert the element at the cursor, and it is confusing that the call
// involves the word prev or next.
self.insert_inner(item);
}
/// Inserts an element after this cursor.
///
/// After insertion, the new element will be after the cursor.
pub fn insert_next(&mut self, item: ListArc<T, ID>) {
self.next = self.insert_inner(item);
}
/// Inserts an element before this cursor.
///
/// After insertion, the new element will be before the cursor.
pub fn insert_prev(&mut self, item: ListArc<T, ID>) {
self.insert_inner(item);
}
/// Remove the next element from the list.
pub fn remove_next(&mut self) -> Option<ListArc<T, ID>> {
self.peek_next().map(|v| v.remove())
}
/// Remove the previous element from the list.
pub fn remove_prev(&mut self) -> Option<ListArc<T, ID>> {
self.peek_prev().map(|v| v.remove())
}
}
/// References the element in the list next to the cursor.
///
/// # Invariants
///
/// * `ptr` is an element in `self.cursor.list`.
/// * `ISNEXT == (self.ptr == self.cursor.next)`.
pub struct CursorPeek<'a, 'b, T: ?Sized + ListItem<ID>, const ISNEXT: bool, const ID: u64> {
cursor: &'a mut Cursor<'b, T, ID>,
ptr: *mut ListLinksFields,
}
impl<'a, 'b, T: ?Sized + ListItem<ID>, const ISNEXT: bool, const ID: u64>
CursorPeek<'a, 'b, T, ISNEXT, ID>
{
/// Remove the element from the list.
pub fn remove(self) -> ListArc<T, ID> {
if ISNEXT {
self.cursor.move_next();
}
// INVARIANT: `self.ptr` is not equal to `self.cursor.next` due to the above `move_next`
// call.
// SAFETY: By the type invariants of `Self`, `next` is not null, so `next` is an element of
// `self.cursor.list` by the type invariants of `Cursor`.
unsafe { self.cursor.list.remove_internal(self.ptr) }
}
/// Access this value as an [`ArcBorrow`].
pub fn arc(&self) -> ArcBorrow<'_, T> {
// SAFETY: `self.ptr` points at an element in `self.cursor.list`.
let me = unsafe { T::view_value(ListLinks::from_fields(self.ptr)) };
// SAFETY:
// * All values in a list are stored in an `Arc`.
// * The value cannot be removed from the list for the duration of the lifetime annotated
// on the returned `ArcBorrow`, because removing it from the list would require mutable
// access to the `CursorPeek`, the `Cursor` or the `List`. However, the `ArcBorrow` holds
// an immutable borrow on the `CursorPeek`, which in turn holds a mutable borrow on the
// `Cursor`, which in turn holds a mutable borrow on the `List`, so any such mutable
// access requires first releasing the immutable borrow on the `CursorPeek`.
// * Values in a list never have a `UniqueArc` reference, because the list has a `ListArc`
// reference, and `UniqueArc` references must be unique.
unsafe { ArcBorrow::from_raw(me) }
}
}
impl<'a, 'b, T: ?Sized + ListItem<ID>, const ISNEXT: bool, const ID: u64> core::ops::Deref
for CursorPeek<'a, 'b, T, ISNEXT, ID>
{
// If you change the `ptr` field to have type `ArcBorrow<'a, T>`, it might seem like you could
// get rid of the `CursorPeek::arc` method and change the deref target to `ArcBorrow<'a, T>`.
// However, that doesn't work because 'a is too long. You could obtain an `ArcBorrow<'a, T>`
// and then call `CursorPeek::remove` without giving up the `ArcBorrow<'a, T>`, which would be
// unsound.
type Target = T;
fn deref(&self) -> &T {
// SAFETY: `self.ptr` points at an element in `self.cursor.list`.
let me = unsafe { T::view_value(ListLinks::from_fields(self.ptr)) };
// SAFETY: The value cannot be removed from the list for the duration of the lifetime
// annotated on the returned `&T`, because removing it from the list would require mutable
// access to the `CursorPeek`, the `Cursor` or the `List`. However, the `&T` holds an
// immutable borrow on the `CursorPeek`, which in turn holds a mutable borrow on the
// `Cursor`, which in turn holds a mutable borrow on the `List`, so any such mutable access
// requires first releasing the immutable borrow on the `CursorPeek`.
unsafe { &*me }
}
}
impl<'a, T: ?Sized + ListItem<ID>, const ID: u64> FusedIterator for Iter<'a, T, ID> {}
impl<'a, T: ?Sized + ListItem<ID>, const ID: u64> IntoIterator for &'a List<T, ID> {
type IntoIter = Iter<'a, T, ID>;
type Item = ArcBorrow<'a, T>;
fn into_iter(self) -> Iter<'a, T, ID> {
self.iter()
}
}
/// An owning iterator into a [`List`].
pub struct IntoIter<T: ?Sized + ListItem<ID>, const ID: u64 = 0> {
list: List<T, ID>,
}
impl<T: ?Sized + ListItem<ID>, const ID: u64> Iterator for IntoIter<T, ID> {
type Item = ListArc<T, ID>;
fn next(&mut self) -> Option<ListArc<T, ID>> {
self.list.pop_front()
}
}
impl<T: ?Sized + ListItem<ID>, const ID: u64> FusedIterator for IntoIter<T, ID> {}
impl<T: ?Sized + ListItem<ID>, const ID: u64> DoubleEndedIterator for IntoIter<T, ID> {
fn next_back(&mut self) -> Option<ListArc<T, ID>> {
self.list.pop_back()
}
}
impl<T: ?Sized + ListItem<ID>, const ID: u64> IntoIterator for List<T, ID> {
type IntoIter = IntoIter<T, ID>;
type Item = ListArc<T, ID>;
fn into_iter(self) -> IntoIter<T, ID> {
IntoIter { list: self }
}
}