linux/net/sunrpc/xprtrdma/svc_rdma_transport.c
Chuck Lever 5924331589 svcrdma: Reduce the number of rdma_rw contexts per-QP
There is an upper bound on the number of rdma_rw contexts that can
be created per QP.

This invisible upper bound is because rdma_create_qp() adds one or
more additional SQEs for each ctxt that the ULP requests via
qp_attr.cap.max_rdma_ctxs. The QP's actual Send Queue length is on
the order of the sum of qp_attr.cap.max_send_wr and a factor times
qp_attr.cap.max_rdma_ctxs. The factor can be up to three, depending
on whether MR operations are required before RDMA Reads.

This limit is not visible to RDMA consumers via dev->attrs. When the
limit is surpassed, QP creation fails with -ENOMEM. For example:

svcrdma's estimate of the number of rdma_rw contexts it needs is
three times the number of pages in RPCSVC_MAXPAGES. When MAXPAGES
is about 260, the internally-computed SQ length should be:

64 credits + 10 backlog + 3 * (3 * 260) = 2414

Which is well below the advertised qp_max_wr of 32768.

If RPCSVC_MAXPAGES is increased to 4MB, that's 1040 pages:

64 credits + 10 backlog + 3 * (3 * 1040) = 9434

However, QP creation fails. Dynamic printk for mlx5 shows:

calc_sq_size:618:(pid 1514): send queue size (9326 * 256 / 64 -> 65536) exceeds limits(32768)

Although 9326 is still far below qp_max_wr, QP creation still
fails.

Because the total SQ length calculation is opaque to RDMA consumers,
there doesn't seem to be much that can be done about this except for
consumers to try to keep the requested rdma_rw ctxt count low.

Fixes: 2da0f610e7 ("svcrdma: Increase the per-transport rw_ctx count")
Reviewed-by: NeilBrown <neil@brown.name>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
2025-05-15 16:16:21 -04:00

659 lines
21 KiB
C

// SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
/*
* Copyright (c) 2015-2018 Oracle. All rights reserved.
* Copyright (c) 2014 Open Grid Computing, Inc. All rights reserved.
* Copyright (c) 2005-2007 Network Appliance, Inc. All rights reserved.
*
* This software is available to you under a choice of one of two
* licenses. You may choose to be licensed under the terms of the GNU
* General Public License (GPL) Version 2, available from the file
* COPYING in the main directory of this source tree, or the BSD-type
* license below:
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
*
* Neither the name of the Network Appliance, Inc. nor the names of
* its contributors may be used to endorse or promote products
* derived from this software without specific prior written
* permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Author: Tom Tucker <tom@opengridcomputing.com>
*/
#include <linux/interrupt.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/workqueue.h>
#include <linux/export.h>
#include <rdma/ib_verbs.h>
#include <rdma/rdma_cm.h>
#include <rdma/rw.h>
#include <linux/sunrpc/addr.h>
#include <linux/sunrpc/debug.h>
#include <linux/sunrpc/svc_xprt.h>
#include <linux/sunrpc/svc_rdma.h>
#include "xprt_rdma.h"
#include <trace/events/rpcrdma.h>
#define RPCDBG_FACILITY RPCDBG_SVCXPRT
static struct svcxprt_rdma *svc_rdma_create_xprt(struct svc_serv *serv,
struct net *net, int node);
static int svc_rdma_listen_handler(struct rdma_cm_id *cma_id,
struct rdma_cm_event *event);
static struct svc_xprt *svc_rdma_create(struct svc_serv *serv,
struct net *net,
struct sockaddr *sa, int salen,
int flags);
static struct svc_xprt *svc_rdma_accept(struct svc_xprt *xprt);
static void svc_rdma_detach(struct svc_xprt *xprt);
static void svc_rdma_free(struct svc_xprt *xprt);
static int svc_rdma_has_wspace(struct svc_xprt *xprt);
static void svc_rdma_kill_temp_xprt(struct svc_xprt *);
static const struct svc_xprt_ops svc_rdma_ops = {
.xpo_create = svc_rdma_create,
.xpo_recvfrom = svc_rdma_recvfrom,
.xpo_sendto = svc_rdma_sendto,
.xpo_result_payload = svc_rdma_result_payload,
.xpo_release_ctxt = svc_rdma_release_ctxt,
.xpo_detach = svc_rdma_detach,
.xpo_free = svc_rdma_free,
.xpo_has_wspace = svc_rdma_has_wspace,
.xpo_accept = svc_rdma_accept,
.xpo_kill_temp_xprt = svc_rdma_kill_temp_xprt,
};
struct svc_xprt_class svc_rdma_class = {
.xcl_name = "rdma",
.xcl_owner = THIS_MODULE,
.xcl_ops = &svc_rdma_ops,
.xcl_max_payload = RPCSVC_MAXPAYLOAD_RDMA,
.xcl_ident = XPRT_TRANSPORT_RDMA,
};
/* QP event handler */
static void qp_event_handler(struct ib_event *event, void *context)
{
struct svc_xprt *xprt = context;
trace_svcrdma_qp_error(event, (struct sockaddr *)&xprt->xpt_remote);
switch (event->event) {
/* These are considered benign events */
case IB_EVENT_PATH_MIG:
case IB_EVENT_COMM_EST:
case IB_EVENT_SQ_DRAINED:
case IB_EVENT_QP_LAST_WQE_REACHED:
break;
/* These are considered fatal events */
case IB_EVENT_PATH_MIG_ERR:
case IB_EVENT_QP_FATAL:
case IB_EVENT_QP_REQ_ERR:
case IB_EVENT_QP_ACCESS_ERR:
case IB_EVENT_DEVICE_FATAL:
default:
svc_xprt_deferred_close(xprt);
break;
}
}
static struct rdma_cm_id *
svc_rdma_create_listen_id(struct net *net, struct sockaddr *sap,
void *context)
{
struct rdma_cm_id *listen_id;
int ret;
listen_id = rdma_create_id(net, svc_rdma_listen_handler, context,
RDMA_PS_TCP, IB_QPT_RC);
if (IS_ERR(listen_id))
return listen_id;
/* Allow both IPv4 and IPv6 sockets to bind a single port
* at the same time.
*/
#if IS_ENABLED(CONFIG_IPV6)
ret = rdma_set_afonly(listen_id, 1);
if (ret)
goto out_destroy;
#endif
ret = rdma_bind_addr(listen_id, sap);
if (ret)
goto out_destroy;
ret = rdma_listen(listen_id, RPCRDMA_LISTEN_BACKLOG);
if (ret)
goto out_destroy;
return listen_id;
out_destroy:
rdma_destroy_id(listen_id);
return ERR_PTR(ret);
}
static struct svcxprt_rdma *svc_rdma_create_xprt(struct svc_serv *serv,
struct net *net, int node)
{
static struct lock_class_key svcrdma_rwctx_lock;
static struct lock_class_key svcrdma_sctx_lock;
static struct lock_class_key svcrdma_dto_lock;
struct svcxprt_rdma *cma_xprt;
cma_xprt = kzalloc_node(sizeof(*cma_xprt), GFP_KERNEL, node);
if (!cma_xprt)
return NULL;
svc_xprt_init(net, &svc_rdma_class, &cma_xprt->sc_xprt, serv);
INIT_LIST_HEAD(&cma_xprt->sc_accept_q);
INIT_LIST_HEAD(&cma_xprt->sc_rq_dto_q);
INIT_LIST_HEAD(&cma_xprt->sc_read_complete_q);
init_llist_head(&cma_xprt->sc_send_ctxts);
init_llist_head(&cma_xprt->sc_recv_ctxts);
init_llist_head(&cma_xprt->sc_rw_ctxts);
init_waitqueue_head(&cma_xprt->sc_send_wait);
spin_lock_init(&cma_xprt->sc_lock);
spin_lock_init(&cma_xprt->sc_rq_dto_lock);
lockdep_set_class(&cma_xprt->sc_rq_dto_lock, &svcrdma_dto_lock);
spin_lock_init(&cma_xprt->sc_send_lock);
lockdep_set_class(&cma_xprt->sc_send_lock, &svcrdma_sctx_lock);
spin_lock_init(&cma_xprt->sc_rw_ctxt_lock);
lockdep_set_class(&cma_xprt->sc_rw_ctxt_lock, &svcrdma_rwctx_lock);
/*
* Note that this implies that the underlying transport support
* has some form of congestion control (see RFC 7530 section 3.1
* paragraph 2). For now, we assume that all supported RDMA
* transports are suitable here.
*/
set_bit(XPT_CONG_CTRL, &cma_xprt->sc_xprt.xpt_flags);
return cma_xprt;
}
static void
svc_rdma_parse_connect_private(struct svcxprt_rdma *newxprt,
struct rdma_conn_param *param)
{
const struct rpcrdma_connect_private *pmsg = param->private_data;
if (pmsg &&
pmsg->cp_magic == rpcrdma_cmp_magic &&
pmsg->cp_version == RPCRDMA_CMP_VERSION) {
newxprt->sc_snd_w_inv = pmsg->cp_flags &
RPCRDMA_CMP_F_SND_W_INV_OK;
dprintk("svcrdma: client send_size %u, recv_size %u "
"remote inv %ssupported\n",
rpcrdma_decode_buffer_size(pmsg->cp_send_size),
rpcrdma_decode_buffer_size(pmsg->cp_recv_size),
newxprt->sc_snd_w_inv ? "" : "un");
}
}
/*
* This function handles the CONNECT_REQUEST event on a listening
* endpoint. It is passed the cma_id for the _new_ connection. The context in
* this cma_id is inherited from the listening cma_id and is the svc_xprt
* structure for the listening endpoint.
*
* This function creates a new xprt for the new connection and enqueues it on
* the accept queue for the listent xprt. When the listen thread is kicked, it
* will call the recvfrom method on the listen xprt which will accept the new
* connection.
*/
static void handle_connect_req(struct rdma_cm_id *new_cma_id,
struct rdma_conn_param *param)
{
struct svcxprt_rdma *listen_xprt = new_cma_id->context;
struct svcxprt_rdma *newxprt;
struct sockaddr *sa;
newxprt = svc_rdma_create_xprt(listen_xprt->sc_xprt.xpt_server,
listen_xprt->sc_xprt.xpt_net,
ibdev_to_node(new_cma_id->device));
if (!newxprt)
return;
newxprt->sc_cm_id = new_cma_id;
new_cma_id->context = newxprt;
svc_rdma_parse_connect_private(newxprt, param);
/* Save client advertised inbound read limit for use later in accept. */
newxprt->sc_ord = param->initiator_depth;
sa = (struct sockaddr *)&newxprt->sc_cm_id->route.addr.dst_addr;
newxprt->sc_xprt.xpt_remotelen = svc_addr_len(sa);
memcpy(&newxprt->sc_xprt.xpt_remote, sa,
newxprt->sc_xprt.xpt_remotelen);
snprintf(newxprt->sc_xprt.xpt_remotebuf,
sizeof(newxprt->sc_xprt.xpt_remotebuf) - 1, "%pISc", sa);
/* The remote port is arbitrary and not under the control of the
* client ULP. Set it to a fixed value so that the DRC continues
* to be effective after a reconnect.
*/
rpc_set_port((struct sockaddr *)&newxprt->sc_xprt.xpt_remote, 0);
sa = (struct sockaddr *)&newxprt->sc_cm_id->route.addr.src_addr;
svc_xprt_set_local(&newxprt->sc_xprt, sa, svc_addr_len(sa));
/*
* Enqueue the new transport on the accept queue of the listening
* transport
*/
spin_lock(&listen_xprt->sc_lock);
list_add_tail(&newxprt->sc_accept_q, &listen_xprt->sc_accept_q);
spin_unlock(&listen_xprt->sc_lock);
set_bit(XPT_CONN, &listen_xprt->sc_xprt.xpt_flags);
svc_xprt_enqueue(&listen_xprt->sc_xprt);
}
/**
* svc_rdma_listen_handler - Handle CM events generated on a listening endpoint
* @cma_id: the server's listener rdma_cm_id
* @event: details of the event
*
* Return values:
* %0: Do not destroy @cma_id
* %1: Destroy @cma_id
*
* NB: There is never a DEVICE_REMOVAL event for INADDR_ANY listeners.
*/
static int svc_rdma_listen_handler(struct rdma_cm_id *cma_id,
struct rdma_cm_event *event)
{
struct sockaddr *sap = (struct sockaddr *)&cma_id->route.addr.src_addr;
struct svcxprt_rdma *cma_xprt = cma_id->context;
struct svc_xprt *cma_rdma = &cma_xprt->sc_xprt;
struct rdma_cm_id *listen_id;
switch (event->event) {
case RDMA_CM_EVENT_CONNECT_REQUEST:
handle_connect_req(cma_id, &event->param.conn);
break;
case RDMA_CM_EVENT_ADDR_CHANGE:
listen_id = svc_rdma_create_listen_id(cma_rdma->xpt_net,
sap, cma_xprt);
if (IS_ERR(listen_id)) {
pr_err("Listener dead, address change failed for device %s\n",
cma_id->device->name);
} else
cma_xprt->sc_cm_id = listen_id;
return 1;
default:
break;
}
return 0;
}
/**
* svc_rdma_cma_handler - Handle CM events on client connections
* @cma_id: the server's listener rdma_cm_id
* @event: details of the event
*
* Return values:
* %0: Do not destroy @cma_id
* %1: Destroy @cma_id (never returned here)
*/
static int svc_rdma_cma_handler(struct rdma_cm_id *cma_id,
struct rdma_cm_event *event)
{
struct svcxprt_rdma *rdma = cma_id->context;
struct svc_xprt *xprt = &rdma->sc_xprt;
switch (event->event) {
case RDMA_CM_EVENT_ESTABLISHED:
clear_bit(RDMAXPRT_CONN_PENDING, &rdma->sc_flags);
/* Handle any requests that were received while
* CONN_PENDING was set. */
svc_xprt_enqueue(xprt);
break;
case RDMA_CM_EVENT_DISCONNECTED:
svc_xprt_deferred_close(xprt);
break;
default:
break;
}
return 0;
}
/*
* Create a listening RDMA service endpoint.
*/
static struct svc_xprt *svc_rdma_create(struct svc_serv *serv,
struct net *net,
struct sockaddr *sa, int salen,
int flags)
{
struct rdma_cm_id *listen_id;
struct svcxprt_rdma *cma_xprt;
if (sa->sa_family != AF_INET && sa->sa_family != AF_INET6)
return ERR_PTR(-EAFNOSUPPORT);
cma_xprt = svc_rdma_create_xprt(serv, net, NUMA_NO_NODE);
if (!cma_xprt)
return ERR_PTR(-ENOMEM);
set_bit(XPT_LISTENER, &cma_xprt->sc_xprt.xpt_flags);
strcpy(cma_xprt->sc_xprt.xpt_remotebuf, "listener");
listen_id = svc_rdma_create_listen_id(net, sa, cma_xprt);
if (IS_ERR(listen_id)) {
kfree(cma_xprt);
return ERR_CAST(listen_id);
}
cma_xprt->sc_cm_id = listen_id;
/*
* We need to use the address from the cm_id in case the
* caller specified 0 for the port number.
*/
sa = (struct sockaddr *)&cma_xprt->sc_cm_id->route.addr.src_addr;
svc_xprt_set_local(&cma_xprt->sc_xprt, sa, salen);
return &cma_xprt->sc_xprt;
}
static void svc_rdma_xprt_done(struct rpcrdma_notification *rn)
{
struct svcxprt_rdma *rdma = container_of(rn, struct svcxprt_rdma,
sc_rn);
struct rdma_cm_id *id = rdma->sc_cm_id;
trace_svcrdma_device_removal(id);
svc_xprt_close(&rdma->sc_xprt);
}
/*
* This is the xpo_recvfrom function for listening endpoints. Its
* purpose is to accept incoming connections. The CMA callback handler
* has already created a new transport and attached it to the new CMA
* ID.
*
* There is a queue of pending connections hung on the listening
* transport. This queue contains the new svc_xprt structure. This
* function takes svc_xprt structures off the accept_q and completes
* the connection.
*/
static struct svc_xprt *svc_rdma_accept(struct svc_xprt *xprt)
{
unsigned int ctxts, rq_depth, maxpayload;
struct svcxprt_rdma *listen_rdma;
struct svcxprt_rdma *newxprt = NULL;
struct rdma_conn_param conn_param;
struct rpcrdma_connect_private pmsg;
struct ib_qp_init_attr qp_attr;
struct ib_device *dev;
int ret = 0;
RPC_IFDEBUG(struct sockaddr *sap);
listen_rdma = container_of(xprt, struct svcxprt_rdma, sc_xprt);
clear_bit(XPT_CONN, &xprt->xpt_flags);
/* Get the next entry off the accept list */
spin_lock(&listen_rdma->sc_lock);
if (!list_empty(&listen_rdma->sc_accept_q)) {
newxprt = list_entry(listen_rdma->sc_accept_q.next,
struct svcxprt_rdma, sc_accept_q);
list_del_init(&newxprt->sc_accept_q);
}
if (!list_empty(&listen_rdma->sc_accept_q))
set_bit(XPT_CONN, &listen_rdma->sc_xprt.xpt_flags);
spin_unlock(&listen_rdma->sc_lock);
if (!newxprt)
return NULL;
dev = newxprt->sc_cm_id->device;
newxprt->sc_port_num = newxprt->sc_cm_id->port_num;
if (rpcrdma_rn_register(dev, &newxprt->sc_rn, svc_rdma_xprt_done))
goto errout;
newxprt->sc_max_req_size = svcrdma_max_req_size;
newxprt->sc_max_requests = svcrdma_max_requests;
newxprt->sc_max_bc_requests = svcrdma_max_bc_requests;
newxprt->sc_recv_batch = RPCRDMA_MAX_RECV_BATCH;
newxprt->sc_fc_credits = cpu_to_be32(newxprt->sc_max_requests);
/* Qualify the transport's resource defaults with the
* capabilities of this particular device.
*/
/* Transport header, head iovec, tail iovec */
newxprt->sc_max_send_sges = 3;
/* Add one SGE per page list entry */
newxprt->sc_max_send_sges += (svcrdma_max_req_size / PAGE_SIZE) + 1;
if (newxprt->sc_max_send_sges > dev->attrs.max_send_sge)
newxprt->sc_max_send_sges = dev->attrs.max_send_sge;
rq_depth = newxprt->sc_max_requests + newxprt->sc_max_bc_requests +
newxprt->sc_recv_batch + 1 /* drain */;
if (rq_depth > dev->attrs.max_qp_wr) {
rq_depth = dev->attrs.max_qp_wr;
newxprt->sc_recv_batch = 1;
newxprt->sc_max_requests = rq_depth - 2;
newxprt->sc_max_bc_requests = 2;
}
/* Arbitrary estimate of the needed number of rdma_rw contexts.
*/
maxpayload = min(xprt->xpt_server->sv_max_payload,
RPCSVC_MAXPAYLOAD_RDMA);
ctxts = newxprt->sc_max_requests * 3 *
rdma_rw_mr_factor(dev, newxprt->sc_port_num,
maxpayload >> PAGE_SHIFT);
newxprt->sc_sq_depth = rq_depth + ctxts;
if (newxprt->sc_sq_depth > dev->attrs.max_qp_wr)
newxprt->sc_sq_depth = dev->attrs.max_qp_wr;
atomic_set(&newxprt->sc_sq_avail, newxprt->sc_sq_depth);
newxprt->sc_pd = ib_alloc_pd(dev, 0);
if (IS_ERR(newxprt->sc_pd)) {
trace_svcrdma_pd_err(newxprt, PTR_ERR(newxprt->sc_pd));
goto errout;
}
newxprt->sc_sq_cq = ib_alloc_cq_any(dev, newxprt, newxprt->sc_sq_depth,
IB_POLL_WORKQUEUE);
if (IS_ERR(newxprt->sc_sq_cq))
goto errout;
newxprt->sc_rq_cq =
ib_alloc_cq_any(dev, newxprt, rq_depth, IB_POLL_WORKQUEUE);
if (IS_ERR(newxprt->sc_rq_cq))
goto errout;
memset(&qp_attr, 0, sizeof qp_attr);
qp_attr.event_handler = qp_event_handler;
qp_attr.qp_context = &newxprt->sc_xprt;
qp_attr.port_num = newxprt->sc_port_num;
qp_attr.cap.max_rdma_ctxs = ctxts;
qp_attr.cap.max_send_wr = newxprt->sc_sq_depth - ctxts;
qp_attr.cap.max_recv_wr = rq_depth;
qp_attr.cap.max_send_sge = newxprt->sc_max_send_sges;
qp_attr.cap.max_recv_sge = 1;
qp_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
qp_attr.qp_type = IB_QPT_RC;
qp_attr.send_cq = newxprt->sc_sq_cq;
qp_attr.recv_cq = newxprt->sc_rq_cq;
dprintk(" cap.max_send_wr = %d, cap.max_recv_wr = %d\n",
qp_attr.cap.max_send_wr, qp_attr.cap.max_recv_wr);
dprintk(" cap.max_send_sge = %d, cap.max_recv_sge = %d\n",
qp_attr.cap.max_send_sge, qp_attr.cap.max_recv_sge);
dprintk(" send CQ depth = %u, recv CQ depth = %u\n",
newxprt->sc_sq_depth, rq_depth);
ret = rdma_create_qp(newxprt->sc_cm_id, newxprt->sc_pd, &qp_attr);
if (ret) {
trace_svcrdma_qp_err(newxprt, ret);
goto errout;
}
newxprt->sc_max_send_sges = qp_attr.cap.max_send_sge;
newxprt->sc_qp = newxprt->sc_cm_id->qp;
if (!(dev->attrs.device_cap_flags & IB_DEVICE_MEM_MGT_EXTENSIONS))
newxprt->sc_snd_w_inv = false;
if (!rdma_protocol_iwarp(dev, newxprt->sc_port_num) &&
!rdma_ib_or_roce(dev, newxprt->sc_port_num)) {
trace_svcrdma_fabric_err(newxprt, -EINVAL);
goto errout;
}
if (!svc_rdma_post_recvs(newxprt))
goto errout;
/* Construct RDMA-CM private message */
pmsg.cp_magic = rpcrdma_cmp_magic;
pmsg.cp_version = RPCRDMA_CMP_VERSION;
pmsg.cp_flags = 0;
pmsg.cp_send_size = pmsg.cp_recv_size =
rpcrdma_encode_buffer_size(newxprt->sc_max_req_size);
/* Accept Connection */
set_bit(RDMAXPRT_CONN_PENDING, &newxprt->sc_flags);
memset(&conn_param, 0, sizeof conn_param);
conn_param.responder_resources = 0;
conn_param.initiator_depth = min_t(int, newxprt->sc_ord,
dev->attrs.max_qp_init_rd_atom);
if (!conn_param.initiator_depth) {
ret = -EINVAL;
trace_svcrdma_initdepth_err(newxprt, ret);
goto errout;
}
conn_param.private_data = &pmsg;
conn_param.private_data_len = sizeof(pmsg);
rdma_lock_handler(newxprt->sc_cm_id);
newxprt->sc_cm_id->event_handler = svc_rdma_cma_handler;
ret = rdma_accept(newxprt->sc_cm_id, &conn_param);
rdma_unlock_handler(newxprt->sc_cm_id);
if (ret) {
trace_svcrdma_accept_err(newxprt, ret);
goto errout;
}
#if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
dprintk("svcrdma: new connection accepted on device %s:\n", dev->name);
sap = (struct sockaddr *)&newxprt->sc_cm_id->route.addr.src_addr;
dprintk(" local address : %pIS:%u\n", sap, rpc_get_port(sap));
sap = (struct sockaddr *)&newxprt->sc_cm_id->route.addr.dst_addr;
dprintk(" remote address : %pIS:%u\n", sap, rpc_get_port(sap));
dprintk(" max_sge : %d\n", newxprt->sc_max_send_sges);
dprintk(" sq_depth : %d\n", newxprt->sc_sq_depth);
dprintk(" rdma_rw_ctxs : %d\n", ctxts);
dprintk(" max_requests : %d\n", newxprt->sc_max_requests);
dprintk(" ord : %d\n", conn_param.initiator_depth);
#endif
return &newxprt->sc_xprt;
errout:
/* Take a reference in case the DTO handler runs */
svc_xprt_get(&newxprt->sc_xprt);
if (newxprt->sc_qp && !IS_ERR(newxprt->sc_qp))
ib_destroy_qp(newxprt->sc_qp);
rdma_destroy_id(newxprt->sc_cm_id);
rpcrdma_rn_unregister(dev, &newxprt->sc_rn);
/* This call to put will destroy the transport */
svc_xprt_put(&newxprt->sc_xprt);
return NULL;
}
static void svc_rdma_detach(struct svc_xprt *xprt)
{
struct svcxprt_rdma *rdma =
container_of(xprt, struct svcxprt_rdma, sc_xprt);
rdma_disconnect(rdma->sc_cm_id);
}
static void __svc_rdma_free(struct work_struct *work)
{
struct svcxprt_rdma *rdma =
container_of(work, struct svcxprt_rdma, sc_work);
struct ib_device *device = rdma->sc_cm_id->device;
/* This blocks until the Completion Queues are empty */
if (rdma->sc_qp && !IS_ERR(rdma->sc_qp))
ib_drain_qp(rdma->sc_qp);
flush_workqueue(svcrdma_wq);
svc_rdma_flush_recv_queues(rdma);
svc_rdma_destroy_rw_ctxts(rdma);
svc_rdma_send_ctxts_destroy(rdma);
svc_rdma_recv_ctxts_destroy(rdma);
/* Destroy the QP if present (not a listener) */
if (rdma->sc_qp && !IS_ERR(rdma->sc_qp))
ib_destroy_qp(rdma->sc_qp);
if (rdma->sc_sq_cq && !IS_ERR(rdma->sc_sq_cq))
ib_free_cq(rdma->sc_sq_cq);
if (rdma->sc_rq_cq && !IS_ERR(rdma->sc_rq_cq))
ib_free_cq(rdma->sc_rq_cq);
if (rdma->sc_pd && !IS_ERR(rdma->sc_pd))
ib_dealloc_pd(rdma->sc_pd);
/* Destroy the CM ID */
rdma_destroy_id(rdma->sc_cm_id);
if (!test_bit(XPT_LISTENER, &rdma->sc_xprt.xpt_flags))
rpcrdma_rn_unregister(device, &rdma->sc_rn);
kfree(rdma);
}
static void svc_rdma_free(struct svc_xprt *xprt)
{
struct svcxprt_rdma *rdma =
container_of(xprt, struct svcxprt_rdma, sc_xprt);
INIT_WORK(&rdma->sc_work, __svc_rdma_free);
schedule_work(&rdma->sc_work);
}
static int svc_rdma_has_wspace(struct svc_xprt *xprt)
{
struct svcxprt_rdma *rdma =
container_of(xprt, struct svcxprt_rdma, sc_xprt);
/*
* If there are already waiters on the SQ,
* return false.
*/
if (waitqueue_active(&rdma->sc_send_wait))
return 0;
/* Otherwise return true. */
return 1;
}
static void svc_rdma_kill_temp_xprt(struct svc_xprt *xprt)
{
}