mirror of
git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
synced 2025-08-05 16:54:27 +00:00

Box: - Implement Borrow / BorrowMut for Box<T, A>. Vec: - Implement Default for Vec<T, A>. - Implement Borrow / BorrowMut for Vec<T, A>. DMA: - Clarify wording and be consistent in 'coherent' nomenclature. - Convert the read!() / write!() macros to return a Result. - Add as_slice() / write() methods in CoherentAllocation. - Fix doc-comment of dma_handle(). - Expose count() and size() in CoherentAllocation and add the corresponding type invariants. - Implement CoherentAllocation::dma_handle_with_offset(). - Require mutable reference for as_slice_mut() and write(). - Add Vlastimil Babka, Liam R. Howlett, Uladzislau Rezki and Lorenzo Stoakes as reviewers (thanks everyone). -----BEGIN PGP SIGNATURE----- iHUEABYKAB0WIQS2q/xV6QjXAdC7k+1FlHeO1qrKLgUCaHZWlAAKCRBFlHeO1qrK LgBrAQDgp1+5ocMJKJDgBtCXpRCe2F9OBz9L7CY1EzSRz2JHTAD/YZ5D1DeSi1l8 U+tqG9+5i8twB3PR/TC4d7+GaBfTcQQ= =LaOk -----END PGP SIGNATURE----- Merge tag 'alloc-next-v6.17-2025-07-15' of https://github.com/Rust-for-Linux/linux into rust-next Pull alloc and DMA updates from Danilo Krummrich: Box: - Implement Borrow / BorrowMut for Box<T, A>. Vec: - Implement Default for Vec<T, A>. - Implement Borrow / BorrowMut for Vec<T, A>. DMA: - Clarify wording and be consistent in 'coherent' nomenclature. - Convert the read!() / write!() macros to return a Result. - Add as_slice() / write() methods in CoherentAllocation. - Fix doc-comment of dma_handle(). - Expose count() and size() in CoherentAllocation and add the corresponding type invariants. - Implement CoherentAllocation::dma_handle_with_offset(). - Require mutable reference for as_slice_mut() and write(). MAINTAINERS: - Add Vlastimil Babka, Liam R. Howlett, Uladzislau Rezki and Lorenzo Stoakes as reviewers (thanks everyone). * tag 'alloc-next-v6.17-2025-07-15' of https://github.com/Rust-for-Linux/linux: MAINTAINERS: add mm folks as reviewers to rust alloc rust: dma: require mutable reference for as_slice_mut() and write() rust: dma: add dma_handle_with_offset method to CoherentAllocation rust: dma: expose the count and size of CoherentAllocation rust: dma: fix doc-comment of dma_handle() rust: dma: add as_slice/write functions for CoherentAllocation rust: dma: convert the read/write macros to return Result rust: dma: clarify wording and be consistent in `coherent` nomenclature rust: alloc: implement `Borrow` and `BorrowMut` for `KBox` rust: alloc: implement `Borrow` and `BorrowMut` for `Vec` rust: vec: impl Default for Vec with any allocator
1344 lines
41 KiB
Rust
1344 lines
41 KiB
Rust
// SPDX-License-Identifier: GPL-2.0
|
|
|
|
//! Implementation of [`Vec`].
|
|
|
|
use super::{
|
|
allocator::{KVmalloc, Kmalloc, Vmalloc},
|
|
layout::ArrayLayout,
|
|
AllocError, Allocator, Box, Flags,
|
|
};
|
|
use core::{
|
|
borrow::{Borrow, BorrowMut},
|
|
fmt,
|
|
marker::PhantomData,
|
|
mem::{ManuallyDrop, MaybeUninit},
|
|
ops::Deref,
|
|
ops::DerefMut,
|
|
ops::Index,
|
|
ops::IndexMut,
|
|
ptr,
|
|
ptr::NonNull,
|
|
slice,
|
|
slice::SliceIndex,
|
|
};
|
|
|
|
mod errors;
|
|
pub use self::errors::{InsertError, PushError, RemoveError};
|
|
|
|
/// Create a [`KVec`] containing the arguments.
|
|
///
|
|
/// New memory is allocated with `GFP_KERNEL`.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// let mut v = kernel::kvec![];
|
|
/// v.push(1, GFP_KERNEL)?;
|
|
/// assert_eq!(v, [1]);
|
|
///
|
|
/// let mut v = kernel::kvec![1; 3]?;
|
|
/// v.push(4, GFP_KERNEL)?;
|
|
/// assert_eq!(v, [1, 1, 1, 4]);
|
|
///
|
|
/// let mut v = kernel::kvec![1, 2, 3]?;
|
|
/// v.push(4, GFP_KERNEL)?;
|
|
/// assert_eq!(v, [1, 2, 3, 4]);
|
|
///
|
|
/// # Ok::<(), Error>(())
|
|
/// ```
|
|
#[macro_export]
|
|
macro_rules! kvec {
|
|
() => (
|
|
$crate::alloc::KVec::new()
|
|
);
|
|
($elem:expr; $n:expr) => (
|
|
$crate::alloc::KVec::from_elem($elem, $n, GFP_KERNEL)
|
|
);
|
|
($($x:expr),+ $(,)?) => (
|
|
match $crate::alloc::KBox::new_uninit(GFP_KERNEL) {
|
|
Ok(b) => Ok($crate::alloc::KVec::from($crate::alloc::KBox::write(b, [$($x),+]))),
|
|
Err(e) => Err(e),
|
|
}
|
|
);
|
|
}
|
|
|
|
/// The kernel's [`Vec`] type.
|
|
///
|
|
/// A contiguous growable array type with contents allocated with the kernel's allocators (e.g.
|
|
/// [`Kmalloc`], [`Vmalloc`] or [`KVmalloc`]), written `Vec<T, A>`.
|
|
///
|
|
/// For non-zero-sized values, a [`Vec`] will use the given allocator `A` for its allocation. For
|
|
/// the most common allocators the type aliases [`KVec`], [`VVec`] and [`KVVec`] exist.
|
|
///
|
|
/// For zero-sized types the [`Vec`]'s pointer must be `dangling_mut::<T>`; no memory is allocated.
|
|
///
|
|
/// Generally, [`Vec`] consists of a pointer that represents the vector's backing buffer, the
|
|
/// capacity of the vector (the number of elements that currently fit into the vector), its length
|
|
/// (the number of elements that are currently stored in the vector) and the `Allocator` type used
|
|
/// to allocate (and free) the backing buffer.
|
|
///
|
|
/// A [`Vec`] can be deconstructed into and (re-)constructed from its previously named raw parts
|
|
/// and manually modified.
|
|
///
|
|
/// [`Vec`]'s backing buffer gets, if required, automatically increased (re-allocated) when elements
|
|
/// are added to the vector.
|
|
///
|
|
/// # Invariants
|
|
///
|
|
/// - `self.ptr` is always properly aligned and either points to memory allocated with `A` or, for
|
|
/// zero-sized types, is a dangling, well aligned pointer.
|
|
///
|
|
/// - `self.len` always represents the exact number of elements stored in the vector.
|
|
///
|
|
/// - `self.layout` represents the absolute number of elements that can be stored within the vector
|
|
/// without re-allocation. For ZSTs `self.layout`'s capacity is zero. However, it is legal for the
|
|
/// backing buffer to be larger than `layout`.
|
|
///
|
|
/// - `self.len()` is always less than or equal to `self.capacity()`.
|
|
///
|
|
/// - The `Allocator` type `A` of the vector is the exact same `Allocator` type the backing buffer
|
|
/// was allocated with (and must be freed with).
|
|
pub struct Vec<T, A: Allocator> {
|
|
ptr: NonNull<T>,
|
|
/// Represents the actual buffer size as `cap` times `size_of::<T>` bytes.
|
|
///
|
|
/// Note: This isn't quite the same as `Self::capacity`, which in contrast returns the number of
|
|
/// elements we can still store without reallocating.
|
|
layout: ArrayLayout<T>,
|
|
len: usize,
|
|
_p: PhantomData<A>,
|
|
}
|
|
|
|
/// Type alias for [`Vec`] with a [`Kmalloc`] allocator.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// let mut v = KVec::new();
|
|
/// v.push(1, GFP_KERNEL)?;
|
|
/// assert_eq!(&v, &[1]);
|
|
///
|
|
/// # Ok::<(), Error>(())
|
|
/// ```
|
|
pub type KVec<T> = Vec<T, Kmalloc>;
|
|
|
|
/// Type alias for [`Vec`] with a [`Vmalloc`] allocator.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// let mut v = VVec::new();
|
|
/// v.push(1, GFP_KERNEL)?;
|
|
/// assert_eq!(&v, &[1]);
|
|
///
|
|
/// # Ok::<(), Error>(())
|
|
/// ```
|
|
pub type VVec<T> = Vec<T, Vmalloc>;
|
|
|
|
/// Type alias for [`Vec`] with a [`KVmalloc`] allocator.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// let mut v = KVVec::new();
|
|
/// v.push(1, GFP_KERNEL)?;
|
|
/// assert_eq!(&v, &[1]);
|
|
///
|
|
/// # Ok::<(), Error>(())
|
|
/// ```
|
|
pub type KVVec<T> = Vec<T, KVmalloc>;
|
|
|
|
// SAFETY: `Vec` is `Send` if `T` is `Send` because `Vec` owns its elements.
|
|
unsafe impl<T, A> Send for Vec<T, A>
|
|
where
|
|
T: Send,
|
|
A: Allocator,
|
|
{
|
|
}
|
|
|
|
// SAFETY: `Vec` is `Sync` if `T` is `Sync` because `Vec` owns its elements.
|
|
unsafe impl<T, A> Sync for Vec<T, A>
|
|
where
|
|
T: Sync,
|
|
A: Allocator,
|
|
{
|
|
}
|
|
|
|
impl<T, A> Vec<T, A>
|
|
where
|
|
A: Allocator,
|
|
{
|
|
#[inline]
|
|
const fn is_zst() -> bool {
|
|
core::mem::size_of::<T>() == 0
|
|
}
|
|
|
|
/// Returns the number of elements that can be stored within the vector without allocating
|
|
/// additional memory.
|
|
pub fn capacity(&self) -> usize {
|
|
if const { Self::is_zst() } {
|
|
usize::MAX
|
|
} else {
|
|
self.layout.len()
|
|
}
|
|
}
|
|
|
|
/// Returns the number of elements stored within the vector.
|
|
#[inline]
|
|
pub fn len(&self) -> usize {
|
|
self.len
|
|
}
|
|
|
|
/// Increments `self.len` by `additional`.
|
|
///
|
|
/// # Safety
|
|
///
|
|
/// - `additional` must be less than or equal to `self.capacity - self.len`.
|
|
/// - All elements within the interval [`self.len`,`self.len + additional`) must be initialized.
|
|
#[inline]
|
|
pub unsafe fn inc_len(&mut self, additional: usize) {
|
|
// Guaranteed by the type invariant to never underflow.
|
|
debug_assert!(additional <= self.capacity() - self.len());
|
|
// INVARIANT: By the safety requirements of this method this represents the exact number of
|
|
// elements stored within `self`.
|
|
self.len += additional;
|
|
}
|
|
|
|
/// Decreases `self.len` by `count`.
|
|
///
|
|
/// Returns a mutable slice to the elements forgotten by the vector. It is the caller's
|
|
/// responsibility to drop these elements if necessary.
|
|
///
|
|
/// # Safety
|
|
///
|
|
/// - `count` must be less than or equal to `self.len`.
|
|
unsafe fn dec_len(&mut self, count: usize) -> &mut [T] {
|
|
debug_assert!(count <= self.len());
|
|
// INVARIANT: We relinquish ownership of the elements within the range `[self.len - count,
|
|
// self.len)`, hence the updated value of `set.len` represents the exact number of elements
|
|
// stored within `self`.
|
|
self.len -= count;
|
|
// SAFETY: The memory after `self.len()` is guaranteed to contain `count` initialized
|
|
// elements of type `T`.
|
|
unsafe { slice::from_raw_parts_mut(self.as_mut_ptr().add(self.len), count) }
|
|
}
|
|
|
|
/// Returns a slice of the entire vector.
|
|
#[inline]
|
|
pub fn as_slice(&self) -> &[T] {
|
|
self
|
|
}
|
|
|
|
/// Returns a mutable slice of the entire vector.
|
|
#[inline]
|
|
pub fn as_mut_slice(&mut self) -> &mut [T] {
|
|
self
|
|
}
|
|
|
|
/// Returns a mutable raw pointer to the vector's backing buffer, or, if `T` is a ZST, a
|
|
/// dangling raw pointer.
|
|
#[inline]
|
|
pub fn as_mut_ptr(&mut self) -> *mut T {
|
|
self.ptr.as_ptr()
|
|
}
|
|
|
|
/// Returns a raw pointer to the vector's backing buffer, or, if `T` is a ZST, a dangling raw
|
|
/// pointer.
|
|
#[inline]
|
|
pub fn as_ptr(&self) -> *const T {
|
|
self.ptr.as_ptr()
|
|
}
|
|
|
|
/// Returns `true` if the vector contains no elements, `false` otherwise.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// let mut v = KVec::new();
|
|
/// assert!(v.is_empty());
|
|
///
|
|
/// v.push(1, GFP_KERNEL);
|
|
/// assert!(!v.is_empty());
|
|
/// ```
|
|
#[inline]
|
|
pub fn is_empty(&self) -> bool {
|
|
self.len() == 0
|
|
}
|
|
|
|
/// Creates a new, empty `Vec<T, A>`.
|
|
///
|
|
/// This method does not allocate by itself.
|
|
#[inline]
|
|
pub const fn new() -> Self {
|
|
// INVARIANT: Since this is a new, empty `Vec` with no backing memory yet,
|
|
// - `ptr` is a properly aligned dangling pointer for type `T`,
|
|
// - `layout` is an empty `ArrayLayout` (zero capacity)
|
|
// - `len` is zero, since no elements can be or have been stored,
|
|
// - `A` is always valid.
|
|
Self {
|
|
ptr: NonNull::dangling(),
|
|
layout: ArrayLayout::empty(),
|
|
len: 0,
|
|
_p: PhantomData::<A>,
|
|
}
|
|
}
|
|
|
|
/// Returns a slice of `MaybeUninit<T>` for the remaining spare capacity of the vector.
|
|
pub fn spare_capacity_mut(&mut self) -> &mut [MaybeUninit<T>] {
|
|
// SAFETY:
|
|
// - `self.len` is smaller than `self.capacity` by the type invariant and hence, the
|
|
// resulting pointer is guaranteed to be part of the same allocated object.
|
|
// - `self.len` can not overflow `isize`.
|
|
let ptr = unsafe { self.as_mut_ptr().add(self.len) }.cast::<MaybeUninit<T>>();
|
|
|
|
// SAFETY: The memory between `self.len` and `self.capacity` is guaranteed to be allocated
|
|
// and valid, but uninitialized.
|
|
unsafe { slice::from_raw_parts_mut(ptr, self.capacity() - self.len) }
|
|
}
|
|
|
|
/// Appends an element to the back of the [`Vec`] instance.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// let mut v = KVec::new();
|
|
/// v.push(1, GFP_KERNEL)?;
|
|
/// assert_eq!(&v, &[1]);
|
|
///
|
|
/// v.push(2, GFP_KERNEL)?;
|
|
/// assert_eq!(&v, &[1, 2]);
|
|
/// # Ok::<(), Error>(())
|
|
/// ```
|
|
pub fn push(&mut self, v: T, flags: Flags) -> Result<(), AllocError> {
|
|
self.reserve(1, flags)?;
|
|
// SAFETY: The call to `reserve` was successful, so the capacity is at least one greater
|
|
// than the length.
|
|
unsafe { self.push_within_capacity_unchecked(v) };
|
|
Ok(())
|
|
}
|
|
|
|
/// Appends an element to the back of the [`Vec`] instance without reallocating.
|
|
///
|
|
/// Fails if the vector does not have capacity for the new element.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// let mut v = KVec::with_capacity(10, GFP_KERNEL)?;
|
|
/// for i in 0..10 {
|
|
/// v.push_within_capacity(i)?;
|
|
/// }
|
|
///
|
|
/// assert!(v.push_within_capacity(10).is_err());
|
|
/// # Ok::<(), Error>(())
|
|
/// ```
|
|
pub fn push_within_capacity(&mut self, v: T) -> Result<(), PushError<T>> {
|
|
if self.len() < self.capacity() {
|
|
// SAFETY: The length is less than the capacity.
|
|
unsafe { self.push_within_capacity_unchecked(v) };
|
|
Ok(())
|
|
} else {
|
|
Err(PushError(v))
|
|
}
|
|
}
|
|
|
|
/// Appends an element to the back of the [`Vec`] instance without reallocating.
|
|
///
|
|
/// # Safety
|
|
///
|
|
/// The length must be less than the capacity.
|
|
unsafe fn push_within_capacity_unchecked(&mut self, v: T) {
|
|
let spare = self.spare_capacity_mut();
|
|
|
|
// SAFETY: By the safety requirements, `spare` is non-empty.
|
|
unsafe { spare.get_unchecked_mut(0) }.write(v);
|
|
|
|
// SAFETY: We just initialised the first spare entry, so it is safe to increase the length
|
|
// by 1. We also know that the new length is <= capacity because the caller guarantees that
|
|
// the length is less than the capacity at the beginning of this function.
|
|
unsafe { self.inc_len(1) };
|
|
}
|
|
|
|
/// Inserts an element at the given index in the [`Vec`] instance.
|
|
///
|
|
/// Fails if the vector does not have capacity for the new element. Panics if the index is out
|
|
/// of bounds.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// use kernel::alloc::kvec::InsertError;
|
|
///
|
|
/// let mut v = KVec::with_capacity(5, GFP_KERNEL)?;
|
|
/// for i in 0..5 {
|
|
/// v.insert_within_capacity(0, i)?;
|
|
/// }
|
|
///
|
|
/// assert!(matches!(v.insert_within_capacity(0, 5), Err(InsertError::OutOfCapacity(_))));
|
|
/// assert!(matches!(v.insert_within_capacity(1000, 5), Err(InsertError::IndexOutOfBounds(_))));
|
|
/// assert_eq!(v, [4, 3, 2, 1, 0]);
|
|
/// # Ok::<(), Error>(())
|
|
/// ```
|
|
pub fn insert_within_capacity(
|
|
&mut self,
|
|
index: usize,
|
|
element: T,
|
|
) -> Result<(), InsertError<T>> {
|
|
let len = self.len();
|
|
if index > len {
|
|
return Err(InsertError::IndexOutOfBounds(element));
|
|
}
|
|
|
|
if len >= self.capacity() {
|
|
return Err(InsertError::OutOfCapacity(element));
|
|
}
|
|
|
|
// SAFETY: This is in bounds since `index <= len < capacity`.
|
|
let p = unsafe { self.as_mut_ptr().add(index) };
|
|
// INVARIANT: This breaks the Vec invariants by making `index` contain an invalid element,
|
|
// but we restore the invariants below.
|
|
// SAFETY: Both the src and dst ranges end no later than one element after the length.
|
|
// Since the length is less than the capacity, both ranges are in bounds of the allocation.
|
|
unsafe { ptr::copy(p, p.add(1), len - index) };
|
|
// INVARIANT: This restores the Vec invariants.
|
|
// SAFETY: The pointer is in-bounds of the allocation.
|
|
unsafe { ptr::write(p, element) };
|
|
// SAFETY: Index `len` contains a valid element due to the above copy and write.
|
|
unsafe { self.inc_len(1) };
|
|
Ok(())
|
|
}
|
|
|
|
/// Removes the last element from a vector and returns it, or `None` if it is empty.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// let mut v = KVec::new();
|
|
/// v.push(1, GFP_KERNEL)?;
|
|
/// v.push(2, GFP_KERNEL)?;
|
|
/// assert_eq!(&v, &[1, 2]);
|
|
///
|
|
/// assert_eq!(v.pop(), Some(2));
|
|
/// assert_eq!(v.pop(), Some(1));
|
|
/// assert_eq!(v.pop(), None);
|
|
/// # Ok::<(), Error>(())
|
|
/// ```
|
|
pub fn pop(&mut self) -> Option<T> {
|
|
if self.is_empty() {
|
|
return None;
|
|
}
|
|
|
|
let removed: *mut T = {
|
|
// SAFETY: We just checked that the length is at least one.
|
|
let slice = unsafe { self.dec_len(1) };
|
|
// SAFETY: The argument to `dec_len` was 1 so this returns a slice of length 1.
|
|
unsafe { slice.get_unchecked_mut(0) }
|
|
};
|
|
|
|
// SAFETY: The guarantees of `dec_len` allow us to take ownership of this value.
|
|
Some(unsafe { removed.read() })
|
|
}
|
|
|
|
/// Removes the element at the given index.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// let mut v = kernel::kvec![1, 2, 3]?;
|
|
/// assert_eq!(v.remove(1)?, 2);
|
|
/// assert_eq!(v, [1, 3]);
|
|
/// # Ok::<(), Error>(())
|
|
/// ```
|
|
pub fn remove(&mut self, i: usize) -> Result<T, RemoveError> {
|
|
let value = {
|
|
let value_ref = self.get(i).ok_or(RemoveError)?;
|
|
// INVARIANT: This breaks the invariants by invalidating the value at index `i`, but we
|
|
// restore the invariants below.
|
|
// SAFETY: The value at index `i` is valid, because otherwise we would have already
|
|
// failed with `RemoveError`.
|
|
unsafe { ptr::read(value_ref) }
|
|
};
|
|
|
|
// SAFETY: We checked that `i` is in-bounds.
|
|
let p = unsafe { self.as_mut_ptr().add(i) };
|
|
|
|
// INVARIANT: After this call, the invalid value is at the last slot, so the Vec invariants
|
|
// are restored after the below call to `dec_len(1)`.
|
|
// SAFETY: `p.add(1).add(self.len - i - 1)` is `i+1+len-i-1 == len` elements after the
|
|
// beginning of the vector, so this is in-bounds of the vector's allocation.
|
|
unsafe { ptr::copy(p.add(1), p, self.len - i - 1) };
|
|
|
|
// SAFETY: Since the check at the beginning of this call did not fail with `RemoveError`,
|
|
// the length is at least one.
|
|
unsafe { self.dec_len(1) };
|
|
|
|
Ok(value)
|
|
}
|
|
|
|
/// Creates a new [`Vec`] instance with at least the given capacity.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// let v = KVec::<u32>::with_capacity(20, GFP_KERNEL)?;
|
|
///
|
|
/// assert!(v.capacity() >= 20);
|
|
/// # Ok::<(), Error>(())
|
|
/// ```
|
|
pub fn with_capacity(capacity: usize, flags: Flags) -> Result<Self, AllocError> {
|
|
let mut v = Vec::new();
|
|
|
|
v.reserve(capacity, flags)?;
|
|
|
|
Ok(v)
|
|
}
|
|
|
|
/// Creates a `Vec<T, A>` from a pointer, a length and a capacity using the allocator `A`.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// let mut v = kernel::kvec![1, 2, 3]?;
|
|
/// v.reserve(1, GFP_KERNEL)?;
|
|
///
|
|
/// let (mut ptr, mut len, cap) = v.into_raw_parts();
|
|
///
|
|
/// // SAFETY: We've just reserved memory for another element.
|
|
/// unsafe { ptr.add(len).write(4) };
|
|
/// len += 1;
|
|
///
|
|
/// // SAFETY: We only wrote an additional element at the end of the `KVec`'s buffer and
|
|
/// // correspondingly increased the length of the `KVec` by one. Otherwise, we construct it
|
|
/// // from the exact same raw parts.
|
|
/// let v = unsafe { KVec::from_raw_parts(ptr, len, cap) };
|
|
///
|
|
/// assert_eq!(v, [1, 2, 3, 4]);
|
|
///
|
|
/// # Ok::<(), Error>(())
|
|
/// ```
|
|
///
|
|
/// # Safety
|
|
///
|
|
/// If `T` is a ZST:
|
|
///
|
|
/// - `ptr` must be a dangling, well aligned pointer.
|
|
///
|
|
/// Otherwise:
|
|
///
|
|
/// - `ptr` must have been allocated with the allocator `A`.
|
|
/// - `ptr` must satisfy or exceed the alignment requirements of `T`.
|
|
/// - `ptr` must point to memory with a size of at least `size_of::<T>() * capacity` bytes.
|
|
/// - The allocated size in bytes must not be larger than `isize::MAX`.
|
|
/// - `length` must be less than or equal to `capacity`.
|
|
/// - The first `length` elements must be initialized values of type `T`.
|
|
///
|
|
/// It is also valid to create an empty `Vec` passing a dangling pointer for `ptr` and zero for
|
|
/// `cap` and `len`.
|
|
pub unsafe fn from_raw_parts(ptr: *mut T, length: usize, capacity: usize) -> Self {
|
|
let layout = if Self::is_zst() {
|
|
ArrayLayout::empty()
|
|
} else {
|
|
// SAFETY: By the safety requirements of this function, `capacity * size_of::<T>()` is
|
|
// smaller than `isize::MAX`.
|
|
unsafe { ArrayLayout::new_unchecked(capacity) }
|
|
};
|
|
|
|
// INVARIANT: For ZSTs, we store an empty `ArrayLayout`, all other type invariants are
|
|
// covered by the safety requirements of this function.
|
|
Self {
|
|
// SAFETY: By the safety requirements, `ptr` is either dangling or pointing to a valid
|
|
// memory allocation, allocated with `A`.
|
|
ptr: unsafe { NonNull::new_unchecked(ptr) },
|
|
layout,
|
|
len: length,
|
|
_p: PhantomData::<A>,
|
|
}
|
|
}
|
|
|
|
/// Consumes the `Vec<T, A>` and returns its raw components `pointer`, `length` and `capacity`.
|
|
///
|
|
/// This will not run the destructor of the contained elements and for non-ZSTs the allocation
|
|
/// will stay alive indefinitely. Use [`Vec::from_raw_parts`] to recover the [`Vec`], drop the
|
|
/// elements and free the allocation, if any.
|
|
pub fn into_raw_parts(self) -> (*mut T, usize, usize) {
|
|
let mut me = ManuallyDrop::new(self);
|
|
let len = me.len();
|
|
let capacity = me.capacity();
|
|
let ptr = me.as_mut_ptr();
|
|
(ptr, len, capacity)
|
|
}
|
|
|
|
/// Clears the vector, removing all values.
|
|
///
|
|
/// Note that this method has no effect on the allocated capacity
|
|
/// of the vector.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// let mut v = kernel::kvec![1, 2, 3]?;
|
|
///
|
|
/// v.clear();
|
|
///
|
|
/// assert!(v.is_empty());
|
|
/// # Ok::<(), Error>(())
|
|
/// ```
|
|
#[inline]
|
|
pub fn clear(&mut self) {
|
|
self.truncate(0);
|
|
}
|
|
|
|
/// Ensures that the capacity exceeds the length by at least `additional` elements.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// let mut v = KVec::new();
|
|
/// v.push(1, GFP_KERNEL)?;
|
|
///
|
|
/// v.reserve(10, GFP_KERNEL)?;
|
|
/// let cap = v.capacity();
|
|
/// assert!(cap >= 10);
|
|
///
|
|
/// v.reserve(10, GFP_KERNEL)?;
|
|
/// let new_cap = v.capacity();
|
|
/// assert_eq!(new_cap, cap);
|
|
///
|
|
/// # Ok::<(), Error>(())
|
|
/// ```
|
|
pub fn reserve(&mut self, additional: usize, flags: Flags) -> Result<(), AllocError> {
|
|
let len = self.len();
|
|
let cap = self.capacity();
|
|
|
|
if cap - len >= additional {
|
|
return Ok(());
|
|
}
|
|
|
|
if Self::is_zst() {
|
|
// The capacity is already `usize::MAX` for ZSTs, we can't go higher.
|
|
return Err(AllocError);
|
|
}
|
|
|
|
// We know that `cap <= isize::MAX` because of the type invariants of `Self`. So the
|
|
// multiplication by two won't overflow.
|
|
let new_cap = core::cmp::max(cap * 2, len.checked_add(additional).ok_or(AllocError)?);
|
|
let layout = ArrayLayout::new(new_cap).map_err(|_| AllocError)?;
|
|
|
|
// SAFETY:
|
|
// - `ptr` is valid because it's either `None` or comes from a previous call to
|
|
// `A::realloc`.
|
|
// - `self.layout` matches the `ArrayLayout` of the preceding allocation.
|
|
let ptr = unsafe {
|
|
A::realloc(
|
|
Some(self.ptr.cast()),
|
|
layout.into(),
|
|
self.layout.into(),
|
|
flags,
|
|
)?
|
|
};
|
|
|
|
// INVARIANT:
|
|
// - `layout` is some `ArrayLayout::<T>`,
|
|
// - `ptr` has been created by `A::realloc` from `layout`.
|
|
self.ptr = ptr.cast();
|
|
self.layout = layout;
|
|
|
|
Ok(())
|
|
}
|
|
|
|
/// Shortens the vector, setting the length to `len` and drops the removed values.
|
|
/// If `len` is greater than or equal to the current length, this does nothing.
|
|
///
|
|
/// This has no effect on the capacity and will not allocate.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// let mut v = kernel::kvec![1, 2, 3]?;
|
|
/// v.truncate(1);
|
|
/// assert_eq!(v.len(), 1);
|
|
/// assert_eq!(&v, &[1]);
|
|
///
|
|
/// # Ok::<(), Error>(())
|
|
/// ```
|
|
pub fn truncate(&mut self, len: usize) {
|
|
if let Some(count) = self.len().checked_sub(len) {
|
|
// SAFETY: `count` is `self.len() - len` so it is guaranteed to be less than or
|
|
// equal to `self.len()`.
|
|
let ptr: *mut [T] = unsafe { self.dec_len(count) };
|
|
|
|
// SAFETY: the contract of `dec_len` guarantees that the elements in `ptr` are
|
|
// valid elements whose ownership has been transferred to the caller.
|
|
unsafe { ptr::drop_in_place(ptr) };
|
|
}
|
|
}
|
|
|
|
/// Takes ownership of all items in this vector without consuming the allocation.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// let mut v = kernel::kvec![0, 1, 2, 3]?;
|
|
///
|
|
/// for (i, j) in v.drain_all().enumerate() {
|
|
/// assert_eq!(i, j);
|
|
/// }
|
|
///
|
|
/// assert!(v.capacity() >= 4);
|
|
/// # Ok::<(), Error>(())
|
|
/// ```
|
|
pub fn drain_all(&mut self) -> DrainAll<'_, T> {
|
|
// SAFETY: This does not underflow the length.
|
|
let elems = unsafe { self.dec_len(self.len()) };
|
|
// INVARIANT: The first `len` elements of the spare capacity are valid values, and as we
|
|
// just set the length to zero, we may transfer ownership to the `DrainAll` object.
|
|
DrainAll {
|
|
elements: elems.iter_mut(),
|
|
}
|
|
}
|
|
|
|
/// Removes all elements that don't match the provided closure.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// let mut v = kernel::kvec![1, 2, 3, 4]?;
|
|
/// v.retain(|i| *i % 2 == 0);
|
|
/// assert_eq!(v, [2, 4]);
|
|
/// # Ok::<(), Error>(())
|
|
/// ```
|
|
pub fn retain(&mut self, mut f: impl FnMut(&mut T) -> bool) {
|
|
let mut num_kept = 0;
|
|
let mut next_to_check = 0;
|
|
while let Some(to_check) = self.get_mut(next_to_check) {
|
|
if f(to_check) {
|
|
self.swap(num_kept, next_to_check);
|
|
num_kept += 1;
|
|
}
|
|
next_to_check += 1;
|
|
}
|
|
self.truncate(num_kept);
|
|
}
|
|
}
|
|
|
|
impl<T: Clone, A: Allocator> Vec<T, A> {
|
|
/// Extend the vector by `n` clones of `value`.
|
|
pub fn extend_with(&mut self, n: usize, value: T, flags: Flags) -> Result<(), AllocError> {
|
|
if n == 0 {
|
|
return Ok(());
|
|
}
|
|
|
|
self.reserve(n, flags)?;
|
|
|
|
let spare = self.spare_capacity_mut();
|
|
|
|
for item in spare.iter_mut().take(n - 1) {
|
|
item.write(value.clone());
|
|
}
|
|
|
|
// We can write the last element directly without cloning needlessly.
|
|
spare[n - 1].write(value);
|
|
|
|
// SAFETY:
|
|
// - `self.len() + n < self.capacity()` due to the call to reserve above,
|
|
// - the loop and the line above initialized the next `n` elements.
|
|
unsafe { self.inc_len(n) };
|
|
|
|
Ok(())
|
|
}
|
|
|
|
/// Pushes clones of the elements of slice into the [`Vec`] instance.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// let mut v = KVec::new();
|
|
/// v.push(1, GFP_KERNEL)?;
|
|
///
|
|
/// v.extend_from_slice(&[20, 30, 40], GFP_KERNEL)?;
|
|
/// assert_eq!(&v, &[1, 20, 30, 40]);
|
|
///
|
|
/// v.extend_from_slice(&[50, 60], GFP_KERNEL)?;
|
|
/// assert_eq!(&v, &[1, 20, 30, 40, 50, 60]);
|
|
/// # Ok::<(), Error>(())
|
|
/// ```
|
|
pub fn extend_from_slice(&mut self, other: &[T], flags: Flags) -> Result<(), AllocError> {
|
|
self.reserve(other.len(), flags)?;
|
|
for (slot, item) in core::iter::zip(self.spare_capacity_mut(), other) {
|
|
slot.write(item.clone());
|
|
}
|
|
|
|
// SAFETY:
|
|
// - `other.len()` spare entries have just been initialized, so it is safe to increase
|
|
// the length by the same number.
|
|
// - `self.len() + other.len() <= self.capacity()` is guaranteed by the preceding `reserve`
|
|
// call.
|
|
unsafe { self.inc_len(other.len()) };
|
|
Ok(())
|
|
}
|
|
|
|
/// Create a new `Vec<T, A>` and extend it by `n` clones of `value`.
|
|
pub fn from_elem(value: T, n: usize, flags: Flags) -> Result<Self, AllocError> {
|
|
let mut v = Self::with_capacity(n, flags)?;
|
|
|
|
v.extend_with(n, value, flags)?;
|
|
|
|
Ok(v)
|
|
}
|
|
|
|
/// Resizes the [`Vec`] so that `len` is equal to `new_len`.
|
|
///
|
|
/// If `new_len` is smaller than `len`, the `Vec` is [`Vec::truncate`]d.
|
|
/// If `new_len` is larger, each new slot is filled with clones of `value`.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// let mut v = kernel::kvec![1, 2, 3]?;
|
|
/// v.resize(1, 42, GFP_KERNEL)?;
|
|
/// assert_eq!(&v, &[1]);
|
|
///
|
|
/// v.resize(3, 42, GFP_KERNEL)?;
|
|
/// assert_eq!(&v, &[1, 42, 42]);
|
|
///
|
|
/// # Ok::<(), Error>(())
|
|
/// ```
|
|
pub fn resize(&mut self, new_len: usize, value: T, flags: Flags) -> Result<(), AllocError> {
|
|
match new_len.checked_sub(self.len()) {
|
|
Some(n) => self.extend_with(n, value, flags),
|
|
None => {
|
|
self.truncate(new_len);
|
|
Ok(())
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<T, A> Drop for Vec<T, A>
|
|
where
|
|
A: Allocator,
|
|
{
|
|
fn drop(&mut self) {
|
|
// SAFETY: `self.as_mut_ptr` is guaranteed to be valid by the type invariant.
|
|
unsafe {
|
|
ptr::drop_in_place(core::ptr::slice_from_raw_parts_mut(
|
|
self.as_mut_ptr(),
|
|
self.len,
|
|
))
|
|
};
|
|
|
|
// SAFETY:
|
|
// - `self.ptr` was previously allocated with `A`.
|
|
// - `self.layout` matches the `ArrayLayout` of the preceding allocation.
|
|
unsafe { A::free(self.ptr.cast(), self.layout.into()) };
|
|
}
|
|
}
|
|
|
|
impl<T, A, const N: usize> From<Box<[T; N], A>> for Vec<T, A>
|
|
where
|
|
A: Allocator,
|
|
{
|
|
fn from(b: Box<[T; N], A>) -> Vec<T, A> {
|
|
let len = b.len();
|
|
let ptr = Box::into_raw(b);
|
|
|
|
// SAFETY:
|
|
// - `b` has been allocated with `A`,
|
|
// - `ptr` fulfills the alignment requirements for `T`,
|
|
// - `ptr` points to memory with at least a size of `size_of::<T>() * len`,
|
|
// - all elements within `b` are initialized values of `T`,
|
|
// - `len` does not exceed `isize::MAX`.
|
|
unsafe { Vec::from_raw_parts(ptr.cast(), len, len) }
|
|
}
|
|
}
|
|
|
|
impl<T, A: Allocator> Default for Vec<T, A> {
|
|
#[inline]
|
|
fn default() -> Self {
|
|
Self::new()
|
|
}
|
|
}
|
|
|
|
impl<T: fmt::Debug, A: Allocator> fmt::Debug for Vec<T, A> {
|
|
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
|
|
fmt::Debug::fmt(&**self, f)
|
|
}
|
|
}
|
|
|
|
impl<T, A> Deref for Vec<T, A>
|
|
where
|
|
A: Allocator,
|
|
{
|
|
type Target = [T];
|
|
|
|
#[inline]
|
|
fn deref(&self) -> &[T] {
|
|
// SAFETY: The memory behind `self.as_ptr()` is guaranteed to contain `self.len`
|
|
// initialized elements of type `T`.
|
|
unsafe { slice::from_raw_parts(self.as_ptr(), self.len) }
|
|
}
|
|
}
|
|
|
|
impl<T, A> DerefMut for Vec<T, A>
|
|
where
|
|
A: Allocator,
|
|
{
|
|
#[inline]
|
|
fn deref_mut(&mut self) -> &mut [T] {
|
|
// SAFETY: The memory behind `self.as_ptr()` is guaranteed to contain `self.len`
|
|
// initialized elements of type `T`.
|
|
unsafe { slice::from_raw_parts_mut(self.as_mut_ptr(), self.len) }
|
|
}
|
|
}
|
|
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// # use core::borrow::Borrow;
|
|
/// struct Foo<B: Borrow<[u32]>>(B);
|
|
///
|
|
/// // Owned array.
|
|
/// let owned_array = Foo([1, 2, 3]);
|
|
///
|
|
/// // Owned vector.
|
|
/// let owned_vec = Foo(KVec::from_elem(0, 3, GFP_KERNEL)?);
|
|
///
|
|
/// let arr = [1, 2, 3];
|
|
/// // Borrowed slice from `arr`.
|
|
/// let borrowed_slice = Foo(&arr[..]);
|
|
/// # Ok::<(), Error>(())
|
|
/// ```
|
|
impl<T, A> Borrow<[T]> for Vec<T, A>
|
|
where
|
|
A: Allocator,
|
|
{
|
|
fn borrow(&self) -> &[T] {
|
|
self.as_slice()
|
|
}
|
|
}
|
|
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// # use core::borrow::BorrowMut;
|
|
/// struct Foo<B: BorrowMut<[u32]>>(B);
|
|
///
|
|
/// // Owned array.
|
|
/// let owned_array = Foo([1, 2, 3]);
|
|
///
|
|
/// // Owned vector.
|
|
/// let owned_vec = Foo(KVec::from_elem(0, 3, GFP_KERNEL)?);
|
|
///
|
|
/// let mut arr = [1, 2, 3];
|
|
/// // Borrowed slice from `arr`.
|
|
/// let borrowed_slice = Foo(&mut arr[..]);
|
|
/// # Ok::<(), Error>(())
|
|
/// ```
|
|
impl<T, A> BorrowMut<[T]> for Vec<T, A>
|
|
where
|
|
A: Allocator,
|
|
{
|
|
fn borrow_mut(&mut self) -> &mut [T] {
|
|
self.as_mut_slice()
|
|
}
|
|
}
|
|
|
|
impl<T: Eq, A> Eq for Vec<T, A> where A: Allocator {}
|
|
|
|
impl<T, I: SliceIndex<[T]>, A> Index<I> for Vec<T, A>
|
|
where
|
|
A: Allocator,
|
|
{
|
|
type Output = I::Output;
|
|
|
|
#[inline]
|
|
fn index(&self, index: I) -> &Self::Output {
|
|
Index::index(&**self, index)
|
|
}
|
|
}
|
|
|
|
impl<T, I: SliceIndex<[T]>, A> IndexMut<I> for Vec<T, A>
|
|
where
|
|
A: Allocator,
|
|
{
|
|
#[inline]
|
|
fn index_mut(&mut self, index: I) -> &mut Self::Output {
|
|
IndexMut::index_mut(&mut **self, index)
|
|
}
|
|
}
|
|
|
|
macro_rules! impl_slice_eq {
|
|
($([$($vars:tt)*] $lhs:ty, $rhs:ty,)*) => {
|
|
$(
|
|
impl<T, U, $($vars)*> PartialEq<$rhs> for $lhs
|
|
where
|
|
T: PartialEq<U>,
|
|
{
|
|
#[inline]
|
|
fn eq(&self, other: &$rhs) -> bool { self[..] == other[..] }
|
|
}
|
|
)*
|
|
}
|
|
}
|
|
|
|
impl_slice_eq! {
|
|
[A1: Allocator, A2: Allocator] Vec<T, A1>, Vec<U, A2>,
|
|
[A: Allocator] Vec<T, A>, &[U],
|
|
[A: Allocator] Vec<T, A>, &mut [U],
|
|
[A: Allocator] &[T], Vec<U, A>,
|
|
[A: Allocator] &mut [T], Vec<U, A>,
|
|
[A: Allocator] Vec<T, A>, [U],
|
|
[A: Allocator] [T], Vec<U, A>,
|
|
[A: Allocator, const N: usize] Vec<T, A>, [U; N],
|
|
[A: Allocator, const N: usize] Vec<T, A>, &[U; N],
|
|
}
|
|
|
|
impl<'a, T, A> IntoIterator for &'a Vec<T, A>
|
|
where
|
|
A: Allocator,
|
|
{
|
|
type Item = &'a T;
|
|
type IntoIter = slice::Iter<'a, T>;
|
|
|
|
fn into_iter(self) -> Self::IntoIter {
|
|
self.iter()
|
|
}
|
|
}
|
|
|
|
impl<'a, T, A: Allocator> IntoIterator for &'a mut Vec<T, A>
|
|
where
|
|
A: Allocator,
|
|
{
|
|
type Item = &'a mut T;
|
|
type IntoIter = slice::IterMut<'a, T>;
|
|
|
|
fn into_iter(self) -> Self::IntoIter {
|
|
self.iter_mut()
|
|
}
|
|
}
|
|
|
|
/// An [`Iterator`] implementation for [`Vec`] that moves elements out of a vector.
|
|
///
|
|
/// This structure is created by the [`Vec::into_iter`] method on [`Vec`] (provided by the
|
|
/// [`IntoIterator`] trait).
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// let v = kernel::kvec![0, 1, 2]?;
|
|
/// let iter = v.into_iter();
|
|
///
|
|
/// # Ok::<(), Error>(())
|
|
/// ```
|
|
pub struct IntoIter<T, A: Allocator> {
|
|
ptr: *mut T,
|
|
buf: NonNull<T>,
|
|
len: usize,
|
|
layout: ArrayLayout<T>,
|
|
_p: PhantomData<A>,
|
|
}
|
|
|
|
impl<T, A> IntoIter<T, A>
|
|
where
|
|
A: Allocator,
|
|
{
|
|
fn into_raw_parts(self) -> (*mut T, NonNull<T>, usize, usize) {
|
|
let me = ManuallyDrop::new(self);
|
|
let ptr = me.ptr;
|
|
let buf = me.buf;
|
|
let len = me.len;
|
|
let cap = me.layout.len();
|
|
(ptr, buf, len, cap)
|
|
}
|
|
|
|
/// Same as `Iterator::collect` but specialized for `Vec`'s `IntoIter`.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// let v = kernel::kvec![1, 2, 3]?;
|
|
/// let mut it = v.into_iter();
|
|
///
|
|
/// assert_eq!(it.next(), Some(1));
|
|
///
|
|
/// let v = it.collect(GFP_KERNEL);
|
|
/// assert_eq!(v, [2, 3]);
|
|
///
|
|
/// # Ok::<(), Error>(())
|
|
/// ```
|
|
///
|
|
/// # Implementation details
|
|
///
|
|
/// Currently, we can't implement `FromIterator`. There are a couple of issues with this trait
|
|
/// in the kernel, namely:
|
|
///
|
|
/// - Rust's specialization feature is unstable. This prevents us to optimize for the special
|
|
/// case where `I::IntoIter` equals `Vec`'s `IntoIter` type.
|
|
/// - We also can't use `I::IntoIter`'s type ID either to work around this, since `FromIterator`
|
|
/// doesn't require this type to be `'static`.
|
|
/// - `FromIterator::from_iter` does return `Self` instead of `Result<Self, AllocError>`, hence
|
|
/// we can't properly handle allocation failures.
|
|
/// - Neither `Iterator::collect` nor `FromIterator::from_iter` can handle additional allocation
|
|
/// flags.
|
|
///
|
|
/// Instead, provide `IntoIter::collect`, such that we can at least convert a `IntoIter` into a
|
|
/// `Vec` again.
|
|
///
|
|
/// Note that `IntoIter::collect` doesn't require `Flags`, since it re-uses the existing backing
|
|
/// buffer. However, this backing buffer may be shrunk to the actual count of elements.
|
|
pub fn collect(self, flags: Flags) -> Vec<T, A> {
|
|
let old_layout = self.layout;
|
|
let (mut ptr, buf, len, mut cap) = self.into_raw_parts();
|
|
let has_advanced = ptr != buf.as_ptr();
|
|
|
|
if has_advanced {
|
|
// Copy the contents we have advanced to at the beginning of the buffer.
|
|
//
|
|
// SAFETY:
|
|
// - `ptr` is valid for reads of `len * size_of::<T>()` bytes,
|
|
// - `buf.as_ptr()` is valid for writes of `len * size_of::<T>()` bytes,
|
|
// - `ptr` and `buf.as_ptr()` are not be subject to aliasing restrictions relative to
|
|
// each other,
|
|
// - both `ptr` and `buf.ptr()` are properly aligned.
|
|
unsafe { ptr::copy(ptr, buf.as_ptr(), len) };
|
|
ptr = buf.as_ptr();
|
|
|
|
// SAFETY: `len` is guaranteed to be smaller than `self.layout.len()` by the type
|
|
// invariant.
|
|
let layout = unsafe { ArrayLayout::<T>::new_unchecked(len) };
|
|
|
|
// SAFETY: `buf` points to the start of the backing buffer and `len` is guaranteed by
|
|
// the type invariant to be smaller than `cap`. Depending on `realloc` this operation
|
|
// may shrink the buffer or leave it as it is.
|
|
ptr = match unsafe {
|
|
A::realloc(Some(buf.cast()), layout.into(), old_layout.into(), flags)
|
|
} {
|
|
// If we fail to shrink, which likely can't even happen, continue with the existing
|
|
// buffer.
|
|
Err(_) => ptr,
|
|
Ok(ptr) => {
|
|
cap = len;
|
|
ptr.as_ptr().cast()
|
|
}
|
|
};
|
|
}
|
|
|
|
// SAFETY: If the iterator has been advanced, the advanced elements have been copied to
|
|
// the beginning of the buffer and `len` has been adjusted accordingly.
|
|
//
|
|
// - `ptr` is guaranteed to point to the start of the backing buffer.
|
|
// - `cap` is either the original capacity or, after shrinking the buffer, equal to `len`.
|
|
// - `alloc` is guaranteed to be unchanged since `into_iter` has been called on the original
|
|
// `Vec`.
|
|
unsafe { Vec::from_raw_parts(ptr, len, cap) }
|
|
}
|
|
}
|
|
|
|
impl<T, A> Iterator for IntoIter<T, A>
|
|
where
|
|
A: Allocator,
|
|
{
|
|
type Item = T;
|
|
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// let v = kernel::kvec![1, 2, 3]?;
|
|
/// let mut it = v.into_iter();
|
|
///
|
|
/// assert_eq!(it.next(), Some(1));
|
|
/// assert_eq!(it.next(), Some(2));
|
|
/// assert_eq!(it.next(), Some(3));
|
|
/// assert_eq!(it.next(), None);
|
|
///
|
|
/// # Ok::<(), Error>(())
|
|
/// ```
|
|
fn next(&mut self) -> Option<T> {
|
|
if self.len == 0 {
|
|
return None;
|
|
}
|
|
|
|
let current = self.ptr;
|
|
|
|
// SAFETY: We can't overflow; decreasing `self.len` by one every time we advance `self.ptr`
|
|
// by one guarantees that.
|
|
unsafe { self.ptr = self.ptr.add(1) };
|
|
|
|
self.len -= 1;
|
|
|
|
// SAFETY: `current` is guaranteed to point at a valid element within the buffer.
|
|
Some(unsafe { current.read() })
|
|
}
|
|
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// let v: KVec<u32> = kernel::kvec![1, 2, 3]?;
|
|
/// let mut iter = v.into_iter();
|
|
/// let size = iter.size_hint().0;
|
|
///
|
|
/// iter.next();
|
|
/// assert_eq!(iter.size_hint().0, size - 1);
|
|
///
|
|
/// iter.next();
|
|
/// assert_eq!(iter.size_hint().0, size - 2);
|
|
///
|
|
/// iter.next();
|
|
/// assert_eq!(iter.size_hint().0, size - 3);
|
|
///
|
|
/// # Ok::<(), Error>(())
|
|
/// ```
|
|
fn size_hint(&self) -> (usize, Option<usize>) {
|
|
(self.len, Some(self.len))
|
|
}
|
|
}
|
|
|
|
impl<T, A> Drop for IntoIter<T, A>
|
|
where
|
|
A: Allocator,
|
|
{
|
|
fn drop(&mut self) {
|
|
// SAFETY: `self.ptr` is guaranteed to be valid by the type invariant.
|
|
unsafe { ptr::drop_in_place(ptr::slice_from_raw_parts_mut(self.ptr, self.len)) };
|
|
|
|
// SAFETY:
|
|
// - `self.buf` was previously allocated with `A`.
|
|
// - `self.layout` matches the `ArrayLayout` of the preceding allocation.
|
|
unsafe { A::free(self.buf.cast(), self.layout.into()) };
|
|
}
|
|
}
|
|
|
|
impl<T, A> IntoIterator for Vec<T, A>
|
|
where
|
|
A: Allocator,
|
|
{
|
|
type Item = T;
|
|
type IntoIter = IntoIter<T, A>;
|
|
|
|
/// Consumes the `Vec<T, A>` and creates an `Iterator`, which moves each value out of the
|
|
/// vector (from start to end).
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// let v = kernel::kvec![1, 2]?;
|
|
/// let mut v_iter = v.into_iter();
|
|
///
|
|
/// let first_element: Option<u32> = v_iter.next();
|
|
///
|
|
/// assert_eq!(first_element, Some(1));
|
|
/// assert_eq!(v_iter.next(), Some(2));
|
|
/// assert_eq!(v_iter.next(), None);
|
|
///
|
|
/// # Ok::<(), Error>(())
|
|
/// ```
|
|
///
|
|
/// ```
|
|
/// let v = kernel::kvec![];
|
|
/// let mut v_iter = v.into_iter();
|
|
///
|
|
/// let first_element: Option<u32> = v_iter.next();
|
|
///
|
|
/// assert_eq!(first_element, None);
|
|
///
|
|
/// # Ok::<(), Error>(())
|
|
/// ```
|
|
#[inline]
|
|
fn into_iter(self) -> Self::IntoIter {
|
|
let buf = self.ptr;
|
|
let layout = self.layout;
|
|
let (ptr, len, _) = self.into_raw_parts();
|
|
|
|
IntoIter {
|
|
ptr,
|
|
buf,
|
|
len,
|
|
layout,
|
|
_p: PhantomData::<A>,
|
|
}
|
|
}
|
|
}
|
|
|
|
/// An iterator that owns all items in a vector, but does not own its allocation.
|
|
///
|
|
/// # Invariants
|
|
///
|
|
/// Every `&mut T` returned by the iterator references a `T` that the iterator may take ownership
|
|
/// of.
|
|
pub struct DrainAll<'vec, T> {
|
|
elements: slice::IterMut<'vec, T>,
|
|
}
|
|
|
|
impl<'vec, T> Iterator for DrainAll<'vec, T> {
|
|
type Item = T;
|
|
|
|
fn next(&mut self) -> Option<T> {
|
|
let elem: *mut T = self.elements.next()?;
|
|
// SAFETY: By the type invariants, we may take ownership of this value.
|
|
Some(unsafe { elem.read() })
|
|
}
|
|
|
|
fn size_hint(&self) -> (usize, Option<usize>) {
|
|
self.elements.size_hint()
|
|
}
|
|
}
|
|
|
|
impl<'vec, T> Drop for DrainAll<'vec, T> {
|
|
fn drop(&mut self) {
|
|
if core::mem::needs_drop::<T>() {
|
|
let iter = core::mem::take(&mut self.elements);
|
|
let ptr: *mut [T] = iter.into_slice();
|
|
// SAFETY: By the type invariants, we own these values so we may destroy them.
|
|
unsafe { ptr::drop_in_place(ptr) };
|
|
}
|
|
}
|
|
}
|
|
|
|
#[macros::kunit_tests(rust_kvec_kunit)]
|
|
mod tests {
|
|
use super::*;
|
|
use crate::prelude::*;
|
|
|
|
#[test]
|
|
fn test_kvec_retain() {
|
|
/// Verify correctness for one specific function.
|
|
#[expect(clippy::needless_range_loop)]
|
|
fn verify(c: &[bool]) {
|
|
let mut vec1: KVec<usize> = KVec::with_capacity(c.len(), GFP_KERNEL).unwrap();
|
|
let mut vec2: KVec<usize> = KVec::with_capacity(c.len(), GFP_KERNEL).unwrap();
|
|
|
|
for i in 0..c.len() {
|
|
vec1.push_within_capacity(i).unwrap();
|
|
if c[i] {
|
|
vec2.push_within_capacity(i).unwrap();
|
|
}
|
|
}
|
|
|
|
vec1.retain(|i| c[*i]);
|
|
|
|
assert_eq!(vec1, vec2);
|
|
}
|
|
|
|
/// Add one to a binary integer represented as a boolean array.
|
|
fn add(value: &mut [bool]) {
|
|
let mut carry = true;
|
|
for v in value {
|
|
let new_v = carry != *v;
|
|
carry = carry && *v;
|
|
*v = new_v;
|
|
}
|
|
}
|
|
|
|
// This boolean array represents a function from index to boolean. We check that `retain`
|
|
// behaves correctly for all possible boolean arrays of every possible length less than
|
|
// ten.
|
|
let mut func = KVec::with_capacity(10, GFP_KERNEL).unwrap();
|
|
for len in 0..10 {
|
|
for _ in 0u32..1u32 << len {
|
|
verify(&func);
|
|
add(&mut func);
|
|
}
|
|
func.push_within_capacity(false).unwrap();
|
|
}
|
|
}
|
|
}
|