linux/rust/kernel/cpufreq.rs
Linus Torvalds 352af6a011 Rust changes for v6.17
Toolchain and infrastructure:
 
  - Enable a set of Clippy lints: 'ptr_as_ptr', 'ptr_cast_constness',
    'as_ptr_cast_mut', 'as_underscore', 'cast_lossless' and 'ref_as_ptr'.
 
    These are intended to avoid type casts with the 'as' operator, which
    are quite powerful, into restricted variants that are less powerful
    and thus should help to avoid mistakes.
 
  - Remove the 'author' key now that most instances were moved to the
    plural one in the previous cycle.
 
 'kernel' crate:
 
  - New 'bug' module: add 'warn_on!' macro which reuses the existing
    'BUG'/'WARN' infrastructure, i.e. it respects the usual sysctls and
    kernel parameters:
 
        warn_on!(value == 42);
 
    To avoid duplicating the assembly code, the same strategy is followed
    as for the static branch code in order to share the assembly between
    both C and Rust. This required a few rearrangements on C arch headers
    -- the existing C macros should still generate the same outputs, thus
    no functional change expected there.
 
  - 'workqueue' module: add delayed work items, including a 'DelayedWork'
    struct, a 'impl_has_delayed_work!' macro and an 'enqueue_delayed'
    method, e.g.:
 
        /// Enqueue the struct for execution on the system workqueue,
        /// where its value will be printed 42 jiffies later.
        fn print_later(value: Arc<MyStruct>) {
            let _ = workqueue::system().enqueue_delayed(value, 42);
        }
 
  - New 'bits' module: add support for 'bit' and 'genmask' functions,
    with runtime- and compile-time variants, e.g.:
 
        static_assert!(0b00010000 == bit_u8(4));
        static_assert!(0b00011110 == genmask_u8(1..=4));
 
        assert!(checked_bit_u32(u32::BITS).is_none());
 
  - 'uaccess' module: add 'UserSliceReader::strcpy_into_buf', which reads
    NUL-terminated strings from userspace into a '&CStr'.
 
    Introduce 'UserPtr' newtype, similar in purpose to '__user' in C, to
    minimize mistakes handling userspace pointers, including mixing them
    up with integers and leaking them via the 'Debug' trait. Add it to
    the prelude, too.
 
  - Start preparations for the replacement of our custom 'CStr' type
    with the analogous type in the 'core' standard library. This will
    take place across several cycles to make it easier. For this one,
    it includes a new 'fmt' module, using upstream method names and some
    other cleanups.
 
    Replace 'fmt!' with a re-export, which helps Clippy lint properly,
    and clean up the found 'uninlined-format-args' instances.
 
  - 'dma' module:
 
    - Clarify wording and be consistent in 'coherent' nomenclature.
 
    - Convert the 'read!()' and 'write!()' macros to return a 'Result'.
 
    - Add 'as_slice()', 'write()' methods in 'CoherentAllocation'.
 
    - Expose 'count()' and 'size()' in 'CoherentAllocation' and add the
      corresponding type invariants.
 
    - Implement 'CoherentAllocation::dma_handle_with_offset()'.
 
  - 'time' module:
 
    - Make 'Instant' generic over clock source. This allows the compiler
      to assert that arithmetic expressions involving the 'Instant' use
      'Instants' based on the same clock source.
 
    - Make 'HrTimer' generic over the timer mode. 'HrTimer' timers take a
      'Duration' or an 'Instant' when setting the expiry time, depending
      on the timer mode. With this change, the compiler can check the
      type matches the timer mode.
 
    - Add an abstraction for 'fsleep'. 'fsleep' is a flexible sleep
      function that will select an appropriate sleep method depending on
      the requested sleep time.
 
    - Avoid 64-bit divisions on 32-bit hardware when calculating
      timestamps.
 
    - Seal the 'HrTimerMode' trait. This prevents users of the
      'HrTimerMode' from implementing the trait on their own types.
 
    - Pass the correct timer mode ID to 'hrtimer_start_range_ns()'.
 
  - 'list' module: remove 'OFFSET' constants, allowing to remove pointer
    arithmetic; now 'impl_list_item!' invokes 'impl_has_list_links!' or
    'impl_has_list_links_self_ptr!'. Other simplifications too.
 
  - 'types' module: remove 'ForeignOwnable::PointedTo' in favor of a
    constant, which avoids exposing the type of the opaque pointer, and
    require 'into_foreign' to return non-null.
 
    Remove the 'Either<L, R>' type as well. It is unused, and we want to
    encourage the use of custom enums for concrete use cases.
 
  - 'sync' module: implement 'Borrow' and 'BorrowMut' for 'Arc' types
    to allow them to be used in generic APIs.
 
  - 'alloc' module: implement 'Borrow' and 'BorrowMut' for 'Box<T, A>';
     and 'Borrow', 'BorrowMut' and 'Default' for 'Vec<T, A>'.
 
  - 'Opaque' type: add 'cast_from' method to perform a restricted cast
    that cannot change the inner type and use it in callers of
    'container_of!'. Rename 'raw_get' to 'cast_into' to match it.
 
  - 'rbtree' module: add 'is_empty' method.
 
  - 'sync' module: new 'aref' submodule to hold 'AlwaysRefCounted' and
    'ARef', which are moved from the too general 'types' module which we
    want to reduce or eventually remove. Also fix a safety comment in
    'static_lock_class'.
 
 'pin-init' crate:
 
  - Add 'impl<T, E> [Pin]Init<T, E> for Result<T, E>', so results are now
    (pin-)initializers.
 
  - Add 'Zeroable::init_zeroed()' that delegates to 'init_zeroed()'.
 
  - New 'zeroed()', a safe version of 'mem::zeroed()' and also provide
    it via 'Zeroable::zeroed()'.
 
  - Implement 'Zeroable' for 'Option<&T>', 'Option<&mut T>' and for
    'Option<[unsafe] [extern "abi"] fn(...args...) -> ret>' for '"Rust"'
    and '"C"' ABIs and up to 20 arguments.
 
  - Changed blanket impls of 'Init' and 'PinInit' from 'impl<T, E>
    [Pin]Init<T, E> for T' to 'impl<T> [Pin]Init<T> for T'.
 
  - Renamed 'zeroed()' to 'init_zeroed()'.
 
  - Upstream dev news: improve CI more to deny warnings, use
    '--all-targets'. Check the synchronization status of the two '-next'
    branches in upstream and the kernel.
 
 MAINTAINERS:
 
  - Add Vlastimil Babka, Liam R. Howlett, Uladzislau Rezki and Lorenzo
    Stoakes as reviewers (thanks everyone).
 
 And a few other cleanups and improvements.
 -----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCgAdFiEEPjU5OPd5QIZ9jqqOGXyLc2htIW0FAmiOWREACgkQGXyLc2ht
 IW39Ig/9E0ExSiBgNKdkCOaULMq31wAxnu3iWoVVisFndlh/Inv+JlaLrmA57BCi
 xXgBwVZ1GoMsG8Fzt6gT+gyhGYi8waNd+5KXr/WJZVTaJ9v1KpdvxuCnSz0DjCbk
 GaKfAfxvJ5GAOEwiIIX8X0TFu6kx911DCJY387/VrqZQ7Msh1QSM3tcZeir/EV4w
 lPjUdlOh1FnLJLI9CGuW20d1IhQUP7K3pdoywgJPpCZV0I8QCyMlMqCEael8Tw2S
 r/PzRaQtiIzk5HTx06V8paK+nEn0K2vQXqW2kV56Y6TNm1Zcv6dES/8hCITsISs2
 nwney3vXEwvoZX+YkQRffZddY4i6YenWMrtLgVxZzdshBL3bn6eHqBL04Nfix+p7
 pQe3qMH3G8UBtX1lugBE7RrWGWcz9ARN8sK12ClmpAUnKJOwTpo97kpqXP7pDme8
 Buh/oV3voAMsqwooSbVBzuUUWnbGaQ5Oj6CiiosSadfNh6AxJLYLKHtRLKJHZEw3
 0Ob/1HhoWS6JSvYKVjMyD19qcH7O8ThZE+83CfMAkI4KphXJarWhpSmN4cHkFn/v
 0clQ7Y5m+up9v1XWTaEq0Biqa6CaxLQwm/qW5WU0Y/TiovmvxAFdCwsQqDkRoJNx
 9kNfMJRvNl78KQxrjEDz9gl7/ajgqX1KkqP8CQbGjv29cGzFlVE=
 =5Wt9
 -----END PGP SIGNATURE-----

Merge tag 'rust-6.17' of git://git.kernel.org/pub/scm/linux/kernel/git/ojeda/linux

Pull Rust updates from Miguel Ojeda:
 "Toolchain and infrastructure:

   - Enable a set of Clippy lints: 'ptr_as_ptr', 'ptr_cast_constness',
     'as_ptr_cast_mut', 'as_underscore', 'cast_lossless' and
     'ref_as_ptr'

     These are intended to avoid type casts with the 'as' operator,
     which are quite powerful, into restricted variants that are less
     powerful and thus should help to avoid mistakes

   - Remove the 'author' key now that most instances were moved to the
     plural one in the previous cycle

  'kernel' crate:

   - New 'bug' module: add 'warn_on!' macro which reuses the existing
     'BUG'/'WARN' infrastructure, i.e. it respects the usual sysctls and
     kernel parameters:

         warn_on!(value == 42);

     To avoid duplicating the assembly code, the same strategy is
     followed as for the static branch code in order to share the
     assembly between both C and Rust

     This required a few rearrangements on C arch headers -- the
     existing C macros should still generate the same outputs, thus no
     functional change expected there

   - 'workqueue' module: add delayed work items, including a
     'DelayedWork' struct, a 'impl_has_delayed_work!' macro and an
     'enqueue_delayed' method, e.g.:

         /// Enqueue the struct for execution on the system workqueue,
         /// where its value will be printed 42 jiffies later.
         fn print_later(value: Arc<MyStruct>) {
             let _ = workqueue::system().enqueue_delayed(value, 42);
         }

   - New 'bits' module: add support for 'bit' and 'genmask' functions,
     with runtime- and compile-time variants, e.g.:

         static_assert!(0b00010000 == bit_u8(4));
         static_assert!(0b00011110 == genmask_u8(1..=4));

         assert!(checked_bit_u32(u32::BITS).is_none());

   - 'uaccess' module: add 'UserSliceReader::strcpy_into_buf', which
     reads NUL-terminated strings from userspace into a '&CStr'

     Introduce 'UserPtr' newtype, similar in purpose to '__user' in C,
     to minimize mistakes handling userspace pointers, including mixing
     them up with integers and leaking them via the 'Debug' trait. Add
     it to the prelude, too

   - Start preparations for the replacement of our custom 'CStr' type
     with the analogous type in the 'core' standard library. This will
     take place across several cycles to make it easier. For this one,
     it includes a new 'fmt' module, using upstream method names and
     some other cleanups

     Replace 'fmt!' with a re-export, which helps Clippy lint properly,
     and clean up the found 'uninlined-format-args' instances

   - 'dma' module:

      - Clarify wording and be consistent in 'coherent' nomenclature

      - Convert the 'read!()' and 'write!()' macros to return a 'Result'

      - Add 'as_slice()', 'write()' methods in 'CoherentAllocation'

      - Expose 'count()' and 'size()' in 'CoherentAllocation' and add
        the corresponding type invariants

      - Implement 'CoherentAllocation::dma_handle_with_offset()'

   - 'time' module:

      - Make 'Instant' generic over clock source. This allows the
        compiler to assert that arithmetic expressions involving the
        'Instant' use 'Instants' based on the same clock source

      - Make 'HrTimer' generic over the timer mode. 'HrTimer' timers
        take a 'Duration' or an 'Instant' when setting the expiry time,
        depending on the timer mode. With this change, the compiler can
        check the type matches the timer mode

      - Add an abstraction for 'fsleep'. 'fsleep' is a flexible sleep
        function that will select an appropriate sleep method depending
        on the requested sleep time

      - Avoid 64-bit divisions on 32-bit hardware when calculating
        timestamps

      - Seal the 'HrTimerMode' trait. This prevents users of the
        'HrTimerMode' from implementing the trait on their own types

      - Pass the correct timer mode ID to 'hrtimer_start_range_ns()'

   - 'list' module: remove 'OFFSET' constants, allowing to remove
     pointer arithmetic; now 'impl_list_item!' invokes
     'impl_has_list_links!' or 'impl_has_list_links_self_ptr!'. Other
     simplifications too

   - 'types' module: remove 'ForeignOwnable::PointedTo' in favor of a
     constant, which avoids exposing the type of the opaque pointer, and
     require 'into_foreign' to return non-null

     Remove the 'Either<L, R>' type as well. It is unused, and we want
     to encourage the use of custom enums for concrete use cases

   - 'sync' module: implement 'Borrow' and 'BorrowMut' for 'Arc' types
     to allow them to be used in generic APIs

   - 'alloc' module: implement 'Borrow' and 'BorrowMut' for 'Box<T, A>';
     and 'Borrow', 'BorrowMut' and 'Default' for 'Vec<T, A>'

   - 'Opaque' type: add 'cast_from' method to perform a restricted cast
     that cannot change the inner type and use it in callers of
     'container_of!'. Rename 'raw_get' to 'cast_into' to match it

   - 'rbtree' module: add 'is_empty' method

   - 'sync' module: new 'aref' submodule to hold 'AlwaysRefCounted' and
     'ARef', which are moved from the too general 'types' module which
     we want to reduce or eventually remove. Also fix a safety comment
     in 'static_lock_class'

  'pin-init' crate:

   - Add 'impl<T, E> [Pin]Init<T, E> for Result<T, E>', so results are
     now (pin-)initializers

   - Add 'Zeroable::init_zeroed()' that delegates to 'init_zeroed()'

   - New 'zeroed()', a safe version of 'mem::zeroed()' and also provide
     it via 'Zeroable::zeroed()'

   - Implement 'Zeroable' for 'Option<&T>', 'Option<&mut T>' and for
     'Option<[unsafe] [extern "abi"] fn(...args...) -> ret>' for
     '"Rust"' and '"C"' ABIs and up to 20 arguments

   - Changed blanket impls of 'Init' and 'PinInit' from 'impl<T, E>
     [Pin]Init<T, E> for T' to 'impl<T> [Pin]Init<T> for T'

   - Renamed 'zeroed()' to 'init_zeroed()'

   - Upstream dev news: improve CI more to deny warnings, use
     '--all-targets'. Check the synchronization status of the two
     '-next' branches in upstream and the kernel

  MAINTAINERS:

   - Add Vlastimil Babka, Liam R. Howlett, Uladzislau Rezki and Lorenzo
     Stoakes as reviewers (thanks everyone)

  And a few other cleanups and improvements"

* tag 'rust-6.17' of git://git.kernel.org/pub/scm/linux/kernel/git/ojeda/linux: (76 commits)
  rust: Add warn_on macro
  arm64/bug: Add ARCH_WARN_ASM macro for BUG/WARN asm code sharing with Rust
  riscv/bug: Add ARCH_WARN_ASM macro for BUG/WARN asm code sharing with Rust
  x86/bug: Add ARCH_WARN_ASM macro for BUG/WARN asm code sharing with Rust
  rust: kernel: move ARef and AlwaysRefCounted to sync::aref
  rust: sync: fix safety comment for `static_lock_class`
  rust: types: remove `Either<L, R>`
  rust: kernel: use `core::ffi::CStr` method names
  rust: str: add `CStr` methods matching `core::ffi::CStr`
  rust: str: remove unnecessary qualification
  rust: use `kernel::{fmt,prelude::fmt!}`
  rust: kernel: add `fmt` module
  rust: kernel: remove `fmt!`, fix clippy::uninlined-format-args
  scripts: rust: emit path candidates in panic message
  scripts: rust: replace length checks with match
  rust: list: remove nonexistent generic parameter in link
  rust: bits: add support for bits/genmask macros
  rust: list: remove OFFSET constants
  rust: list: add `impl_list_item!` examples
  rust: list: use fully qualified path
  ...
2025-08-03 13:49:10 -07:00

1399 lines
45 KiB
Rust

// SPDX-License-Identifier: GPL-2.0
//! CPU frequency scaling.
//!
//! This module provides rust abstractions for interacting with the cpufreq subsystem.
//!
//! C header: [`include/linux/cpufreq.h`](srctree/include/linux/cpufreq.h)
//!
//! Reference: <https://docs.kernel.org/admin-guide/pm/cpufreq.html>
use crate::{
clk::Hertz,
cpu::CpuId,
cpumask,
device::{Bound, Device},
devres,
error::{code::*, from_err_ptr, from_result, to_result, Result, VTABLE_DEFAULT_ERROR},
ffi::{c_char, c_ulong},
prelude::*,
types::ForeignOwnable,
types::Opaque,
};
#[cfg(CONFIG_COMMON_CLK)]
use crate::clk::Clk;
use core::{
cell::UnsafeCell,
marker::PhantomData,
mem::MaybeUninit,
ops::{Deref, DerefMut},
pin::Pin,
ptr,
};
use macros::vtable;
/// Maximum length of CPU frequency driver's name.
const CPUFREQ_NAME_LEN: usize = bindings::CPUFREQ_NAME_LEN as usize;
/// Default transition latency value in nanoseconds.
pub const ETERNAL_LATENCY_NS: u32 = bindings::CPUFREQ_ETERNAL as u32;
/// CPU frequency driver flags.
pub mod flags {
/// Driver needs to update internal limits even if frequency remains unchanged.
pub const NEED_UPDATE_LIMITS: u16 = 1 << 0;
/// Platform where constants like `loops_per_jiffy` are unaffected by frequency changes.
pub const CONST_LOOPS: u16 = 1 << 1;
/// Register driver as a thermal cooling device automatically.
pub const IS_COOLING_DEV: u16 = 1 << 2;
/// Supports multiple clock domains with per-policy governors in `cpu/cpuN/cpufreq/`.
pub const HAVE_GOVERNOR_PER_POLICY: u16 = 1 << 3;
/// Allows post-change notifications outside of the `target()` routine.
pub const ASYNC_NOTIFICATION: u16 = 1 << 4;
/// Ensure CPU starts at a valid frequency from the driver's freq-table.
pub const NEED_INITIAL_FREQ_CHECK: u16 = 1 << 5;
/// Disallow governors with `dynamic_switching` capability.
pub const NO_AUTO_DYNAMIC_SWITCHING: u16 = 1 << 6;
}
/// Relations from the C code.
const CPUFREQ_RELATION_L: u32 = 0;
const CPUFREQ_RELATION_H: u32 = 1;
const CPUFREQ_RELATION_C: u32 = 2;
/// Can be used with any of the above values.
const CPUFREQ_RELATION_E: u32 = 1 << 2;
/// CPU frequency selection relations.
///
/// CPU frequency selection relations, each optionally marked as "efficient".
#[derive(Copy, Clone, Debug, Eq, PartialEq)]
pub enum Relation {
/// Select the lowest frequency at or above target.
Low(bool),
/// Select the highest frequency below or at target.
High(bool),
/// Select the closest frequency to the target.
Close(bool),
}
impl Relation {
// Construct from a C-compatible `u32` value.
fn new(val: u32) -> Result<Self> {
let efficient = val & CPUFREQ_RELATION_E != 0;
Ok(match val & !CPUFREQ_RELATION_E {
CPUFREQ_RELATION_L => Self::Low(efficient),
CPUFREQ_RELATION_H => Self::High(efficient),
CPUFREQ_RELATION_C => Self::Close(efficient),
_ => return Err(EINVAL),
})
}
}
impl From<Relation> for u32 {
// Convert to a C-compatible `u32` value.
fn from(rel: Relation) -> Self {
let (mut val, efficient) = match rel {
Relation::Low(e) => (CPUFREQ_RELATION_L, e),
Relation::High(e) => (CPUFREQ_RELATION_H, e),
Relation::Close(e) => (CPUFREQ_RELATION_C, e),
};
if efficient {
val |= CPUFREQ_RELATION_E;
}
val
}
}
/// Policy data.
///
/// Rust abstraction for the C `struct cpufreq_policy_data`.
///
/// # Invariants
///
/// A [`PolicyData`] instance always corresponds to a valid C `struct cpufreq_policy_data`.
///
/// The callers must ensure that the `struct cpufreq_policy_data` is valid for access and remains
/// valid for the lifetime of the returned reference.
#[repr(transparent)]
pub struct PolicyData(Opaque<bindings::cpufreq_policy_data>);
impl PolicyData {
/// Creates a mutable reference to an existing `struct cpufreq_policy_data` pointer.
///
/// # Safety
///
/// The caller must ensure that `ptr` is valid for writing and remains valid for the lifetime
/// of the returned reference.
#[inline]
pub unsafe fn from_raw_mut<'a>(ptr: *mut bindings::cpufreq_policy_data) -> &'a mut Self {
// SAFETY: Guaranteed by the safety requirements of the function.
//
// INVARIANT: The caller ensures that `ptr` is valid for writing and remains valid for the
// lifetime of the returned reference.
unsafe { &mut *ptr.cast() }
}
/// Returns a raw pointer to the underlying C `cpufreq_policy_data`.
#[inline]
pub fn as_raw(&self) -> *mut bindings::cpufreq_policy_data {
let this: *const Self = self;
this.cast_mut().cast()
}
/// Wrapper for `cpufreq_generic_frequency_table_verify`.
#[inline]
pub fn generic_verify(&self) -> Result {
// SAFETY: By the type invariant, the pointer stored in `self` is valid.
to_result(unsafe { bindings::cpufreq_generic_frequency_table_verify(self.as_raw()) })
}
}
/// The frequency table index.
///
/// Represents index with a frequency table.
///
/// # Invariants
///
/// The index must correspond to a valid entry in the [`Table`] it is used for.
#[derive(Copy, Clone, PartialEq, Eq, Debug)]
pub struct TableIndex(usize);
impl TableIndex {
/// Creates an instance of [`TableIndex`].
///
/// # Safety
///
/// The caller must ensure that `index` correspond to a valid entry in the [`Table`] it is used
/// for.
pub unsafe fn new(index: usize) -> Self {
// INVARIANT: The caller ensures that `index` correspond to a valid entry in the [`Table`].
Self(index)
}
}
impl From<TableIndex> for usize {
#[inline]
fn from(index: TableIndex) -> Self {
index.0
}
}
/// CPU frequency table.
///
/// Rust abstraction for the C `struct cpufreq_frequency_table`.
///
/// # Invariants
///
/// A [`Table`] instance always corresponds to a valid C `struct cpufreq_frequency_table`.
///
/// The callers must ensure that the `struct cpufreq_frequency_table` is valid for access and
/// remains valid for the lifetime of the returned reference.
///
/// # Examples
///
/// The following example demonstrates how to read a frequency value from [`Table`].
///
/// ```
/// use kernel::cpufreq::{Policy, TableIndex};
///
/// fn show_freq(policy: &Policy) -> Result {
/// let table = policy.freq_table()?;
///
/// // SAFETY: Index is a valid entry in the table.
/// let index = unsafe { TableIndex::new(0) };
///
/// pr_info!("The frequency at index 0 is: {:?}\n", table.freq(index)?);
/// pr_info!("The flags at index 0 is: {}\n", table.flags(index));
/// pr_info!("The data at index 0 is: {}\n", table.data(index));
/// Ok(())
/// }
/// ```
#[repr(transparent)]
pub struct Table(Opaque<bindings::cpufreq_frequency_table>);
impl Table {
/// Creates a reference to an existing C `struct cpufreq_frequency_table` pointer.
///
/// # Safety
///
/// The caller must ensure that `ptr` is valid for reading and remains valid for the lifetime
/// of the returned reference.
#[inline]
pub unsafe fn from_raw<'a>(ptr: *const bindings::cpufreq_frequency_table) -> &'a Self {
// SAFETY: Guaranteed by the safety requirements of the function.
//
// INVARIANT: The caller ensures that `ptr` is valid for reading and remains valid for the
// lifetime of the returned reference.
unsafe { &*ptr.cast() }
}
/// Returns the raw mutable pointer to the C `struct cpufreq_frequency_table`.
#[inline]
pub fn as_raw(&self) -> *mut bindings::cpufreq_frequency_table {
let this: *const Self = self;
this.cast_mut().cast()
}
/// Returns frequency at `index` in the [`Table`].
#[inline]
pub fn freq(&self, index: TableIndex) -> Result<Hertz> {
// SAFETY: By the type invariant, the pointer stored in `self` is valid and `index` is
// guaranteed to be valid by its safety requirements.
Ok(Hertz::from_khz(unsafe {
(*self.as_raw().add(index.into())).frequency.try_into()?
}))
}
/// Returns flags at `index` in the [`Table`].
#[inline]
pub fn flags(&self, index: TableIndex) -> u32 {
// SAFETY: By the type invariant, the pointer stored in `self` is valid and `index` is
// guaranteed to be valid by its safety requirements.
unsafe { (*self.as_raw().add(index.into())).flags }
}
/// Returns data at `index` in the [`Table`].
#[inline]
pub fn data(&self, index: TableIndex) -> u32 {
// SAFETY: By the type invariant, the pointer stored in `self` is valid and `index` is
// guaranteed to be valid by its safety requirements.
unsafe { (*self.as_raw().add(index.into())).driver_data }
}
}
/// CPU frequency table owned and pinned in memory, created from a [`TableBuilder`].
pub struct TableBox {
entries: Pin<KVec<bindings::cpufreq_frequency_table>>,
}
impl TableBox {
/// Constructs a new [`TableBox`] from a [`KVec`] of entries.
///
/// # Errors
///
/// Returns `EINVAL` if the entries list is empty.
#[inline]
fn new(entries: KVec<bindings::cpufreq_frequency_table>) -> Result<Self> {
if entries.is_empty() {
return Err(EINVAL);
}
Ok(Self {
// Pin the entries to memory, since we are passing its pointer to the C code.
entries: Pin::new(entries),
})
}
/// Returns a raw pointer to the underlying C `cpufreq_frequency_table`.
#[inline]
fn as_raw(&self) -> *const bindings::cpufreq_frequency_table {
// The pointer is valid until the table gets dropped.
self.entries.as_ptr()
}
}
impl Deref for TableBox {
type Target = Table;
fn deref(&self) -> &Self::Target {
// SAFETY: The caller owns TableBox, it is safe to deref.
unsafe { Self::Target::from_raw(self.as_raw()) }
}
}
/// CPU frequency table builder.
///
/// This is used by the CPU frequency drivers to build a frequency table dynamically.
///
/// # Examples
///
/// The following example demonstrates how to create a CPU frequency table.
///
/// ```
/// use kernel::cpufreq::{TableBuilder, TableIndex};
/// use kernel::clk::Hertz;
///
/// let mut builder = TableBuilder::new();
///
/// // Adds few entries to the table.
/// builder.add(Hertz::from_mhz(700), 0, 1).unwrap();
/// builder.add(Hertz::from_mhz(800), 2, 3).unwrap();
/// builder.add(Hertz::from_mhz(900), 4, 5).unwrap();
/// builder.add(Hertz::from_ghz(1), 6, 7).unwrap();
///
/// let table = builder.to_table().unwrap();
///
/// // SAFETY: Index values correspond to valid entries in the table.
/// let (index0, index2) = unsafe { (TableIndex::new(0), TableIndex::new(2)) };
///
/// assert_eq!(table.freq(index0), Ok(Hertz::from_mhz(700)));
/// assert_eq!(table.flags(index0), 0);
/// assert_eq!(table.data(index0), 1);
///
/// assert_eq!(table.freq(index2), Ok(Hertz::from_mhz(900)));
/// assert_eq!(table.flags(index2), 4);
/// assert_eq!(table.data(index2), 5);
/// ```
#[derive(Default)]
#[repr(transparent)]
pub struct TableBuilder {
entries: KVec<bindings::cpufreq_frequency_table>,
}
impl TableBuilder {
/// Creates a new instance of [`TableBuilder`].
#[inline]
pub fn new() -> Self {
Self {
entries: KVec::new(),
}
}
/// Adds a new entry to the table.
pub fn add(&mut self, freq: Hertz, flags: u32, driver_data: u32) -> Result {
// Adds the new entry at the end of the vector.
Ok(self.entries.push(
bindings::cpufreq_frequency_table {
flags,
driver_data,
frequency: freq.as_khz() as u32,
},
GFP_KERNEL,
)?)
}
/// Consumes the [`TableBuilder`] and returns [`TableBox`].
pub fn to_table(mut self) -> Result<TableBox> {
// Add last entry to the table.
self.add(Hertz(c_ulong::MAX), 0, 0)?;
TableBox::new(self.entries)
}
}
/// CPU frequency policy.
///
/// Rust abstraction for the C `struct cpufreq_policy`.
///
/// # Invariants
///
/// A [`Policy`] instance always corresponds to a valid C `struct cpufreq_policy`.
///
/// The callers must ensure that the `struct cpufreq_policy` is valid for access and remains valid
/// for the lifetime of the returned reference.
///
/// # Examples
///
/// The following example demonstrates how to create a CPU frequency table.
///
/// ```
/// use kernel::cpufreq::{ETERNAL_LATENCY_NS, Policy};
///
/// fn update_policy(policy: &mut Policy) {
/// policy
/// .set_dvfs_possible_from_any_cpu(true)
/// .set_fast_switch_possible(true)
/// .set_transition_latency_ns(ETERNAL_LATENCY_NS);
///
/// pr_info!("The policy details are: {:?}\n", (policy.cpu(), policy.cur()));
/// }
/// ```
#[repr(transparent)]
pub struct Policy(Opaque<bindings::cpufreq_policy>);
impl Policy {
/// Creates a reference to an existing `struct cpufreq_policy` pointer.
///
/// # Safety
///
/// The caller must ensure that `ptr` is valid for reading and remains valid for the lifetime
/// of the returned reference.
#[inline]
pub unsafe fn from_raw<'a>(ptr: *const bindings::cpufreq_policy) -> &'a Self {
// SAFETY: Guaranteed by the safety requirements of the function.
//
// INVARIANT: The caller ensures that `ptr` is valid for reading and remains valid for the
// lifetime of the returned reference.
unsafe { &*ptr.cast() }
}
/// Creates a mutable reference to an existing `struct cpufreq_policy` pointer.
///
/// # Safety
///
/// The caller must ensure that `ptr` is valid for writing and remains valid for the lifetime
/// of the returned reference.
#[inline]
pub unsafe fn from_raw_mut<'a>(ptr: *mut bindings::cpufreq_policy) -> &'a mut Self {
// SAFETY: Guaranteed by the safety requirements of the function.
//
// INVARIANT: The caller ensures that `ptr` is valid for writing and remains valid for the
// lifetime of the returned reference.
unsafe { &mut *ptr.cast() }
}
/// Returns a raw mutable pointer to the C `struct cpufreq_policy`.
#[inline]
fn as_raw(&self) -> *mut bindings::cpufreq_policy {
let this: *const Self = self;
this.cast_mut().cast()
}
#[inline]
fn as_ref(&self) -> &bindings::cpufreq_policy {
// SAFETY: By the type invariant, the pointer stored in `self` is valid.
unsafe { &*self.as_raw() }
}
#[inline]
fn as_mut_ref(&mut self) -> &mut bindings::cpufreq_policy {
// SAFETY: By the type invariant, the pointer stored in `self` is valid.
unsafe { &mut *self.as_raw() }
}
/// Returns the primary CPU for the [`Policy`].
#[inline]
pub fn cpu(&self) -> CpuId {
// SAFETY: The C API guarantees that `cpu` refers to a valid CPU number.
unsafe { CpuId::from_u32_unchecked(self.as_ref().cpu) }
}
/// Returns the minimum frequency for the [`Policy`].
#[inline]
pub fn min(&self) -> Hertz {
Hertz::from_khz(self.as_ref().min as usize)
}
/// Set the minimum frequency for the [`Policy`].
#[inline]
pub fn set_min(&mut self, min: Hertz) -> &mut Self {
self.as_mut_ref().min = min.as_khz() as u32;
self
}
/// Returns the maximum frequency for the [`Policy`].
#[inline]
pub fn max(&self) -> Hertz {
Hertz::from_khz(self.as_ref().max as usize)
}
/// Set the maximum frequency for the [`Policy`].
#[inline]
pub fn set_max(&mut self, max: Hertz) -> &mut Self {
self.as_mut_ref().max = max.as_khz() as u32;
self
}
/// Returns the current frequency for the [`Policy`].
#[inline]
pub fn cur(&self) -> Hertz {
Hertz::from_khz(self.as_ref().cur as usize)
}
/// Returns the suspend frequency for the [`Policy`].
#[inline]
pub fn suspend_freq(&self) -> Hertz {
Hertz::from_khz(self.as_ref().suspend_freq as usize)
}
/// Sets the suspend frequency for the [`Policy`].
#[inline]
pub fn set_suspend_freq(&mut self, freq: Hertz) -> &mut Self {
self.as_mut_ref().suspend_freq = freq.as_khz() as u32;
self
}
/// Provides a wrapper to the generic suspend routine.
#[inline]
pub fn generic_suspend(&mut self) -> Result {
// SAFETY: By the type invariant, the pointer stored in `self` is valid.
to_result(unsafe { bindings::cpufreq_generic_suspend(self.as_mut_ref()) })
}
/// Provides a wrapper to the generic get routine.
#[inline]
pub fn generic_get(&self) -> Result<u32> {
// SAFETY: By the type invariant, the pointer stored in `self` is valid.
Ok(unsafe { bindings::cpufreq_generic_get(u32::from(self.cpu())) })
}
/// Provides a wrapper to the register with energy model using the OPP core.
#[cfg(CONFIG_PM_OPP)]
#[inline]
pub fn register_em_opp(&mut self) {
// SAFETY: By the type invariant, the pointer stored in `self` is valid.
unsafe { bindings::cpufreq_register_em_with_opp(self.as_mut_ref()) };
}
/// Gets [`cpumask::Cpumask`] for a cpufreq [`Policy`].
#[inline]
pub fn cpus(&mut self) -> &mut cpumask::Cpumask {
// SAFETY: The pointer to `cpus` is valid for writing and remains valid for the lifetime of
// the returned reference.
unsafe { cpumask::CpumaskVar::as_mut_ref(&mut self.as_mut_ref().cpus) }
}
/// Sets clock for the [`Policy`].
///
/// # Safety
///
/// The caller must guarantee that the returned [`Clk`] is not dropped while it is getting used
/// by the C code.
#[cfg(CONFIG_COMMON_CLK)]
pub unsafe fn set_clk(&mut self, dev: &Device, name: Option<&CStr>) -> Result<Clk> {
let clk = Clk::get(dev, name)?;
self.as_mut_ref().clk = clk.as_raw();
Ok(clk)
}
/// Allows / disallows frequency switching code to run on any CPU.
#[inline]
pub fn set_dvfs_possible_from_any_cpu(&mut self, val: bool) -> &mut Self {
self.as_mut_ref().dvfs_possible_from_any_cpu = val;
self
}
/// Returns if fast switching of frequencies is possible or not.
#[inline]
pub fn fast_switch_possible(&self) -> bool {
self.as_ref().fast_switch_possible
}
/// Enables / disables fast frequency switching.
#[inline]
pub fn set_fast_switch_possible(&mut self, val: bool) -> &mut Self {
self.as_mut_ref().fast_switch_possible = val;
self
}
/// Sets transition latency (in nanoseconds) for the [`Policy`].
#[inline]
pub fn set_transition_latency_ns(&mut self, latency_ns: u32) -> &mut Self {
self.as_mut_ref().cpuinfo.transition_latency = latency_ns;
self
}
/// Sets cpuinfo `min_freq`.
#[inline]
pub fn set_cpuinfo_min_freq(&mut self, min_freq: Hertz) -> &mut Self {
self.as_mut_ref().cpuinfo.min_freq = min_freq.as_khz() as u32;
self
}
/// Sets cpuinfo `max_freq`.
#[inline]
pub fn set_cpuinfo_max_freq(&mut self, max_freq: Hertz) -> &mut Self {
self.as_mut_ref().cpuinfo.max_freq = max_freq.as_khz() as u32;
self
}
/// Set `transition_delay_us`, i.e. the minimum time between successive frequency change
/// requests.
#[inline]
pub fn set_transition_delay_us(&mut self, transition_delay_us: u32) -> &mut Self {
self.as_mut_ref().transition_delay_us = transition_delay_us;
self
}
/// Returns reference to the CPU frequency [`Table`] for the [`Policy`].
pub fn freq_table(&self) -> Result<&Table> {
if self.as_ref().freq_table.is_null() {
return Err(EINVAL);
}
// SAFETY: The `freq_table` is guaranteed to be valid for reading and remains valid for the
// lifetime of the returned reference.
Ok(unsafe { Table::from_raw(self.as_ref().freq_table) })
}
/// Sets the CPU frequency [`Table`] for the [`Policy`].
///
/// # Safety
///
/// The caller must guarantee that the [`Table`] is not dropped while it is getting used by the
/// C code.
#[inline]
pub unsafe fn set_freq_table(&mut self, table: &Table) -> &mut Self {
self.as_mut_ref().freq_table = table.as_raw();
self
}
/// Returns the [`Policy`]'s private data.
pub fn data<T: ForeignOwnable>(&mut self) -> Option<<T>::Borrowed<'_>> {
if self.as_ref().driver_data.is_null() {
None
} else {
// SAFETY: The data is earlier set from [`set_data`].
Some(unsafe { T::borrow(self.as_ref().driver_data.cast()) })
}
}
/// Sets the private data of the [`Policy`] using a foreign-ownable wrapper.
///
/// # Errors
///
/// Returns `EBUSY` if private data is already set.
fn set_data<T: ForeignOwnable>(&mut self, data: T) -> Result {
if self.as_ref().driver_data.is_null() {
// Transfer the ownership of the data to the foreign interface.
self.as_mut_ref().driver_data = <T as ForeignOwnable>::into_foreign(data).cast();
Ok(())
} else {
Err(EBUSY)
}
}
/// Clears and returns ownership of the private data.
fn clear_data<T: ForeignOwnable>(&mut self) -> Option<T> {
if self.as_ref().driver_data.is_null() {
None
} else {
let data = Some(
// SAFETY: The data is earlier set by us from [`set_data`]. It is safe to take
// back the ownership of the data from the foreign interface.
unsafe { <T as ForeignOwnable>::from_foreign(self.as_ref().driver_data.cast()) },
);
self.as_mut_ref().driver_data = ptr::null_mut();
data
}
}
}
/// CPU frequency policy created from a CPU number.
///
/// This struct represents the CPU frequency policy obtained for a specific CPU, providing safe
/// access to the underlying `cpufreq_policy` and ensuring proper cleanup when the `PolicyCpu` is
/// dropped.
struct PolicyCpu<'a>(&'a mut Policy);
impl<'a> PolicyCpu<'a> {
fn from_cpu(cpu: CpuId) -> Result<Self> {
// SAFETY: It is safe to call `cpufreq_cpu_get` for any valid CPU.
let ptr = from_err_ptr(unsafe { bindings::cpufreq_cpu_get(u32::from(cpu)) })?;
Ok(Self(
// SAFETY: The `ptr` is guaranteed to be valid and remains valid for the lifetime of
// the returned reference.
unsafe { Policy::from_raw_mut(ptr) },
))
}
}
impl<'a> Deref for PolicyCpu<'a> {
type Target = Policy;
fn deref(&self) -> &Self::Target {
self.0
}
}
impl<'a> DerefMut for PolicyCpu<'a> {
fn deref_mut(&mut self) -> &mut Policy {
self.0
}
}
impl<'a> Drop for PolicyCpu<'a> {
fn drop(&mut self) {
// SAFETY: The underlying pointer is guaranteed to be valid for the lifetime of `self`.
unsafe { bindings::cpufreq_cpu_put(self.0.as_raw()) };
}
}
/// CPU frequency driver.
///
/// Implement this trait to provide a CPU frequency driver and its callbacks.
///
/// Reference: <https://docs.kernel.org/cpu-freq/cpu-drivers.html>
#[vtable]
pub trait Driver {
/// Driver's name.
const NAME: &'static CStr;
/// Driver's flags.
const FLAGS: u16;
/// Boost support.
const BOOST_ENABLED: bool;
/// Policy specific data.
///
/// Require that `PData` implements `ForeignOwnable`. We guarantee to never move the underlying
/// wrapped data structure.
type PData: ForeignOwnable;
/// Driver's `init` callback.
fn init(policy: &mut Policy) -> Result<Self::PData>;
/// Driver's `exit` callback.
fn exit(_policy: &mut Policy, _data: Option<Self::PData>) -> Result {
build_error!(VTABLE_DEFAULT_ERROR)
}
/// Driver's `online` callback.
fn online(_policy: &mut Policy) -> Result {
build_error!(VTABLE_DEFAULT_ERROR)
}
/// Driver's `offline` callback.
fn offline(_policy: &mut Policy) -> Result {
build_error!(VTABLE_DEFAULT_ERROR)
}
/// Driver's `suspend` callback.
fn suspend(_policy: &mut Policy) -> Result {
build_error!(VTABLE_DEFAULT_ERROR)
}
/// Driver's `resume` callback.
fn resume(_policy: &mut Policy) -> Result {
build_error!(VTABLE_DEFAULT_ERROR)
}
/// Driver's `ready` callback.
fn ready(_policy: &mut Policy) {
build_error!(VTABLE_DEFAULT_ERROR)
}
/// Driver's `verify` callback.
fn verify(data: &mut PolicyData) -> Result;
/// Driver's `setpolicy` callback.
fn setpolicy(_policy: &mut Policy) -> Result {
build_error!(VTABLE_DEFAULT_ERROR)
}
/// Driver's `target` callback.
fn target(_policy: &mut Policy, _target_freq: u32, _relation: Relation) -> Result {
build_error!(VTABLE_DEFAULT_ERROR)
}
/// Driver's `target_index` callback.
fn target_index(_policy: &mut Policy, _index: TableIndex) -> Result {
build_error!(VTABLE_DEFAULT_ERROR)
}
/// Driver's `fast_switch` callback.
fn fast_switch(_policy: &mut Policy, _target_freq: u32) -> u32 {
build_error!(VTABLE_DEFAULT_ERROR)
}
/// Driver's `adjust_perf` callback.
fn adjust_perf(_policy: &mut Policy, _min_perf: usize, _target_perf: usize, _capacity: usize) {
build_error!(VTABLE_DEFAULT_ERROR)
}
/// Driver's `get_intermediate` callback.
fn get_intermediate(_policy: &mut Policy, _index: TableIndex) -> u32 {
build_error!(VTABLE_DEFAULT_ERROR)
}
/// Driver's `target_intermediate` callback.
fn target_intermediate(_policy: &mut Policy, _index: TableIndex) -> Result {
build_error!(VTABLE_DEFAULT_ERROR)
}
/// Driver's `get` callback.
fn get(_policy: &mut Policy) -> Result<u32> {
build_error!(VTABLE_DEFAULT_ERROR)
}
/// Driver's `update_limits` callback.
fn update_limits(_policy: &mut Policy) {
build_error!(VTABLE_DEFAULT_ERROR)
}
/// Driver's `bios_limit` callback.
fn bios_limit(_policy: &mut Policy, _limit: &mut u32) -> Result {
build_error!(VTABLE_DEFAULT_ERROR)
}
/// Driver's `set_boost` callback.
fn set_boost(_policy: &mut Policy, _state: i32) -> Result {
build_error!(VTABLE_DEFAULT_ERROR)
}
/// Driver's `register_em` callback.
fn register_em(_policy: &mut Policy) {
build_error!(VTABLE_DEFAULT_ERROR)
}
}
/// CPU frequency driver Registration.
///
/// # Examples
///
/// The following example demonstrates how to register a cpufreq driver.
///
/// ```
/// use kernel::{
/// cpufreq,
/// c_str,
/// device::{Core, Device},
/// macros::vtable,
/// of, platform,
/// sync::Arc,
/// };
/// struct SampleDevice;
///
/// #[derive(Default)]
/// struct SampleDriver;
///
/// #[vtable]
/// impl cpufreq::Driver for SampleDriver {
/// const NAME: &'static CStr = c_str!("cpufreq-sample");
/// const FLAGS: u16 = cpufreq::flags::NEED_INITIAL_FREQ_CHECK | cpufreq::flags::IS_COOLING_DEV;
/// const BOOST_ENABLED: bool = true;
///
/// type PData = Arc<SampleDevice>;
///
/// fn init(policy: &mut cpufreq::Policy) -> Result<Self::PData> {
/// // Initialize here
/// Ok(Arc::new(SampleDevice, GFP_KERNEL)?)
/// }
///
/// fn exit(_policy: &mut cpufreq::Policy, _data: Option<Self::PData>) -> Result {
/// Ok(())
/// }
///
/// fn suspend(policy: &mut cpufreq::Policy) -> Result {
/// policy.generic_suspend()
/// }
///
/// fn verify(data: &mut cpufreq::PolicyData) -> Result {
/// data.generic_verify()
/// }
///
/// fn target_index(policy: &mut cpufreq::Policy, index: cpufreq::TableIndex) -> Result {
/// // Update CPU frequency
/// Ok(())
/// }
///
/// fn get(policy: &mut cpufreq::Policy) -> Result<u32> {
/// policy.generic_get()
/// }
/// }
///
/// impl platform::Driver for SampleDriver {
/// type IdInfo = ();
/// const OF_ID_TABLE: Option<of::IdTable<Self::IdInfo>> = None;
///
/// fn probe(
/// pdev: &platform::Device<Core>,
/// _id_info: Option<&Self::IdInfo>,
/// ) -> Result<Pin<KBox<Self>>> {
/// cpufreq::Registration::<SampleDriver>::new_foreign_owned(pdev.as_ref())?;
/// Ok(KBox::new(Self {}, GFP_KERNEL)?.into())
/// }
/// }
/// ```
#[repr(transparent)]
pub struct Registration<T: Driver>(KBox<UnsafeCell<bindings::cpufreq_driver>>, PhantomData<T>);
/// SAFETY: `Registration` doesn't offer any methods or access to fields when shared between threads
/// or CPUs, so it is safe to share it.
unsafe impl<T: Driver> Sync for Registration<T> {}
#[allow(clippy::non_send_fields_in_send_ty)]
/// SAFETY: Registration with and unregistration from the cpufreq subsystem can happen from any
/// thread.
unsafe impl<T: Driver> Send for Registration<T> {}
impl<T: Driver> Registration<T> {
const VTABLE: bindings::cpufreq_driver = bindings::cpufreq_driver {
name: Self::copy_name(T::NAME),
boost_enabled: T::BOOST_ENABLED,
flags: T::FLAGS,
// Initialize mandatory callbacks.
init: Some(Self::init_callback),
verify: Some(Self::verify_callback),
// Initialize optional callbacks based on the traits of `T`.
setpolicy: if T::HAS_SETPOLICY {
Some(Self::setpolicy_callback)
} else {
None
},
target: if T::HAS_TARGET {
Some(Self::target_callback)
} else {
None
},
target_index: if T::HAS_TARGET_INDEX {
Some(Self::target_index_callback)
} else {
None
},
fast_switch: if T::HAS_FAST_SWITCH {
Some(Self::fast_switch_callback)
} else {
None
},
adjust_perf: if T::HAS_ADJUST_PERF {
Some(Self::adjust_perf_callback)
} else {
None
},
get_intermediate: if T::HAS_GET_INTERMEDIATE {
Some(Self::get_intermediate_callback)
} else {
None
},
target_intermediate: if T::HAS_TARGET_INTERMEDIATE {
Some(Self::target_intermediate_callback)
} else {
None
},
get: if T::HAS_GET {
Some(Self::get_callback)
} else {
None
},
update_limits: if T::HAS_UPDATE_LIMITS {
Some(Self::update_limits_callback)
} else {
None
},
bios_limit: if T::HAS_BIOS_LIMIT {
Some(Self::bios_limit_callback)
} else {
None
},
online: if T::HAS_ONLINE {
Some(Self::online_callback)
} else {
None
},
offline: if T::HAS_OFFLINE {
Some(Self::offline_callback)
} else {
None
},
exit: if T::HAS_EXIT {
Some(Self::exit_callback)
} else {
None
},
suspend: if T::HAS_SUSPEND {
Some(Self::suspend_callback)
} else {
None
},
resume: if T::HAS_RESUME {
Some(Self::resume_callback)
} else {
None
},
ready: if T::HAS_READY {
Some(Self::ready_callback)
} else {
None
},
set_boost: if T::HAS_SET_BOOST {
Some(Self::set_boost_callback)
} else {
None
},
register_em: if T::HAS_REGISTER_EM {
Some(Self::register_em_callback)
} else {
None
},
// SAFETY: All zeros is a valid value for `bindings::cpufreq_driver`.
..unsafe { MaybeUninit::zeroed().assume_init() }
};
const fn copy_name(name: &'static CStr) -> [c_char; CPUFREQ_NAME_LEN] {
let src = name.as_bytes_with_nul();
let mut dst = [0; CPUFREQ_NAME_LEN];
build_assert!(src.len() <= CPUFREQ_NAME_LEN);
let mut i = 0;
while i < src.len() {
dst[i] = src[i];
i += 1;
}
dst
}
/// Registers a CPU frequency driver with the cpufreq core.
pub fn new() -> Result<Self> {
// We can't use `&Self::VTABLE` directly because the cpufreq core modifies some fields in
// the C `struct cpufreq_driver`, which requires a mutable reference.
let mut drv = KBox::new(UnsafeCell::new(Self::VTABLE), GFP_KERNEL)?;
// SAFETY: `drv` is guaranteed to be valid for the lifetime of `Registration`.
to_result(unsafe { bindings::cpufreq_register_driver(drv.get_mut()) })?;
Ok(Self(drv, PhantomData))
}
/// Same as [`Registration::new`], but does not return a [`Registration`] instance.
///
/// Instead the [`Registration`] is owned by [`devres::register`] and will be dropped, once the
/// device is detached.
pub fn new_foreign_owned(dev: &Device<Bound>) -> Result
where
T: 'static,
{
devres::register(dev, Self::new()?, GFP_KERNEL)
}
}
/// CPU frequency driver callbacks.
impl<T: Driver> Registration<T> {
/// Driver's `init` callback.
///
/// # Safety
///
/// - This function may only be called from the cpufreq C infrastructure.
/// - The pointer arguments must be valid pointers.
unsafe extern "C" fn init_callback(ptr: *mut bindings::cpufreq_policy) -> c_int {
from_result(|| {
// SAFETY: The `ptr` is guaranteed to be valid by the contract with the C code for the
// lifetime of `policy`.
let policy = unsafe { Policy::from_raw_mut(ptr) };
let data = T::init(policy)?;
policy.set_data(data)?;
Ok(0)
})
}
/// Driver's `exit` callback.
///
/// # Safety
///
/// - This function may only be called from the cpufreq C infrastructure.
/// - The pointer arguments must be valid pointers.
unsafe extern "C" fn exit_callback(ptr: *mut bindings::cpufreq_policy) {
// SAFETY: The `ptr` is guaranteed to be valid by the contract with the C code for the
// lifetime of `policy`.
let policy = unsafe { Policy::from_raw_mut(ptr) };
let data = policy.clear_data();
let _ = T::exit(policy, data);
}
/// Driver's `online` callback.
///
/// # Safety
///
/// - This function may only be called from the cpufreq C infrastructure.
/// - The pointer arguments must be valid pointers.
unsafe extern "C" fn online_callback(ptr: *mut bindings::cpufreq_policy) -> c_int {
from_result(|| {
// SAFETY: The `ptr` is guaranteed to be valid by the contract with the C code for the
// lifetime of `policy`.
let policy = unsafe { Policy::from_raw_mut(ptr) };
T::online(policy).map(|()| 0)
})
}
/// Driver's `offline` callback.
///
/// # Safety
///
/// - This function may only be called from the cpufreq C infrastructure.
/// - The pointer arguments must be valid pointers.
unsafe extern "C" fn offline_callback(ptr: *mut bindings::cpufreq_policy) -> c_int {
from_result(|| {
// SAFETY: The `ptr` is guaranteed to be valid by the contract with the C code for the
// lifetime of `policy`.
let policy = unsafe { Policy::from_raw_mut(ptr) };
T::offline(policy).map(|()| 0)
})
}
/// Driver's `suspend` callback.
///
/// # Safety
///
/// - This function may only be called from the cpufreq C infrastructure.
/// - The pointer arguments must be valid pointers.
unsafe extern "C" fn suspend_callback(ptr: *mut bindings::cpufreq_policy) -> c_int {
from_result(|| {
// SAFETY: The `ptr` is guaranteed to be valid by the contract with the C code for the
// lifetime of `policy`.
let policy = unsafe { Policy::from_raw_mut(ptr) };
T::suspend(policy).map(|()| 0)
})
}
/// Driver's `resume` callback.
///
/// # Safety
///
/// - This function may only be called from the cpufreq C infrastructure.
/// - The pointer arguments must be valid pointers.
unsafe extern "C" fn resume_callback(ptr: *mut bindings::cpufreq_policy) -> c_int {
from_result(|| {
// SAFETY: The `ptr` is guaranteed to be valid by the contract with the C code for the
// lifetime of `policy`.
let policy = unsafe { Policy::from_raw_mut(ptr) };
T::resume(policy).map(|()| 0)
})
}
/// Driver's `ready` callback.
///
/// # Safety
///
/// - This function may only be called from the cpufreq C infrastructure.
/// - The pointer arguments must be valid pointers.
unsafe extern "C" fn ready_callback(ptr: *mut bindings::cpufreq_policy) {
// SAFETY: The `ptr` is guaranteed to be valid by the contract with the C code for the
// lifetime of `policy`.
let policy = unsafe { Policy::from_raw_mut(ptr) };
T::ready(policy);
}
/// Driver's `verify` callback.
///
/// # Safety
///
/// - This function may only be called from the cpufreq C infrastructure.
/// - The pointer arguments must be valid pointers.
unsafe extern "C" fn verify_callback(ptr: *mut bindings::cpufreq_policy_data) -> c_int {
from_result(|| {
// SAFETY: The `ptr` is guaranteed to be valid by the contract with the C code for the
// lifetime of `policy`.
let data = unsafe { PolicyData::from_raw_mut(ptr) };
T::verify(data).map(|()| 0)
})
}
/// Driver's `setpolicy` callback.
///
/// # Safety
///
/// - This function may only be called from the cpufreq C infrastructure.
/// - The pointer arguments must be valid pointers.
unsafe extern "C" fn setpolicy_callback(ptr: *mut bindings::cpufreq_policy) -> c_int {
from_result(|| {
// SAFETY: The `ptr` is guaranteed to be valid by the contract with the C code for the
// lifetime of `policy`.
let policy = unsafe { Policy::from_raw_mut(ptr) };
T::setpolicy(policy).map(|()| 0)
})
}
/// Driver's `target` callback.
///
/// # Safety
///
/// - This function may only be called from the cpufreq C infrastructure.
/// - The pointer arguments must be valid pointers.
unsafe extern "C" fn target_callback(
ptr: *mut bindings::cpufreq_policy,
target_freq: c_uint,
relation: c_uint,
) -> c_int {
from_result(|| {
// SAFETY: The `ptr` is guaranteed to be valid by the contract with the C code for the
// lifetime of `policy`.
let policy = unsafe { Policy::from_raw_mut(ptr) };
T::target(policy, target_freq, Relation::new(relation)?).map(|()| 0)
})
}
/// Driver's `target_index` callback.
///
/// # Safety
///
/// - This function may only be called from the cpufreq C infrastructure.
/// - The pointer arguments must be valid pointers.
unsafe extern "C" fn target_index_callback(
ptr: *mut bindings::cpufreq_policy,
index: c_uint,
) -> c_int {
from_result(|| {
// SAFETY: The `ptr` is guaranteed to be valid by the contract with the C code for the
// lifetime of `policy`.
let policy = unsafe { Policy::from_raw_mut(ptr) };
// SAFETY: The C code guarantees that `index` corresponds to a valid entry in the
// frequency table.
let index = unsafe { TableIndex::new(index as usize) };
T::target_index(policy, index).map(|()| 0)
})
}
/// Driver's `fast_switch` callback.
///
/// # Safety
///
/// - This function may only be called from the cpufreq C infrastructure.
/// - The pointer arguments must be valid pointers.
unsafe extern "C" fn fast_switch_callback(
ptr: *mut bindings::cpufreq_policy,
target_freq: c_uint,
) -> c_uint {
// SAFETY: The `ptr` is guaranteed to be valid by the contract with the C code for the
// lifetime of `policy`.
let policy = unsafe { Policy::from_raw_mut(ptr) };
T::fast_switch(policy, target_freq)
}
/// Driver's `adjust_perf` callback.
///
/// # Safety
///
/// - This function may only be called from the cpufreq C infrastructure.
unsafe extern "C" fn adjust_perf_callback(
cpu: c_uint,
min_perf: c_ulong,
target_perf: c_ulong,
capacity: c_ulong,
) {
// SAFETY: The C API guarantees that `cpu` refers to a valid CPU number.
let cpu_id = unsafe { CpuId::from_u32_unchecked(cpu) };
if let Ok(mut policy) = PolicyCpu::from_cpu(cpu_id) {
T::adjust_perf(&mut policy, min_perf, target_perf, capacity);
}
}
/// Driver's `get_intermediate` callback.
///
/// # Safety
///
/// - This function may only be called from the cpufreq C infrastructure.
/// - The pointer arguments must be valid pointers.
unsafe extern "C" fn get_intermediate_callback(
ptr: *mut bindings::cpufreq_policy,
index: c_uint,
) -> c_uint {
// SAFETY: The `ptr` is guaranteed to be valid by the contract with the C code for the
// lifetime of `policy`.
let policy = unsafe { Policy::from_raw_mut(ptr) };
// SAFETY: The C code guarantees that `index` corresponds to a valid entry in the
// frequency table.
let index = unsafe { TableIndex::new(index as usize) };
T::get_intermediate(policy, index)
}
/// Driver's `target_intermediate` callback.
///
/// # Safety
///
/// - This function may only be called from the cpufreq C infrastructure.
/// - The pointer arguments must be valid pointers.
unsafe extern "C" fn target_intermediate_callback(
ptr: *mut bindings::cpufreq_policy,
index: c_uint,
) -> c_int {
from_result(|| {
// SAFETY: The `ptr` is guaranteed to be valid by the contract with the C code for the
// lifetime of `policy`.
let policy = unsafe { Policy::from_raw_mut(ptr) };
// SAFETY: The C code guarantees that `index` corresponds to a valid entry in the
// frequency table.
let index = unsafe { TableIndex::new(index as usize) };
T::target_intermediate(policy, index).map(|()| 0)
})
}
/// Driver's `get` callback.
///
/// # Safety
///
/// - This function may only be called from the cpufreq C infrastructure.
unsafe extern "C" fn get_callback(cpu: c_uint) -> c_uint {
// SAFETY: The C API guarantees that `cpu` refers to a valid CPU number.
let cpu_id = unsafe { CpuId::from_u32_unchecked(cpu) };
PolicyCpu::from_cpu(cpu_id).map_or(0, |mut policy| T::get(&mut policy).map_or(0, |f| f))
}
/// Driver's `update_limit` callback.
///
/// # Safety
///
/// - This function may only be called from the cpufreq C infrastructure.
/// - The pointer arguments must be valid pointers.
unsafe extern "C" fn update_limits_callback(ptr: *mut bindings::cpufreq_policy) {
// SAFETY: The `ptr` is guaranteed to be valid by the contract with the C code for the
// lifetime of `policy`.
let policy = unsafe { Policy::from_raw_mut(ptr) };
T::update_limits(policy);
}
/// Driver's `bios_limit` callback.
///
/// # Safety
///
/// - This function may only be called from the cpufreq C infrastructure.
/// - The pointer arguments must be valid pointers.
unsafe extern "C" fn bios_limit_callback(cpu: c_int, limit: *mut c_uint) -> c_int {
// SAFETY: The C API guarantees that `cpu` refers to a valid CPU number.
let cpu_id = unsafe { CpuId::from_i32_unchecked(cpu) };
from_result(|| {
let mut policy = PolicyCpu::from_cpu(cpu_id)?;
// SAFETY: `limit` is guaranteed by the C code to be valid.
T::bios_limit(&mut policy, &mut (unsafe { *limit })).map(|()| 0)
})
}
/// Driver's `set_boost` callback.
///
/// # Safety
///
/// - This function may only be called from the cpufreq C infrastructure.
/// - The pointer arguments must be valid pointers.
unsafe extern "C" fn set_boost_callback(
ptr: *mut bindings::cpufreq_policy,
state: c_int,
) -> c_int {
from_result(|| {
// SAFETY: The `ptr` is guaranteed to be valid by the contract with the C code for the
// lifetime of `policy`.
let policy = unsafe { Policy::from_raw_mut(ptr) };
T::set_boost(policy, state).map(|()| 0)
})
}
/// Driver's `register_em` callback.
///
/// # Safety
///
/// - This function may only be called from the cpufreq C infrastructure.
/// - The pointer arguments must be valid pointers.
unsafe extern "C" fn register_em_callback(ptr: *mut bindings::cpufreq_policy) {
// SAFETY: The `ptr` is guaranteed to be valid by the contract with the C code for the
// lifetime of `policy`.
let policy = unsafe { Policy::from_raw_mut(ptr) };
T::register_em(policy);
}
}
impl<T: Driver> Drop for Registration<T> {
/// Unregisters with the cpufreq core.
fn drop(&mut self) {
// SAFETY: `self.0` is guaranteed to be valid for the lifetime of `Registration`.
unsafe { bindings::cpufreq_unregister_driver(self.0.get_mut()) };
}
}