mirror of
git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
synced 2025-08-05 16:54:27 +00:00

Patch series "Optimizations for khugepaged", v4. If the underlying folio mapped by the ptes is large, we can process those ptes in a batch using folio_pte_batch(). For arm64 specifically, this results in a 16x reduction in the number of ptep_get() calls, since on a contig block, ptep_get() on arm64 will iterate through all 16 entries to collect a/d bits. Next, ptep_clear() will cause a TLBI for every contig block in the range via contpte_try_unfold(). Instead, use clear_ptes() to only do the TLBI at the first and last contig block of the range. For split folios, there will be no pte batching; the batch size returned by folio_pte_batch() will be 1. For pagetable split folios, the ptes will still point to the same large folio; for arm64, this results in the optimization described above, and for other arches, a minor improvement is expected due to a reduction in the number of function calls and batching atomic operations. This patch (of 3): Let's add variants to be used where "full" does not apply -- which will be the majority of cases in the future. "full" really only applies if we are about to tear down a full MM. Use get_and_clear_ptes() in existing code, clear_ptes() users will be added next. Link: https://lkml.kernel.org/r/20250724052301.23844-2-dev.jain@arm.com Signed-off-by: David Hildenbrand <david@redhat.com> Signed-off-by: Dev Jain <dev.jain@arm.com> Reviewed-by: Baolin Wang <baolin.wang@linux.alibaba.com> Reviewed-by: Barry Song <baohua@kernel.org> Reviewed-by: Lorenzo Stoakes <lorenzo.stoakes@oracle.com> Reviewed-by: Zi Yan <ziy@nvidia.com> Cc: Liam Howlett <liam.howlett@oracle.com> Cc: Mariano Pache <npache@redhat.com> Cc: Ryan Roberts <ryan.roberts@arm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
1978 lines
53 KiB
C
1978 lines
53 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* mm/mremap.c
|
|
*
|
|
* (C) Copyright 1996 Linus Torvalds
|
|
*
|
|
* Address space accounting code <alan@lxorguk.ukuu.org.uk>
|
|
* (C) Copyright 2002 Red Hat Inc, All Rights Reserved
|
|
*/
|
|
|
|
#include <linux/mm.h>
|
|
#include <linux/mm_inline.h>
|
|
#include <linux/hugetlb.h>
|
|
#include <linux/shm.h>
|
|
#include <linux/ksm.h>
|
|
#include <linux/mman.h>
|
|
#include <linux/swap.h>
|
|
#include <linux/capability.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/swapops.h>
|
|
#include <linux/highmem.h>
|
|
#include <linux/security.h>
|
|
#include <linux/syscalls.h>
|
|
#include <linux/mmu_notifier.h>
|
|
#include <linux/uaccess.h>
|
|
#include <linux/userfaultfd_k.h>
|
|
#include <linux/mempolicy.h>
|
|
|
|
#include <asm/cacheflush.h>
|
|
#include <asm/tlb.h>
|
|
#include <asm/pgalloc.h>
|
|
|
|
#include "internal.h"
|
|
|
|
/* Classify the kind of remap operation being performed. */
|
|
enum mremap_type {
|
|
MREMAP_INVALID, /* Initial state. */
|
|
MREMAP_NO_RESIZE, /* old_len == new_len, if not moved, do nothing. */
|
|
MREMAP_SHRINK, /* old_len > new_len. */
|
|
MREMAP_EXPAND, /* old_len < new_len. */
|
|
};
|
|
|
|
/*
|
|
* Describes a VMA mremap() operation and is threaded throughout it.
|
|
*
|
|
* Any of the fields may be mutated by the operation, however these values will
|
|
* always accurately reflect the remap (for instance, we may adjust lengths and
|
|
* delta to account for hugetlb alignment).
|
|
*/
|
|
struct vma_remap_struct {
|
|
/* User-provided state. */
|
|
unsigned long addr; /* User-specified address from which we remap. */
|
|
unsigned long old_len; /* Length of range being remapped. */
|
|
unsigned long new_len; /* Desired new length of mapping. */
|
|
const unsigned long flags; /* user-specified MREMAP_* flags. */
|
|
unsigned long new_addr; /* Optionally, desired new address. */
|
|
|
|
/* uffd state. */
|
|
struct vm_userfaultfd_ctx *uf;
|
|
struct list_head *uf_unmap_early;
|
|
struct list_head *uf_unmap;
|
|
|
|
/* VMA state, determined in do_mremap(). */
|
|
struct vm_area_struct *vma;
|
|
|
|
/* Internal state, determined in do_mremap(). */
|
|
unsigned long delta; /* Absolute delta of old_len,new_len. */
|
|
bool populate_expand; /* mlock()'d expanded, must populate. */
|
|
enum mremap_type remap_type; /* expand, shrink, etc. */
|
|
bool mmap_locked; /* Is mm currently write-locked? */
|
|
unsigned long charged; /* If VM_ACCOUNT, # pages to account. */
|
|
bool vmi_needs_invalidate; /* Is the VMA iterator invalidated? */
|
|
};
|
|
|
|
static pud_t *get_old_pud(struct mm_struct *mm, unsigned long addr)
|
|
{
|
|
pgd_t *pgd;
|
|
p4d_t *p4d;
|
|
pud_t *pud;
|
|
|
|
pgd = pgd_offset(mm, addr);
|
|
if (pgd_none_or_clear_bad(pgd))
|
|
return NULL;
|
|
|
|
p4d = p4d_offset(pgd, addr);
|
|
if (p4d_none_or_clear_bad(p4d))
|
|
return NULL;
|
|
|
|
pud = pud_offset(p4d, addr);
|
|
if (pud_none_or_clear_bad(pud))
|
|
return NULL;
|
|
|
|
return pud;
|
|
}
|
|
|
|
static pmd_t *get_old_pmd(struct mm_struct *mm, unsigned long addr)
|
|
{
|
|
pud_t *pud;
|
|
pmd_t *pmd;
|
|
|
|
pud = get_old_pud(mm, addr);
|
|
if (!pud)
|
|
return NULL;
|
|
|
|
pmd = pmd_offset(pud, addr);
|
|
if (pmd_none(*pmd))
|
|
return NULL;
|
|
|
|
return pmd;
|
|
}
|
|
|
|
static pud_t *alloc_new_pud(struct mm_struct *mm, unsigned long addr)
|
|
{
|
|
pgd_t *pgd;
|
|
p4d_t *p4d;
|
|
|
|
pgd = pgd_offset(mm, addr);
|
|
p4d = p4d_alloc(mm, pgd, addr);
|
|
if (!p4d)
|
|
return NULL;
|
|
|
|
return pud_alloc(mm, p4d, addr);
|
|
}
|
|
|
|
static pmd_t *alloc_new_pmd(struct mm_struct *mm, unsigned long addr)
|
|
{
|
|
pud_t *pud;
|
|
pmd_t *pmd;
|
|
|
|
pud = alloc_new_pud(mm, addr);
|
|
if (!pud)
|
|
return NULL;
|
|
|
|
pmd = pmd_alloc(mm, pud, addr);
|
|
if (!pmd)
|
|
return NULL;
|
|
|
|
VM_BUG_ON(pmd_trans_huge(*pmd));
|
|
|
|
return pmd;
|
|
}
|
|
|
|
static void take_rmap_locks(struct vm_area_struct *vma)
|
|
{
|
|
if (vma->vm_file)
|
|
i_mmap_lock_write(vma->vm_file->f_mapping);
|
|
if (vma->anon_vma)
|
|
anon_vma_lock_write(vma->anon_vma);
|
|
}
|
|
|
|
static void drop_rmap_locks(struct vm_area_struct *vma)
|
|
{
|
|
if (vma->anon_vma)
|
|
anon_vma_unlock_write(vma->anon_vma);
|
|
if (vma->vm_file)
|
|
i_mmap_unlock_write(vma->vm_file->f_mapping);
|
|
}
|
|
|
|
static pte_t move_soft_dirty_pte(pte_t pte)
|
|
{
|
|
/*
|
|
* Set soft dirty bit so we can notice
|
|
* in userspace the ptes were moved.
|
|
*/
|
|
#ifdef CONFIG_MEM_SOFT_DIRTY
|
|
if (pte_present(pte))
|
|
pte = pte_mksoft_dirty(pte);
|
|
else if (is_swap_pte(pte))
|
|
pte = pte_swp_mksoft_dirty(pte);
|
|
#endif
|
|
return pte;
|
|
}
|
|
|
|
static int mremap_folio_pte_batch(struct vm_area_struct *vma, unsigned long addr,
|
|
pte_t *ptep, pte_t pte, int max_nr)
|
|
{
|
|
struct folio *folio;
|
|
|
|
if (max_nr == 1)
|
|
return 1;
|
|
|
|
folio = vm_normal_folio(vma, addr, pte);
|
|
if (!folio || !folio_test_large(folio))
|
|
return 1;
|
|
|
|
return folio_pte_batch(folio, ptep, pte, max_nr);
|
|
}
|
|
|
|
static int move_ptes(struct pagetable_move_control *pmc,
|
|
unsigned long extent, pmd_t *old_pmd, pmd_t *new_pmd)
|
|
{
|
|
struct vm_area_struct *vma = pmc->old;
|
|
bool need_clear_uffd_wp = vma_has_uffd_without_event_remap(vma);
|
|
struct mm_struct *mm = vma->vm_mm;
|
|
pte_t *old_ptep, *new_ptep;
|
|
pte_t old_pte, pte;
|
|
pmd_t dummy_pmdval;
|
|
spinlock_t *old_ptl, *new_ptl;
|
|
bool force_flush = false;
|
|
unsigned long old_addr = pmc->old_addr;
|
|
unsigned long new_addr = pmc->new_addr;
|
|
unsigned long old_end = old_addr + extent;
|
|
unsigned long len = old_end - old_addr;
|
|
int max_nr_ptes;
|
|
int nr_ptes;
|
|
int err = 0;
|
|
|
|
/*
|
|
* When need_rmap_locks is true, we take the i_mmap_rwsem and anon_vma
|
|
* locks to ensure that rmap will always observe either the old or the
|
|
* new ptes. This is the easiest way to avoid races with
|
|
* truncate_pagecache(), page migration, etc...
|
|
*
|
|
* When need_rmap_locks is false, we use other ways to avoid
|
|
* such races:
|
|
*
|
|
* - During exec() shift_arg_pages(), we use a specially tagged vma
|
|
* which rmap call sites look for using vma_is_temporary_stack().
|
|
*
|
|
* - During mremap(), new_vma is often known to be placed after vma
|
|
* in rmap traversal order. This ensures rmap will always observe
|
|
* either the old pte, or the new pte, or both (the page table locks
|
|
* serialize access to individual ptes, but only rmap traversal
|
|
* order guarantees that we won't miss both the old and new ptes).
|
|
*/
|
|
if (pmc->need_rmap_locks)
|
|
take_rmap_locks(vma);
|
|
|
|
/*
|
|
* We don't have to worry about the ordering of src and dst
|
|
* pte locks because exclusive mmap_lock prevents deadlock.
|
|
*/
|
|
old_ptep = pte_offset_map_lock(mm, old_pmd, old_addr, &old_ptl);
|
|
if (!old_ptep) {
|
|
err = -EAGAIN;
|
|
goto out;
|
|
}
|
|
/*
|
|
* Now new_pte is none, so hpage_collapse_scan_file() path can not find
|
|
* this by traversing file->f_mapping, so there is no concurrency with
|
|
* retract_page_tables(). In addition, we already hold the exclusive
|
|
* mmap_lock, so this new_pte page is stable, so there is no need to get
|
|
* pmdval and do pmd_same() check.
|
|
*/
|
|
new_ptep = pte_offset_map_rw_nolock(mm, new_pmd, new_addr, &dummy_pmdval,
|
|
&new_ptl);
|
|
if (!new_ptep) {
|
|
pte_unmap_unlock(old_ptep, old_ptl);
|
|
err = -EAGAIN;
|
|
goto out;
|
|
}
|
|
if (new_ptl != old_ptl)
|
|
spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
|
|
flush_tlb_batched_pending(vma->vm_mm);
|
|
arch_enter_lazy_mmu_mode();
|
|
|
|
for (; old_addr < old_end; old_ptep += nr_ptes, old_addr += nr_ptes * PAGE_SIZE,
|
|
new_ptep += nr_ptes, new_addr += nr_ptes * PAGE_SIZE) {
|
|
VM_WARN_ON_ONCE(!pte_none(*new_ptep));
|
|
|
|
nr_ptes = 1;
|
|
max_nr_ptes = (old_end - old_addr) >> PAGE_SHIFT;
|
|
old_pte = ptep_get(old_ptep);
|
|
if (pte_none(old_pte))
|
|
continue;
|
|
|
|
/*
|
|
* If we are remapping a valid PTE, make sure
|
|
* to flush TLB before we drop the PTL for the
|
|
* PTE.
|
|
*
|
|
* NOTE! Both old and new PTL matter: the old one
|
|
* for racing with folio_mkclean(), the new one to
|
|
* make sure the physical page stays valid until
|
|
* the TLB entry for the old mapping has been
|
|
* flushed.
|
|
*/
|
|
if (pte_present(old_pte)) {
|
|
nr_ptes = mremap_folio_pte_batch(vma, old_addr, old_ptep,
|
|
old_pte, max_nr_ptes);
|
|
force_flush = true;
|
|
}
|
|
pte = get_and_clear_ptes(mm, old_addr, old_ptep, nr_ptes);
|
|
pte = move_pte(pte, old_addr, new_addr);
|
|
pte = move_soft_dirty_pte(pte);
|
|
|
|
if (need_clear_uffd_wp && pte_marker_uffd_wp(pte))
|
|
pte_clear(mm, new_addr, new_ptep);
|
|
else {
|
|
if (need_clear_uffd_wp) {
|
|
if (pte_present(pte))
|
|
pte = pte_clear_uffd_wp(pte);
|
|
else if (is_swap_pte(pte))
|
|
pte = pte_swp_clear_uffd_wp(pte);
|
|
}
|
|
set_ptes(mm, new_addr, new_ptep, pte, nr_ptes);
|
|
}
|
|
}
|
|
|
|
arch_leave_lazy_mmu_mode();
|
|
if (force_flush)
|
|
flush_tlb_range(vma, old_end - len, old_end);
|
|
if (new_ptl != old_ptl)
|
|
spin_unlock(new_ptl);
|
|
pte_unmap(new_ptep - 1);
|
|
pte_unmap_unlock(old_ptep - 1, old_ptl);
|
|
out:
|
|
if (pmc->need_rmap_locks)
|
|
drop_rmap_locks(vma);
|
|
return err;
|
|
}
|
|
|
|
#ifndef arch_supports_page_table_move
|
|
#define arch_supports_page_table_move arch_supports_page_table_move
|
|
static inline bool arch_supports_page_table_move(void)
|
|
{
|
|
return IS_ENABLED(CONFIG_HAVE_MOVE_PMD) ||
|
|
IS_ENABLED(CONFIG_HAVE_MOVE_PUD);
|
|
}
|
|
#endif
|
|
|
|
#ifdef CONFIG_HAVE_MOVE_PMD
|
|
static bool move_normal_pmd(struct pagetable_move_control *pmc,
|
|
pmd_t *old_pmd, pmd_t *new_pmd)
|
|
{
|
|
spinlock_t *old_ptl, *new_ptl;
|
|
struct vm_area_struct *vma = pmc->old;
|
|
struct mm_struct *mm = vma->vm_mm;
|
|
bool res = false;
|
|
pmd_t pmd;
|
|
|
|
if (!arch_supports_page_table_move())
|
|
return false;
|
|
/*
|
|
* The destination pmd shouldn't be established, free_pgtables()
|
|
* should have released it.
|
|
*
|
|
* However, there's a case during execve() where we use mremap
|
|
* to move the initial stack, and in that case the target area
|
|
* may overlap the source area (always moving down).
|
|
*
|
|
* If everything is PMD-aligned, that works fine, as moving
|
|
* each pmd down will clear the source pmd. But if we first
|
|
* have a few 4kB-only pages that get moved down, and then
|
|
* hit the "now the rest is PMD-aligned, let's do everything
|
|
* one pmd at a time", we will still have the old (now empty
|
|
* of any 4kB pages, but still there) PMD in the page table
|
|
* tree.
|
|
*
|
|
* Warn on it once - because we really should try to figure
|
|
* out how to do this better - but then say "I won't move
|
|
* this pmd".
|
|
*
|
|
* One alternative might be to just unmap the target pmd at
|
|
* this point, and verify that it really is empty. We'll see.
|
|
*/
|
|
if (WARN_ON_ONCE(!pmd_none(*new_pmd)))
|
|
return false;
|
|
|
|
/* If this pmd belongs to a uffd vma with remap events disabled, we need
|
|
* to ensure that the uffd-wp state is cleared from all pgtables. This
|
|
* means recursing into lower page tables in move_page_tables(), and we
|
|
* can reuse the existing code if we simply treat the entry as "not
|
|
* moved".
|
|
*/
|
|
if (vma_has_uffd_without_event_remap(vma))
|
|
return false;
|
|
|
|
/*
|
|
* We don't have to worry about the ordering of src and dst
|
|
* ptlocks because exclusive mmap_lock prevents deadlock.
|
|
*/
|
|
old_ptl = pmd_lock(mm, old_pmd);
|
|
new_ptl = pmd_lockptr(mm, new_pmd);
|
|
if (new_ptl != old_ptl)
|
|
spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
|
|
|
|
pmd = *old_pmd;
|
|
|
|
/* Racing with collapse? */
|
|
if (unlikely(!pmd_present(pmd) || pmd_leaf(pmd)))
|
|
goto out_unlock;
|
|
/* Clear the pmd */
|
|
pmd_clear(old_pmd);
|
|
res = true;
|
|
|
|
VM_BUG_ON(!pmd_none(*new_pmd));
|
|
|
|
pmd_populate(mm, new_pmd, pmd_pgtable(pmd));
|
|
flush_tlb_range(vma, pmc->old_addr, pmc->old_addr + PMD_SIZE);
|
|
out_unlock:
|
|
if (new_ptl != old_ptl)
|
|
spin_unlock(new_ptl);
|
|
spin_unlock(old_ptl);
|
|
|
|
return res;
|
|
}
|
|
#else
|
|
static inline bool move_normal_pmd(struct pagetable_move_control *pmc,
|
|
pmd_t *old_pmd, pmd_t *new_pmd)
|
|
{
|
|
return false;
|
|
}
|
|
#endif
|
|
|
|
#if CONFIG_PGTABLE_LEVELS > 2 && defined(CONFIG_HAVE_MOVE_PUD)
|
|
static bool move_normal_pud(struct pagetable_move_control *pmc,
|
|
pud_t *old_pud, pud_t *new_pud)
|
|
{
|
|
spinlock_t *old_ptl, *new_ptl;
|
|
struct vm_area_struct *vma = pmc->old;
|
|
struct mm_struct *mm = vma->vm_mm;
|
|
pud_t pud;
|
|
|
|
if (!arch_supports_page_table_move())
|
|
return false;
|
|
/*
|
|
* The destination pud shouldn't be established, free_pgtables()
|
|
* should have released it.
|
|
*/
|
|
if (WARN_ON_ONCE(!pud_none(*new_pud)))
|
|
return false;
|
|
|
|
/* If this pud belongs to a uffd vma with remap events disabled, we need
|
|
* to ensure that the uffd-wp state is cleared from all pgtables. This
|
|
* means recursing into lower page tables in move_page_tables(), and we
|
|
* can reuse the existing code if we simply treat the entry as "not
|
|
* moved".
|
|
*/
|
|
if (vma_has_uffd_without_event_remap(vma))
|
|
return false;
|
|
|
|
/*
|
|
* We don't have to worry about the ordering of src and dst
|
|
* ptlocks because exclusive mmap_lock prevents deadlock.
|
|
*/
|
|
old_ptl = pud_lock(mm, old_pud);
|
|
new_ptl = pud_lockptr(mm, new_pud);
|
|
if (new_ptl != old_ptl)
|
|
spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
|
|
|
|
/* Clear the pud */
|
|
pud = *old_pud;
|
|
pud_clear(old_pud);
|
|
|
|
VM_BUG_ON(!pud_none(*new_pud));
|
|
|
|
pud_populate(mm, new_pud, pud_pgtable(pud));
|
|
flush_tlb_range(vma, pmc->old_addr, pmc->old_addr + PUD_SIZE);
|
|
if (new_ptl != old_ptl)
|
|
spin_unlock(new_ptl);
|
|
spin_unlock(old_ptl);
|
|
|
|
return true;
|
|
}
|
|
#else
|
|
static inline bool move_normal_pud(struct pagetable_move_control *pmc,
|
|
pud_t *old_pud, pud_t *new_pud)
|
|
{
|
|
return false;
|
|
}
|
|
#endif
|
|
|
|
#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
|
|
static bool move_huge_pud(struct pagetable_move_control *pmc,
|
|
pud_t *old_pud, pud_t *new_pud)
|
|
{
|
|
spinlock_t *old_ptl, *new_ptl;
|
|
struct vm_area_struct *vma = pmc->old;
|
|
struct mm_struct *mm = vma->vm_mm;
|
|
pud_t pud;
|
|
|
|
/*
|
|
* The destination pud shouldn't be established, free_pgtables()
|
|
* should have released it.
|
|
*/
|
|
if (WARN_ON_ONCE(!pud_none(*new_pud)))
|
|
return false;
|
|
|
|
/*
|
|
* We don't have to worry about the ordering of src and dst
|
|
* ptlocks because exclusive mmap_lock prevents deadlock.
|
|
*/
|
|
old_ptl = pud_lock(mm, old_pud);
|
|
new_ptl = pud_lockptr(mm, new_pud);
|
|
if (new_ptl != old_ptl)
|
|
spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
|
|
|
|
/* Clear the pud */
|
|
pud = *old_pud;
|
|
pud_clear(old_pud);
|
|
|
|
VM_BUG_ON(!pud_none(*new_pud));
|
|
|
|
/* Set the new pud */
|
|
/* mark soft_ditry when we add pud level soft dirty support */
|
|
set_pud_at(mm, pmc->new_addr, new_pud, pud);
|
|
flush_pud_tlb_range(vma, pmc->old_addr, pmc->old_addr + HPAGE_PUD_SIZE);
|
|
if (new_ptl != old_ptl)
|
|
spin_unlock(new_ptl);
|
|
spin_unlock(old_ptl);
|
|
|
|
return true;
|
|
}
|
|
#else
|
|
static bool move_huge_pud(struct pagetable_move_control *pmc,
|
|
pud_t *old_pud, pud_t *new_pud)
|
|
|
|
{
|
|
WARN_ON_ONCE(1);
|
|
return false;
|
|
|
|
}
|
|
#endif
|
|
|
|
enum pgt_entry {
|
|
NORMAL_PMD,
|
|
HPAGE_PMD,
|
|
NORMAL_PUD,
|
|
HPAGE_PUD,
|
|
};
|
|
|
|
/*
|
|
* Returns an extent of the corresponding size for the pgt_entry specified if
|
|
* valid. Else returns a smaller extent bounded by the end of the source and
|
|
* destination pgt_entry.
|
|
*/
|
|
static __always_inline unsigned long get_extent(enum pgt_entry entry,
|
|
struct pagetable_move_control *pmc)
|
|
{
|
|
unsigned long next, extent, mask, size;
|
|
unsigned long old_addr = pmc->old_addr;
|
|
unsigned long old_end = pmc->old_end;
|
|
unsigned long new_addr = pmc->new_addr;
|
|
|
|
switch (entry) {
|
|
case HPAGE_PMD:
|
|
case NORMAL_PMD:
|
|
mask = PMD_MASK;
|
|
size = PMD_SIZE;
|
|
break;
|
|
case HPAGE_PUD:
|
|
case NORMAL_PUD:
|
|
mask = PUD_MASK;
|
|
size = PUD_SIZE;
|
|
break;
|
|
default:
|
|
BUILD_BUG();
|
|
break;
|
|
}
|
|
|
|
next = (old_addr + size) & mask;
|
|
/* even if next overflowed, extent below will be ok */
|
|
extent = next - old_addr;
|
|
if (extent > old_end - old_addr)
|
|
extent = old_end - old_addr;
|
|
next = (new_addr + size) & mask;
|
|
if (extent > next - new_addr)
|
|
extent = next - new_addr;
|
|
return extent;
|
|
}
|
|
|
|
/*
|
|
* Should move_pgt_entry() acquire the rmap locks? This is either expressed in
|
|
* the PMC, or overridden in the case of normal, larger page tables.
|
|
*/
|
|
static bool should_take_rmap_locks(struct pagetable_move_control *pmc,
|
|
enum pgt_entry entry)
|
|
{
|
|
switch (entry) {
|
|
case NORMAL_PMD:
|
|
case NORMAL_PUD:
|
|
return true;
|
|
default:
|
|
return pmc->need_rmap_locks;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Attempts to speedup the move by moving entry at the level corresponding to
|
|
* pgt_entry. Returns true if the move was successful, else false.
|
|
*/
|
|
static bool move_pgt_entry(struct pagetable_move_control *pmc,
|
|
enum pgt_entry entry, void *old_entry, void *new_entry)
|
|
{
|
|
bool moved = false;
|
|
bool need_rmap_locks = should_take_rmap_locks(pmc, entry);
|
|
|
|
/* See comment in move_ptes() */
|
|
if (need_rmap_locks)
|
|
take_rmap_locks(pmc->old);
|
|
|
|
switch (entry) {
|
|
case NORMAL_PMD:
|
|
moved = move_normal_pmd(pmc, old_entry, new_entry);
|
|
break;
|
|
case NORMAL_PUD:
|
|
moved = move_normal_pud(pmc, old_entry, new_entry);
|
|
break;
|
|
case HPAGE_PMD:
|
|
moved = IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
|
|
move_huge_pmd(pmc->old, pmc->old_addr, pmc->new_addr, old_entry,
|
|
new_entry);
|
|
break;
|
|
case HPAGE_PUD:
|
|
moved = IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
|
|
move_huge_pud(pmc, old_entry, new_entry);
|
|
break;
|
|
|
|
default:
|
|
WARN_ON_ONCE(1);
|
|
break;
|
|
}
|
|
|
|
if (need_rmap_locks)
|
|
drop_rmap_locks(pmc->old);
|
|
|
|
return moved;
|
|
}
|
|
|
|
/*
|
|
* A helper to check if aligning down is OK. The aligned address should fall
|
|
* on *no mapping*. For the stack moving down, that's a special move within
|
|
* the VMA that is created to span the source and destination of the move,
|
|
* so we make an exception for it.
|
|
*/
|
|
static bool can_align_down(struct pagetable_move_control *pmc,
|
|
struct vm_area_struct *vma, unsigned long addr_to_align,
|
|
unsigned long mask)
|
|
{
|
|
unsigned long addr_masked = addr_to_align & mask;
|
|
|
|
/*
|
|
* If @addr_to_align of either source or destination is not the beginning
|
|
* of the corresponding VMA, we can't align down or we will destroy part
|
|
* of the current mapping.
|
|
*/
|
|
if (!pmc->for_stack && vma->vm_start != addr_to_align)
|
|
return false;
|
|
|
|
/* In the stack case we explicitly permit in-VMA alignment. */
|
|
if (pmc->for_stack && addr_masked >= vma->vm_start)
|
|
return true;
|
|
|
|
/*
|
|
* Make sure the realignment doesn't cause the address to fall on an
|
|
* existing mapping.
|
|
*/
|
|
return find_vma_intersection(vma->vm_mm, addr_masked, vma->vm_start) == NULL;
|
|
}
|
|
|
|
/*
|
|
* Determine if are in fact able to realign for efficiency to a higher page
|
|
* table boundary.
|
|
*/
|
|
static bool can_realign_addr(struct pagetable_move_control *pmc,
|
|
unsigned long pagetable_mask)
|
|
{
|
|
unsigned long align_mask = ~pagetable_mask;
|
|
unsigned long old_align = pmc->old_addr & align_mask;
|
|
unsigned long new_align = pmc->new_addr & align_mask;
|
|
unsigned long pagetable_size = align_mask + 1;
|
|
unsigned long old_align_next = pagetable_size - old_align;
|
|
|
|
/*
|
|
* We don't want to have to go hunting for VMAs from the end of the old
|
|
* VMA to the next page table boundary, also we want to make sure the
|
|
* operation is wortwhile.
|
|
*
|
|
* So ensure that we only perform this realignment if the end of the
|
|
* range being copied reaches or crosses the page table boundary.
|
|
*
|
|
* boundary boundary
|
|
* .<- old_align -> .
|
|
* . |----------------.-----------|
|
|
* . | vma . |
|
|
* . |----------------.-----------|
|
|
* . <----------------.----------->
|
|
* . len_in
|
|
* <------------------------------->
|
|
* . pagetable_size .
|
|
* . <---------------->
|
|
* . old_align_next .
|
|
*/
|
|
if (pmc->len_in < old_align_next)
|
|
return false;
|
|
|
|
/* Skip if the addresses are already aligned. */
|
|
if (old_align == 0)
|
|
return false;
|
|
|
|
/* Only realign if the new and old addresses are mutually aligned. */
|
|
if (old_align != new_align)
|
|
return false;
|
|
|
|
/* Ensure realignment doesn't cause overlap with existing mappings. */
|
|
if (!can_align_down(pmc, pmc->old, pmc->old_addr, pagetable_mask) ||
|
|
!can_align_down(pmc, pmc->new, pmc->new_addr, pagetable_mask))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* Opportunistically realign to specified boundary for faster copy.
|
|
*
|
|
* Consider an mremap() of a VMA with page table boundaries as below, and no
|
|
* preceding VMAs from the lower page table boundary to the start of the VMA,
|
|
* with the end of the range reaching or crossing the page table boundary.
|
|
*
|
|
* boundary boundary
|
|
* . |----------------.-----------|
|
|
* . | vma . |
|
|
* . |----------------.-----------|
|
|
* . pmc->old_addr . pmc->old_end
|
|
* . <---------------------------->
|
|
* . move these page tables
|
|
*
|
|
* If we proceed with moving page tables in this scenario, we will have a lot of
|
|
* work to do traversing old page tables and establishing new ones in the
|
|
* destination across multiple lower level page tables.
|
|
*
|
|
* The idea here is simply to align pmc->old_addr, pmc->new_addr down to the
|
|
* page table boundary, so we can simply copy a single page table entry for the
|
|
* aligned portion of the VMA instead:
|
|
*
|
|
* boundary boundary
|
|
* . |----------------.-----------|
|
|
* . | vma . |
|
|
* . |----------------.-----------|
|
|
* pmc->old_addr . pmc->old_end
|
|
* <------------------------------------------->
|
|
* . move these page tables
|
|
*/
|
|
static void try_realign_addr(struct pagetable_move_control *pmc,
|
|
unsigned long pagetable_mask)
|
|
{
|
|
|
|
if (!can_realign_addr(pmc, pagetable_mask))
|
|
return;
|
|
|
|
/*
|
|
* Simply align to page table boundaries. Note that we do NOT update the
|
|
* pmc->old_end value, and since the move_page_tables() operation spans
|
|
* from [old_addr, old_end) (offsetting new_addr as it is performed),
|
|
* this simply changes the start of the copy, not the end.
|
|
*/
|
|
pmc->old_addr &= pagetable_mask;
|
|
pmc->new_addr &= pagetable_mask;
|
|
}
|
|
|
|
/* Is the page table move operation done? */
|
|
static bool pmc_done(struct pagetable_move_control *pmc)
|
|
{
|
|
return pmc->old_addr >= pmc->old_end;
|
|
}
|
|
|
|
/* Advance to the next page table, offset by extent bytes. */
|
|
static void pmc_next(struct pagetable_move_control *pmc, unsigned long extent)
|
|
{
|
|
pmc->old_addr += extent;
|
|
pmc->new_addr += extent;
|
|
}
|
|
|
|
/*
|
|
* Determine how many bytes in the specified input range have had their page
|
|
* tables moved so far.
|
|
*/
|
|
static unsigned long pmc_progress(struct pagetable_move_control *pmc)
|
|
{
|
|
unsigned long orig_old_addr = pmc->old_end - pmc->len_in;
|
|
unsigned long old_addr = pmc->old_addr;
|
|
|
|
/*
|
|
* Prevent negative return values when {old,new}_addr was realigned but
|
|
* we broke out of the loop in move_page_tables() for the first PMD
|
|
* itself.
|
|
*/
|
|
return old_addr < orig_old_addr ? 0 : old_addr - orig_old_addr;
|
|
}
|
|
|
|
unsigned long move_page_tables(struct pagetable_move_control *pmc)
|
|
{
|
|
unsigned long extent;
|
|
struct mmu_notifier_range range;
|
|
pmd_t *old_pmd, *new_pmd;
|
|
pud_t *old_pud, *new_pud;
|
|
struct mm_struct *mm = pmc->old->vm_mm;
|
|
|
|
if (!pmc->len_in)
|
|
return 0;
|
|
|
|
if (is_vm_hugetlb_page(pmc->old))
|
|
return move_hugetlb_page_tables(pmc->old, pmc->new, pmc->old_addr,
|
|
pmc->new_addr, pmc->len_in);
|
|
|
|
/*
|
|
* If possible, realign addresses to PMD boundary for faster copy.
|
|
* Only realign if the mremap copying hits a PMD boundary.
|
|
*/
|
|
try_realign_addr(pmc, PMD_MASK);
|
|
|
|
flush_cache_range(pmc->old, pmc->old_addr, pmc->old_end);
|
|
mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, mm,
|
|
pmc->old_addr, pmc->old_end);
|
|
mmu_notifier_invalidate_range_start(&range);
|
|
|
|
for (; !pmc_done(pmc); pmc_next(pmc, extent)) {
|
|
cond_resched();
|
|
/*
|
|
* If extent is PUD-sized try to speed up the move by moving at the
|
|
* PUD level if possible.
|
|
*/
|
|
extent = get_extent(NORMAL_PUD, pmc);
|
|
|
|
old_pud = get_old_pud(mm, pmc->old_addr);
|
|
if (!old_pud)
|
|
continue;
|
|
new_pud = alloc_new_pud(mm, pmc->new_addr);
|
|
if (!new_pud)
|
|
break;
|
|
if (pud_trans_huge(*old_pud)) {
|
|
if (extent == HPAGE_PUD_SIZE) {
|
|
move_pgt_entry(pmc, HPAGE_PUD, old_pud, new_pud);
|
|
/* We ignore and continue on error? */
|
|
continue;
|
|
}
|
|
} else if (IS_ENABLED(CONFIG_HAVE_MOVE_PUD) && extent == PUD_SIZE) {
|
|
if (move_pgt_entry(pmc, NORMAL_PUD, old_pud, new_pud))
|
|
continue;
|
|
}
|
|
|
|
extent = get_extent(NORMAL_PMD, pmc);
|
|
old_pmd = get_old_pmd(mm, pmc->old_addr);
|
|
if (!old_pmd)
|
|
continue;
|
|
new_pmd = alloc_new_pmd(mm, pmc->new_addr);
|
|
if (!new_pmd)
|
|
break;
|
|
again:
|
|
if (is_swap_pmd(*old_pmd) || pmd_trans_huge(*old_pmd)) {
|
|
if (extent == HPAGE_PMD_SIZE &&
|
|
move_pgt_entry(pmc, HPAGE_PMD, old_pmd, new_pmd))
|
|
continue;
|
|
split_huge_pmd(pmc->old, old_pmd, pmc->old_addr);
|
|
} else if (IS_ENABLED(CONFIG_HAVE_MOVE_PMD) &&
|
|
extent == PMD_SIZE) {
|
|
/*
|
|
* If the extent is PMD-sized, try to speed the move by
|
|
* moving at the PMD level if possible.
|
|
*/
|
|
if (move_pgt_entry(pmc, NORMAL_PMD, old_pmd, new_pmd))
|
|
continue;
|
|
}
|
|
if (pmd_none(*old_pmd))
|
|
continue;
|
|
if (pte_alloc(pmc->new->vm_mm, new_pmd))
|
|
break;
|
|
if (move_ptes(pmc, extent, old_pmd, new_pmd) < 0)
|
|
goto again;
|
|
}
|
|
|
|
mmu_notifier_invalidate_range_end(&range);
|
|
|
|
return pmc_progress(pmc);
|
|
}
|
|
|
|
/* Set vrm->delta to the difference in VMA size specified by user. */
|
|
static void vrm_set_delta(struct vma_remap_struct *vrm)
|
|
{
|
|
vrm->delta = abs_diff(vrm->old_len, vrm->new_len);
|
|
}
|
|
|
|
/* Determine what kind of remap this is - shrink, expand or no resize at all. */
|
|
static enum mremap_type vrm_remap_type(struct vma_remap_struct *vrm)
|
|
{
|
|
if (vrm->delta == 0)
|
|
return MREMAP_NO_RESIZE;
|
|
|
|
if (vrm->old_len > vrm->new_len)
|
|
return MREMAP_SHRINK;
|
|
|
|
return MREMAP_EXPAND;
|
|
}
|
|
|
|
/*
|
|
* When moving a VMA to vrm->new_adr, does this result in the new and old VMAs
|
|
* overlapping?
|
|
*/
|
|
static bool vrm_overlaps(struct vma_remap_struct *vrm)
|
|
{
|
|
unsigned long start_old = vrm->addr;
|
|
unsigned long start_new = vrm->new_addr;
|
|
unsigned long end_old = vrm->addr + vrm->old_len;
|
|
unsigned long end_new = vrm->new_addr + vrm->new_len;
|
|
|
|
/*
|
|
* start_old end_old
|
|
* |-----------|
|
|
* | |
|
|
* |-----------|
|
|
* |-------------|
|
|
* | |
|
|
* |-------------|
|
|
* start_new end_new
|
|
*/
|
|
if (end_old > start_new && end_new > start_old)
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* Will a new address definitely be assigned? This either if the user specifies
|
|
* it via MREMAP_FIXED, or if MREMAP_DONTUNMAP is used, indicating we will
|
|
* always detemrine a target address.
|
|
*/
|
|
static bool vrm_implies_new_addr(struct vma_remap_struct *vrm)
|
|
{
|
|
return vrm->flags & (MREMAP_FIXED | MREMAP_DONTUNMAP);
|
|
}
|
|
|
|
/*
|
|
* Find an unmapped area for the requested vrm->new_addr.
|
|
*
|
|
* If MREMAP_FIXED then this is equivalent to a MAP_FIXED mmap() call. If only
|
|
* MREMAP_DONTUNMAP is set, then this is equivalent to providing a hint to
|
|
* mmap(), otherwise this is equivalent to mmap() specifying a NULL address.
|
|
*
|
|
* Returns 0 on success (with vrm->new_addr updated), or an error code upon
|
|
* failure.
|
|
*/
|
|
static unsigned long vrm_set_new_addr(struct vma_remap_struct *vrm)
|
|
{
|
|
struct vm_area_struct *vma = vrm->vma;
|
|
unsigned long map_flags = 0;
|
|
/* Page Offset _into_ the VMA. */
|
|
pgoff_t internal_pgoff = (vrm->addr - vma->vm_start) >> PAGE_SHIFT;
|
|
pgoff_t pgoff = vma->vm_pgoff + internal_pgoff;
|
|
unsigned long new_addr = vrm_implies_new_addr(vrm) ? vrm->new_addr : 0;
|
|
unsigned long res;
|
|
|
|
if (vrm->flags & MREMAP_FIXED)
|
|
map_flags |= MAP_FIXED;
|
|
if (vma->vm_flags & VM_MAYSHARE)
|
|
map_flags |= MAP_SHARED;
|
|
|
|
res = get_unmapped_area(vma->vm_file, new_addr, vrm->new_len, pgoff,
|
|
map_flags);
|
|
if (IS_ERR_VALUE(res))
|
|
return res;
|
|
|
|
vrm->new_addr = res;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Keep track of pages which have been added to the memory mapping. If the VMA
|
|
* is accounted, also check to see if there is sufficient memory.
|
|
*
|
|
* Returns true on success, false if insufficient memory to charge.
|
|
*/
|
|
static bool vrm_calc_charge(struct vma_remap_struct *vrm)
|
|
{
|
|
unsigned long charged;
|
|
|
|
if (!(vrm->vma->vm_flags & VM_ACCOUNT))
|
|
return true;
|
|
|
|
/*
|
|
* If we don't unmap the old mapping, then we account the entirety of
|
|
* the length of the new one. Otherwise it's just the delta in size.
|
|
*/
|
|
if (vrm->flags & MREMAP_DONTUNMAP)
|
|
charged = vrm->new_len >> PAGE_SHIFT;
|
|
else
|
|
charged = vrm->delta >> PAGE_SHIFT;
|
|
|
|
|
|
/* This accounts 'charged' pages of memory. */
|
|
if (security_vm_enough_memory_mm(current->mm, charged))
|
|
return false;
|
|
|
|
vrm->charged = charged;
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* an error has occurred so we will not be using vrm->charged memory. Unaccount
|
|
* this memory if the VMA is accounted.
|
|
*/
|
|
static void vrm_uncharge(struct vma_remap_struct *vrm)
|
|
{
|
|
if (!(vrm->vma->vm_flags & VM_ACCOUNT))
|
|
return;
|
|
|
|
vm_unacct_memory(vrm->charged);
|
|
vrm->charged = 0;
|
|
}
|
|
|
|
/*
|
|
* Update mm exec_vm, stack_vm, data_vm, and locked_vm fields as needed to
|
|
* account for 'bytes' memory used, and if locked, indicate this in the VRM so
|
|
* we can handle this correctly later.
|
|
*/
|
|
static void vrm_stat_account(struct vma_remap_struct *vrm,
|
|
unsigned long bytes)
|
|
{
|
|
unsigned long pages = bytes >> PAGE_SHIFT;
|
|
struct mm_struct *mm = current->mm;
|
|
struct vm_area_struct *vma = vrm->vma;
|
|
|
|
vm_stat_account(mm, vma->vm_flags, pages);
|
|
if (vma->vm_flags & VM_LOCKED)
|
|
mm->locked_vm += pages;
|
|
}
|
|
|
|
/*
|
|
* Perform checks before attempting to write a VMA prior to it being
|
|
* moved.
|
|
*/
|
|
static unsigned long prep_move_vma(struct vma_remap_struct *vrm)
|
|
{
|
|
unsigned long err = 0;
|
|
struct vm_area_struct *vma = vrm->vma;
|
|
unsigned long old_addr = vrm->addr;
|
|
unsigned long old_len = vrm->old_len;
|
|
vm_flags_t dummy = vma->vm_flags;
|
|
|
|
/*
|
|
* We'd prefer to avoid failure later on in do_munmap:
|
|
* which may split one vma into three before unmapping.
|
|
*/
|
|
if (current->mm->map_count >= sysctl_max_map_count - 3)
|
|
return -ENOMEM;
|
|
|
|
if (vma->vm_ops && vma->vm_ops->may_split) {
|
|
if (vma->vm_start != old_addr)
|
|
err = vma->vm_ops->may_split(vma, old_addr);
|
|
if (!err && vma->vm_end != old_addr + old_len)
|
|
err = vma->vm_ops->may_split(vma, old_addr + old_len);
|
|
if (err)
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* Advise KSM to break any KSM pages in the area to be moved:
|
|
* it would be confusing if they were to turn up at the new
|
|
* location, where they happen to coincide with different KSM
|
|
* pages recently unmapped. But leave vma->vm_flags as it was,
|
|
* so KSM can come around to merge on vma and new_vma afterwards.
|
|
*/
|
|
err = ksm_madvise(vma, old_addr, old_addr + old_len,
|
|
MADV_UNMERGEABLE, &dummy);
|
|
if (err)
|
|
return err;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Unmap source VMA for VMA move, turning it from a copy to a move, being
|
|
* careful to ensure we do not underflow memory account while doing so if an
|
|
* accountable move.
|
|
*
|
|
* This is best effort, if we fail to unmap then we simply try to correct
|
|
* accounting and exit.
|
|
*/
|
|
static void unmap_source_vma(struct vma_remap_struct *vrm)
|
|
{
|
|
struct mm_struct *mm = current->mm;
|
|
unsigned long addr = vrm->addr;
|
|
unsigned long len = vrm->old_len;
|
|
struct vm_area_struct *vma = vrm->vma;
|
|
VMA_ITERATOR(vmi, mm, addr);
|
|
int err;
|
|
unsigned long vm_start;
|
|
unsigned long vm_end;
|
|
/*
|
|
* It might seem odd that we check for MREMAP_DONTUNMAP here, given this
|
|
* function implies that we unmap the original VMA, which seems
|
|
* contradictory.
|
|
*
|
|
* However, this occurs when this operation was attempted and an error
|
|
* arose, in which case we _do_ wish to unmap the _new_ VMA, which means
|
|
* we actually _do_ want it be unaccounted.
|
|
*/
|
|
bool accountable_move = (vma->vm_flags & VM_ACCOUNT) &&
|
|
!(vrm->flags & MREMAP_DONTUNMAP);
|
|
|
|
/*
|
|
* So we perform a trick here to prevent incorrect accounting. Any merge
|
|
* or new VMA allocation performed in copy_vma() does not adjust
|
|
* accounting, it is expected that callers handle this.
|
|
*
|
|
* And indeed we already have, accounting appropriately in the case of
|
|
* both in vrm_charge().
|
|
*
|
|
* However, when we unmap the existing VMA (to effect the move), this
|
|
* code will, if the VMA has VM_ACCOUNT set, attempt to unaccount
|
|
* removed pages.
|
|
*
|
|
* To avoid this we temporarily clear this flag, reinstating on any
|
|
* portions of the original VMA that remain.
|
|
*/
|
|
if (accountable_move) {
|
|
vm_flags_clear(vma, VM_ACCOUNT);
|
|
/* We are about to split vma, so store the start/end. */
|
|
vm_start = vma->vm_start;
|
|
vm_end = vma->vm_end;
|
|
}
|
|
|
|
err = do_vmi_munmap(&vmi, mm, addr, len, vrm->uf_unmap, /* unlock= */false);
|
|
vrm->vma = NULL; /* Invalidated. */
|
|
vrm->vmi_needs_invalidate = true;
|
|
if (err) {
|
|
/* OOM: unable to split vma, just get accounts right */
|
|
vm_acct_memory(len >> PAGE_SHIFT);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* If we mremap() from a VMA like this:
|
|
*
|
|
* addr end
|
|
* | |
|
|
* v v
|
|
* |-------------|
|
|
* | |
|
|
* |-------------|
|
|
*
|
|
* Having cleared VM_ACCOUNT from the whole VMA, after we unmap above
|
|
* we'll end up with:
|
|
*
|
|
* addr end
|
|
* | |
|
|
* v v
|
|
* |---| |---|
|
|
* | A | | B |
|
|
* |---| |---|
|
|
*
|
|
* The VMI is still pointing at addr, so vma_prev() will give us A, and
|
|
* a subsequent or lone vma_next() will give as B.
|
|
*
|
|
* do_vmi_munmap() will have restored the VMI back to addr.
|
|
*/
|
|
if (accountable_move) {
|
|
unsigned long end = addr + len;
|
|
|
|
if (vm_start < addr) {
|
|
struct vm_area_struct *prev = vma_prev(&vmi);
|
|
|
|
vm_flags_set(prev, VM_ACCOUNT); /* Acquires VMA lock. */
|
|
}
|
|
|
|
if (vm_end > end) {
|
|
struct vm_area_struct *next = vma_next(&vmi);
|
|
|
|
vm_flags_set(next, VM_ACCOUNT); /* Acquires VMA lock. */
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Copy vrm->vma over to vrm->new_addr possibly adjusting size as part of the
|
|
* process. Additionally handle an error occurring on moving of page tables,
|
|
* where we reset vrm state to cause unmapping of the new VMA.
|
|
*
|
|
* Outputs the newly installed VMA to new_vma_ptr. Returns 0 on success or an
|
|
* error code.
|
|
*/
|
|
static int copy_vma_and_data(struct vma_remap_struct *vrm,
|
|
struct vm_area_struct **new_vma_ptr)
|
|
{
|
|
unsigned long internal_offset = vrm->addr - vrm->vma->vm_start;
|
|
unsigned long internal_pgoff = internal_offset >> PAGE_SHIFT;
|
|
unsigned long new_pgoff = vrm->vma->vm_pgoff + internal_pgoff;
|
|
unsigned long moved_len;
|
|
struct vm_area_struct *vma = vrm->vma;
|
|
struct vm_area_struct *new_vma;
|
|
int err = 0;
|
|
PAGETABLE_MOVE(pmc, NULL, NULL, vrm->addr, vrm->new_addr, vrm->old_len);
|
|
|
|
new_vma = copy_vma(&vma, vrm->new_addr, vrm->new_len, new_pgoff,
|
|
&pmc.need_rmap_locks);
|
|
if (!new_vma) {
|
|
vrm_uncharge(vrm);
|
|
*new_vma_ptr = NULL;
|
|
return -ENOMEM;
|
|
}
|
|
/* By merging, we may have invalidated any iterator in use. */
|
|
if (vma != vrm->vma)
|
|
vrm->vmi_needs_invalidate = true;
|
|
|
|
vrm->vma = vma;
|
|
pmc.old = vma;
|
|
pmc.new = new_vma;
|
|
|
|
moved_len = move_page_tables(&pmc);
|
|
if (moved_len < vrm->old_len)
|
|
err = -ENOMEM;
|
|
else if (vma->vm_ops && vma->vm_ops->mremap)
|
|
err = vma->vm_ops->mremap(new_vma);
|
|
|
|
if (unlikely(err)) {
|
|
PAGETABLE_MOVE(pmc_revert, new_vma, vma, vrm->new_addr,
|
|
vrm->addr, moved_len);
|
|
|
|
/*
|
|
* On error, move entries back from new area to old,
|
|
* which will succeed since page tables still there,
|
|
* and then proceed to unmap new area instead of old.
|
|
*/
|
|
pmc_revert.need_rmap_locks = true;
|
|
move_page_tables(&pmc_revert);
|
|
|
|
vrm->vma = new_vma;
|
|
vrm->old_len = vrm->new_len;
|
|
vrm->addr = vrm->new_addr;
|
|
} else {
|
|
mremap_userfaultfd_prep(new_vma, vrm->uf);
|
|
}
|
|
|
|
fixup_hugetlb_reservations(vma);
|
|
|
|
*new_vma_ptr = new_vma;
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* Perform final tasks for MADV_DONTUNMAP operation, clearing mlock() and
|
|
* account flags on remaining VMA by convention (it cannot be mlock()'d any
|
|
* longer, as pages in range are no longer mapped), and removing anon_vma_chain
|
|
* links from it (if the entire VMA was copied over).
|
|
*/
|
|
static void dontunmap_complete(struct vma_remap_struct *vrm,
|
|
struct vm_area_struct *new_vma)
|
|
{
|
|
unsigned long start = vrm->addr;
|
|
unsigned long end = vrm->addr + vrm->old_len;
|
|
unsigned long old_start = vrm->vma->vm_start;
|
|
unsigned long old_end = vrm->vma->vm_end;
|
|
|
|
/*
|
|
* We always clear VM_LOCKED[ONFAULT] | VM_ACCOUNT on the old
|
|
* vma.
|
|
*/
|
|
vm_flags_clear(vrm->vma, VM_LOCKED_MASK | VM_ACCOUNT);
|
|
|
|
/*
|
|
* anon_vma links of the old vma is no longer needed after its page
|
|
* table has been moved.
|
|
*/
|
|
if (new_vma != vrm->vma && start == old_start && end == old_end)
|
|
unlink_anon_vmas(vrm->vma);
|
|
|
|
/* Because we won't unmap we don't need to touch locked_vm. */
|
|
}
|
|
|
|
static unsigned long move_vma(struct vma_remap_struct *vrm)
|
|
{
|
|
struct mm_struct *mm = current->mm;
|
|
struct vm_area_struct *new_vma;
|
|
unsigned long hiwater_vm;
|
|
int err;
|
|
|
|
err = prep_move_vma(vrm);
|
|
if (err)
|
|
return err;
|
|
|
|
/*
|
|
* If accounted, determine the number of bytes the operation will
|
|
* charge.
|
|
*/
|
|
if (!vrm_calc_charge(vrm))
|
|
return -ENOMEM;
|
|
|
|
/* We don't want racing faults. */
|
|
vma_start_write(vrm->vma);
|
|
|
|
/* Perform copy step. */
|
|
err = copy_vma_and_data(vrm, &new_vma);
|
|
/*
|
|
* If we established the copied-to VMA, we attempt to recover from the
|
|
* error by setting the destination VMA to the source VMA and unmapping
|
|
* it below.
|
|
*/
|
|
if (err && !new_vma)
|
|
return err;
|
|
|
|
/*
|
|
* If we failed to move page tables we still do total_vm increment
|
|
* since do_munmap() will decrement it by old_len == new_len.
|
|
*
|
|
* Since total_vm is about to be raised artificially high for a
|
|
* moment, we need to restore high watermark afterwards: if stats
|
|
* are taken meanwhile, total_vm and hiwater_vm appear too high.
|
|
* If this were a serious issue, we'd add a flag to do_munmap().
|
|
*/
|
|
hiwater_vm = mm->hiwater_vm;
|
|
|
|
vrm_stat_account(vrm, vrm->new_len);
|
|
if (unlikely(!err && (vrm->flags & MREMAP_DONTUNMAP)))
|
|
dontunmap_complete(vrm, new_vma);
|
|
else
|
|
unmap_source_vma(vrm);
|
|
|
|
mm->hiwater_vm = hiwater_vm;
|
|
|
|
return err ? (unsigned long)err : vrm->new_addr;
|
|
}
|
|
|
|
/*
|
|
* The user has requested that the VMA be shrunk (i.e., old_len > new_len), so
|
|
* execute this, optionally dropping the mmap lock when we do so.
|
|
*
|
|
* In both cases this invalidates the VMA, however if we don't drop the lock,
|
|
* then load the correct VMA into vrm->vma afterwards.
|
|
*/
|
|
static unsigned long shrink_vma(struct vma_remap_struct *vrm,
|
|
bool drop_lock)
|
|
{
|
|
struct mm_struct *mm = current->mm;
|
|
unsigned long unmap_start = vrm->addr + vrm->new_len;
|
|
unsigned long unmap_bytes = vrm->delta;
|
|
unsigned long res;
|
|
VMA_ITERATOR(vmi, mm, unmap_start);
|
|
|
|
VM_BUG_ON(vrm->remap_type != MREMAP_SHRINK);
|
|
|
|
res = do_vmi_munmap(&vmi, mm, unmap_start, unmap_bytes,
|
|
vrm->uf_unmap, drop_lock);
|
|
vrm->vma = NULL; /* Invalidated. */
|
|
if (res)
|
|
return res;
|
|
|
|
/*
|
|
* If we've not dropped the lock, then we should reload the VMA to
|
|
* replace the invalidated VMA with the one that may have now been
|
|
* split.
|
|
*/
|
|
if (drop_lock) {
|
|
vrm->mmap_locked = false;
|
|
} else {
|
|
vrm->vma = vma_lookup(mm, vrm->addr);
|
|
if (!vrm->vma)
|
|
return -EFAULT;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* mremap_to() - remap a vma to a new location.
|
|
* Returns: The new address of the vma or an error.
|
|
*/
|
|
static unsigned long mremap_to(struct vma_remap_struct *vrm)
|
|
{
|
|
struct mm_struct *mm = current->mm;
|
|
unsigned long err;
|
|
|
|
if (vrm->flags & MREMAP_FIXED) {
|
|
/*
|
|
* In mremap_to().
|
|
* VMA is moved to dst address, and munmap dst first.
|
|
* do_munmap will check if dst is sealed.
|
|
*/
|
|
err = do_munmap(mm, vrm->new_addr, vrm->new_len,
|
|
vrm->uf_unmap_early);
|
|
vrm->vma = NULL; /* Invalidated. */
|
|
vrm->vmi_needs_invalidate = true;
|
|
if (err)
|
|
return err;
|
|
|
|
/*
|
|
* If we remap a portion of a VMA elsewhere in the same VMA,
|
|
* this can invalidate the old VMA. Reset.
|
|
*/
|
|
vrm->vma = vma_lookup(mm, vrm->addr);
|
|
if (!vrm->vma)
|
|
return -EFAULT;
|
|
}
|
|
|
|
if (vrm->remap_type == MREMAP_SHRINK) {
|
|
err = shrink_vma(vrm, /* drop_lock= */false);
|
|
if (err)
|
|
return err;
|
|
|
|
/* Set up for the move now shrink has been executed. */
|
|
vrm->old_len = vrm->new_len;
|
|
}
|
|
|
|
/* MREMAP_DONTUNMAP expands by old_len since old_len == new_len */
|
|
if (vrm->flags & MREMAP_DONTUNMAP) {
|
|
vm_flags_t vm_flags = vrm->vma->vm_flags;
|
|
unsigned long pages = vrm->old_len >> PAGE_SHIFT;
|
|
|
|
if (!may_expand_vm(mm, vm_flags, pages))
|
|
return -ENOMEM;
|
|
}
|
|
|
|
err = vrm_set_new_addr(vrm);
|
|
if (err)
|
|
return err;
|
|
|
|
return move_vma(vrm);
|
|
}
|
|
|
|
static int vma_expandable(struct vm_area_struct *vma, unsigned long delta)
|
|
{
|
|
unsigned long end = vma->vm_end + delta;
|
|
|
|
if (end < vma->vm_end) /* overflow */
|
|
return 0;
|
|
if (find_vma_intersection(vma->vm_mm, vma->vm_end, end))
|
|
return 0;
|
|
if (get_unmapped_area(NULL, vma->vm_start, end - vma->vm_start,
|
|
0, MAP_FIXED) & ~PAGE_MASK)
|
|
return 0;
|
|
return 1;
|
|
}
|
|
|
|
/* Determine whether we are actually able to execute an in-place expansion. */
|
|
static bool vrm_can_expand_in_place(struct vma_remap_struct *vrm)
|
|
{
|
|
/* Number of bytes from vrm->addr to end of VMA. */
|
|
unsigned long suffix_bytes = vrm->vma->vm_end - vrm->addr;
|
|
|
|
/* If end of range aligns to end of VMA, we can just expand in-place. */
|
|
if (suffix_bytes != vrm->old_len)
|
|
return false;
|
|
|
|
/* Check whether this is feasible. */
|
|
if (!vma_expandable(vrm->vma, vrm->delta))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* We know we can expand the VMA in-place by delta pages, so do so.
|
|
*
|
|
* If we discover the VMA is locked, update mm_struct statistics accordingly and
|
|
* indicate so to the caller.
|
|
*/
|
|
static unsigned long expand_vma_in_place(struct vma_remap_struct *vrm)
|
|
{
|
|
struct mm_struct *mm = current->mm;
|
|
struct vm_area_struct *vma = vrm->vma;
|
|
VMA_ITERATOR(vmi, mm, vma->vm_end);
|
|
|
|
if (!vrm_calc_charge(vrm))
|
|
return -ENOMEM;
|
|
|
|
/*
|
|
* Function vma_merge_extend() is called on the
|
|
* extension we are adding to the already existing vma,
|
|
* vma_merge_extend() will merge this extension with the
|
|
* already existing vma (expand operation itself) and
|
|
* possibly also with the next vma if it becomes
|
|
* adjacent to the expanded vma and otherwise
|
|
* compatible.
|
|
*/
|
|
vma = vma_merge_extend(&vmi, vma, vrm->delta);
|
|
if (!vma) {
|
|
vrm_uncharge(vrm);
|
|
return -ENOMEM;
|
|
}
|
|
vrm->vma = vma;
|
|
|
|
vrm_stat_account(vrm, vrm->delta);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static bool align_hugetlb(struct vma_remap_struct *vrm)
|
|
{
|
|
struct hstate *h __maybe_unused = hstate_vma(vrm->vma);
|
|
|
|
vrm->old_len = ALIGN(vrm->old_len, huge_page_size(h));
|
|
vrm->new_len = ALIGN(vrm->new_len, huge_page_size(h));
|
|
|
|
/* addrs must be huge page aligned */
|
|
if (vrm->addr & ~huge_page_mask(h))
|
|
return false;
|
|
if (vrm->new_addr & ~huge_page_mask(h))
|
|
return false;
|
|
|
|
/*
|
|
* Don't allow remap expansion, because the underlying hugetlb
|
|
* reservation is not yet capable to handle split reservation.
|
|
*/
|
|
if (vrm->new_len > vrm->old_len)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* We are mremap()'ing without specifying a fixed address to move to, but are
|
|
* requesting that the VMA's size be increased.
|
|
*
|
|
* Try to do so in-place, if this fails, then move the VMA to a new location to
|
|
* action the change.
|
|
*/
|
|
static unsigned long expand_vma(struct vma_remap_struct *vrm)
|
|
{
|
|
unsigned long err;
|
|
|
|
/*
|
|
* [addr, old_len) spans precisely to the end of the VMA, so try to
|
|
* expand it in-place.
|
|
*/
|
|
if (vrm_can_expand_in_place(vrm)) {
|
|
err = expand_vma_in_place(vrm);
|
|
if (err)
|
|
return err;
|
|
|
|
/* OK we're done! */
|
|
return vrm->addr;
|
|
}
|
|
|
|
/*
|
|
* We weren't able to just expand or shrink the area,
|
|
* we need to create a new one and move it.
|
|
*/
|
|
|
|
/* We're not allowed to move the VMA, so error out. */
|
|
if (!(vrm->flags & MREMAP_MAYMOVE))
|
|
return -ENOMEM;
|
|
|
|
/* Find a new location to move the VMA to. */
|
|
err = vrm_set_new_addr(vrm);
|
|
if (err)
|
|
return err;
|
|
|
|
return move_vma(vrm);
|
|
}
|
|
|
|
/*
|
|
* Attempt to resize the VMA in-place, if we cannot, then move the VMA to the
|
|
* first available address to perform the operation.
|
|
*/
|
|
static unsigned long mremap_at(struct vma_remap_struct *vrm)
|
|
{
|
|
unsigned long res;
|
|
|
|
switch (vrm->remap_type) {
|
|
case MREMAP_INVALID:
|
|
break;
|
|
case MREMAP_NO_RESIZE:
|
|
/* NO-OP CASE - resizing to the same size. */
|
|
return vrm->addr;
|
|
case MREMAP_SHRINK:
|
|
/*
|
|
* SHRINK CASE. Can always be done in-place.
|
|
*
|
|
* Simply unmap the shrunken portion of the VMA. This does all
|
|
* the needed commit accounting, and we indicate that the mmap
|
|
* lock should be dropped.
|
|
*/
|
|
res = shrink_vma(vrm, /* drop_lock= */true);
|
|
if (res)
|
|
return res;
|
|
|
|
return vrm->addr;
|
|
case MREMAP_EXPAND:
|
|
return expand_vma(vrm);
|
|
}
|
|
|
|
/* Should not be possible. */
|
|
WARN_ON_ONCE(1);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/*
|
|
* Will this operation result in the VMA being expanded or moved and thus need
|
|
* to map a new portion of virtual address space?
|
|
*/
|
|
static bool vrm_will_map_new(struct vma_remap_struct *vrm)
|
|
{
|
|
if (vrm->remap_type == MREMAP_EXPAND)
|
|
return true;
|
|
|
|
if (vrm_implies_new_addr(vrm))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
/* Does this remap ONLY move mappings? */
|
|
static bool vrm_move_only(struct vma_remap_struct *vrm)
|
|
{
|
|
if (!(vrm->flags & MREMAP_FIXED))
|
|
return false;
|
|
|
|
if (vrm->old_len != vrm->new_len)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
static void notify_uffd(struct vma_remap_struct *vrm, bool failed)
|
|
{
|
|
struct mm_struct *mm = current->mm;
|
|
|
|
/* Regardless of success/failure, we always notify of any unmaps. */
|
|
userfaultfd_unmap_complete(mm, vrm->uf_unmap_early);
|
|
if (failed)
|
|
mremap_userfaultfd_fail(vrm->uf);
|
|
else
|
|
mremap_userfaultfd_complete(vrm->uf, vrm->addr,
|
|
vrm->new_addr, vrm->old_len);
|
|
userfaultfd_unmap_complete(mm, vrm->uf_unmap);
|
|
}
|
|
|
|
static bool vma_multi_allowed(struct vm_area_struct *vma)
|
|
{
|
|
struct file *file;
|
|
|
|
/*
|
|
* We can't support moving multiple uffd VMAs as notify requires
|
|
* mmap lock to be dropped.
|
|
*/
|
|
if (userfaultfd_armed(vma))
|
|
return false;
|
|
|
|
/*
|
|
* Custom get unmapped area might result in MREMAP_FIXED not
|
|
* being obeyed.
|
|
*/
|
|
file = vma->vm_file;
|
|
if (file && !vma_is_shmem(vma) && !is_vm_hugetlb_page(vma)) {
|
|
const struct file_operations *fop = file->f_op;
|
|
|
|
if (fop->get_unmapped_area)
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static int check_prep_vma(struct vma_remap_struct *vrm)
|
|
{
|
|
struct vm_area_struct *vma = vrm->vma;
|
|
struct mm_struct *mm = current->mm;
|
|
unsigned long addr = vrm->addr;
|
|
unsigned long old_len, new_len, pgoff;
|
|
|
|
if (!vma)
|
|
return -EFAULT;
|
|
|
|
/* If mseal()'d, mremap() is prohibited. */
|
|
if (vma_is_sealed(vma))
|
|
return -EPERM;
|
|
|
|
/* Align to hugetlb page size, if required. */
|
|
if (is_vm_hugetlb_page(vma) && !align_hugetlb(vrm))
|
|
return -EINVAL;
|
|
|
|
vrm_set_delta(vrm);
|
|
vrm->remap_type = vrm_remap_type(vrm);
|
|
/* For convenience, we set new_addr even if VMA won't move. */
|
|
if (!vrm_implies_new_addr(vrm))
|
|
vrm->new_addr = addr;
|
|
|
|
/* Below only meaningful if we expand or move a VMA. */
|
|
if (!vrm_will_map_new(vrm))
|
|
return 0;
|
|
|
|
old_len = vrm->old_len;
|
|
new_len = vrm->new_len;
|
|
|
|
/*
|
|
* !old_len is a special case where an attempt is made to 'duplicate'
|
|
* a mapping. This makes no sense for private mappings as it will
|
|
* instead create a fresh/new mapping unrelated to the original. This
|
|
* is contrary to the basic idea of mremap which creates new mappings
|
|
* based on the original. There are no known use cases for this
|
|
* behavior. As a result, fail such attempts.
|
|
*/
|
|
if (!old_len && !(vma->vm_flags & (VM_SHARED | VM_MAYSHARE))) {
|
|
pr_warn_once("%s (%d): attempted to duplicate a private mapping with mremap. This is not supported.\n",
|
|
current->comm, current->pid);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if ((vrm->flags & MREMAP_DONTUNMAP) &&
|
|
(vma->vm_flags & (VM_DONTEXPAND | VM_PFNMAP)))
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* We permit crossing of boundaries for the range being unmapped due to
|
|
* a shrink.
|
|
*/
|
|
if (vrm->remap_type == MREMAP_SHRINK)
|
|
old_len = new_len;
|
|
|
|
/*
|
|
* We can't remap across the end of VMAs, as another VMA may be
|
|
* adjacent:
|
|
*
|
|
* addr vma->vm_end
|
|
* |-----.----------|
|
|
* | . |
|
|
* |-----.----------|
|
|
* .<--------->xxx>
|
|
* old_len
|
|
*
|
|
* We also require that vma->vm_start <= addr < vma->vm_end.
|
|
*/
|
|
if (old_len > vma->vm_end - addr)
|
|
return -EFAULT;
|
|
|
|
if (new_len == old_len)
|
|
return 0;
|
|
|
|
/* We are expanding and the VMA is mlock()'d so we need to populate. */
|
|
if (vma->vm_flags & VM_LOCKED)
|
|
vrm->populate_expand = true;
|
|
|
|
/* Need to be careful about a growing mapping */
|
|
pgoff = (addr - vma->vm_start) >> PAGE_SHIFT;
|
|
pgoff += vma->vm_pgoff;
|
|
if (pgoff + (new_len >> PAGE_SHIFT) < pgoff)
|
|
return -EINVAL;
|
|
|
|
if (vma->vm_flags & (VM_DONTEXPAND | VM_PFNMAP))
|
|
return -EFAULT;
|
|
|
|
if (!mlock_future_ok(mm, vma->vm_flags, vrm->delta))
|
|
return -EAGAIN;
|
|
|
|
if (!may_expand_vm(mm, vma->vm_flags, vrm->delta >> PAGE_SHIFT))
|
|
return -ENOMEM;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Are the parameters passed to mremap() valid? If so return 0, otherwise return
|
|
* error.
|
|
*/
|
|
static unsigned long check_mremap_params(struct vma_remap_struct *vrm)
|
|
|
|
{
|
|
unsigned long addr = vrm->addr;
|
|
unsigned long flags = vrm->flags;
|
|
|
|
/* Ensure no unexpected flag values. */
|
|
if (flags & ~(MREMAP_FIXED | MREMAP_MAYMOVE | MREMAP_DONTUNMAP))
|
|
return -EINVAL;
|
|
|
|
/* Start address must be page-aligned. */
|
|
if (offset_in_page(addr))
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* We allow a zero old-len as a special case
|
|
* for DOS-emu "duplicate shm area" thing. But
|
|
* a zero new-len is nonsensical.
|
|
*/
|
|
if (!vrm->new_len)
|
|
return -EINVAL;
|
|
|
|
/* Is the new length or address silly? */
|
|
if (vrm->new_len > TASK_SIZE ||
|
|
vrm->new_addr > TASK_SIZE - vrm->new_len)
|
|
return -EINVAL;
|
|
|
|
/* Remainder of checks are for cases with specific new_addr. */
|
|
if (!vrm_implies_new_addr(vrm))
|
|
return 0;
|
|
|
|
/* The new address must be page-aligned. */
|
|
if (offset_in_page(vrm->new_addr))
|
|
return -EINVAL;
|
|
|
|
/* A fixed address implies a move. */
|
|
if (!(flags & MREMAP_MAYMOVE))
|
|
return -EINVAL;
|
|
|
|
/* MREMAP_DONTUNMAP does not allow resizing in the process. */
|
|
if (flags & MREMAP_DONTUNMAP && vrm->old_len != vrm->new_len)
|
|
return -EINVAL;
|
|
|
|
/* Target VMA must not overlap source VMA. */
|
|
if (vrm_overlaps(vrm))
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* move_vma() need us to stay 4 maps below the threshold, otherwise
|
|
* it will bail out at the very beginning.
|
|
* That is a problem if we have already unmaped the regions here
|
|
* (new_addr, and old_addr), because userspace will not know the
|
|
* state of the vma's after it gets -ENOMEM.
|
|
* So, to avoid such scenario we can pre-compute if the whole
|
|
* operation has high chances to success map-wise.
|
|
* Worst-scenario case is when both vma's (new_addr and old_addr) get
|
|
* split in 3 before unmapping it.
|
|
* That means 2 more maps (1 for each) to the ones we already hold.
|
|
* Check whether current map count plus 2 still leads us to 4 maps below
|
|
* the threshold, otherwise return -ENOMEM here to be more safe.
|
|
*/
|
|
if ((current->mm->map_count + 2) >= sysctl_max_map_count - 3)
|
|
return -ENOMEM;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static unsigned long remap_move(struct vma_remap_struct *vrm)
|
|
{
|
|
struct vm_area_struct *vma;
|
|
unsigned long start = vrm->addr;
|
|
unsigned long end = vrm->addr + vrm->old_len;
|
|
unsigned long new_addr = vrm->new_addr;
|
|
bool allowed = true, seen_vma = false;
|
|
unsigned long target_addr = new_addr;
|
|
unsigned long res = -EFAULT;
|
|
unsigned long last_end;
|
|
VMA_ITERATOR(vmi, current->mm, start);
|
|
|
|
/*
|
|
* When moving VMAs we allow for batched moves across multiple VMAs,
|
|
* with all VMAs in the input range [addr, addr + old_len) being moved
|
|
* (and split as necessary).
|
|
*/
|
|
for_each_vma_range(vmi, vma, end) {
|
|
/* Account for start, end not aligned with VMA start, end. */
|
|
unsigned long addr = max(vma->vm_start, start);
|
|
unsigned long len = min(end, vma->vm_end) - addr;
|
|
unsigned long offset, res_vma;
|
|
|
|
if (!allowed)
|
|
return -EFAULT;
|
|
|
|
/* No gap permitted at the start of the range. */
|
|
if (!seen_vma && start < vma->vm_start)
|
|
return -EFAULT;
|
|
|
|
/*
|
|
* To sensibly move multiple VMAs, accounting for the fact that
|
|
* get_unmapped_area() may align even MAP_FIXED moves, we simply
|
|
* attempt to move such that the gaps between source VMAs remain
|
|
* consistent in destination VMAs, e.g.:
|
|
*
|
|
* X Y X Y
|
|
* <---> <-> <---> <->
|
|
* |-------| |-----| |-----| |-------| |-----| |-----|
|
|
* | A | | B | | C | ---> | A' | | B' | | C' |
|
|
* |-------| |-----| |-----| |-------| |-----| |-----|
|
|
* new_addr
|
|
*
|
|
* So we map B' at A'->vm_end + X, and C' at B'->vm_end + Y.
|
|
*/
|
|
offset = seen_vma ? vma->vm_start - last_end : 0;
|
|
last_end = vma->vm_end;
|
|
|
|
vrm->vma = vma;
|
|
vrm->addr = addr;
|
|
vrm->new_addr = target_addr + offset;
|
|
vrm->old_len = vrm->new_len = len;
|
|
|
|
allowed = vma_multi_allowed(vma);
|
|
if (seen_vma && !allowed)
|
|
return -EFAULT;
|
|
|
|
res_vma = check_prep_vma(vrm);
|
|
if (!res_vma)
|
|
res_vma = mremap_to(vrm);
|
|
if (IS_ERR_VALUE(res_vma))
|
|
return res_vma;
|
|
|
|
if (!seen_vma) {
|
|
VM_WARN_ON_ONCE(allowed && res_vma != new_addr);
|
|
res = res_vma;
|
|
}
|
|
|
|
/* mmap lock is only dropped on shrink. */
|
|
VM_WARN_ON_ONCE(!vrm->mmap_locked);
|
|
/* This is a move, no expand should occur. */
|
|
VM_WARN_ON_ONCE(vrm->populate_expand);
|
|
|
|
if (vrm->vmi_needs_invalidate) {
|
|
vma_iter_invalidate(&vmi);
|
|
vrm->vmi_needs_invalidate = false;
|
|
}
|
|
seen_vma = true;
|
|
target_addr = res_vma + vrm->new_len;
|
|
}
|
|
|
|
return res;
|
|
}
|
|
|
|
static unsigned long do_mremap(struct vma_remap_struct *vrm)
|
|
{
|
|
struct mm_struct *mm = current->mm;
|
|
unsigned long res;
|
|
bool failed;
|
|
|
|
vrm->old_len = PAGE_ALIGN(vrm->old_len);
|
|
vrm->new_len = PAGE_ALIGN(vrm->new_len);
|
|
|
|
res = check_mremap_params(vrm);
|
|
if (res)
|
|
return res;
|
|
|
|
if (mmap_write_lock_killable(mm))
|
|
return -EINTR;
|
|
vrm->mmap_locked = true;
|
|
|
|
if (vrm_move_only(vrm)) {
|
|
res = remap_move(vrm);
|
|
} else {
|
|
vrm->vma = vma_lookup(current->mm, vrm->addr);
|
|
res = check_prep_vma(vrm);
|
|
if (res)
|
|
goto out;
|
|
|
|
/* Actually execute mremap. */
|
|
res = vrm_implies_new_addr(vrm) ? mremap_to(vrm) : mremap_at(vrm);
|
|
}
|
|
|
|
out:
|
|
failed = IS_ERR_VALUE(res);
|
|
|
|
if (vrm->mmap_locked)
|
|
mmap_write_unlock(mm);
|
|
|
|
/* VMA mlock'd + was expanded, so populated expanded region. */
|
|
if (!failed && vrm->populate_expand)
|
|
mm_populate(vrm->new_addr + vrm->old_len, vrm->delta);
|
|
|
|
notify_uffd(vrm, failed);
|
|
return res;
|
|
}
|
|
|
|
/*
|
|
* Expand (or shrink) an existing mapping, potentially moving it at the
|
|
* same time (controlled by the MREMAP_MAYMOVE flag and available VM space)
|
|
*
|
|
* MREMAP_FIXED option added 5-Dec-1999 by Benjamin LaHaise
|
|
* This option implies MREMAP_MAYMOVE.
|
|
*/
|
|
SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len,
|
|
unsigned long, new_len, unsigned long, flags,
|
|
unsigned long, new_addr)
|
|
{
|
|
struct vm_userfaultfd_ctx uf = NULL_VM_UFFD_CTX;
|
|
LIST_HEAD(uf_unmap_early);
|
|
LIST_HEAD(uf_unmap);
|
|
/*
|
|
* There is a deliberate asymmetry here: we strip the pointer tag
|
|
* from the old address but leave the new address alone. This is
|
|
* for consistency with mmap(), where we prevent the creation of
|
|
* aliasing mappings in userspace by leaving the tag bits of the
|
|
* mapping address intact. A non-zero tag will cause the subsequent
|
|
* range checks to reject the address as invalid.
|
|
*
|
|
* See Documentation/arch/arm64/tagged-address-abi.rst for more
|
|
* information.
|
|
*/
|
|
struct vma_remap_struct vrm = {
|
|
.addr = untagged_addr(addr),
|
|
.old_len = old_len,
|
|
.new_len = new_len,
|
|
.flags = flags,
|
|
.new_addr = new_addr,
|
|
|
|
.uf = &uf,
|
|
.uf_unmap_early = &uf_unmap_early,
|
|
.uf_unmap = &uf_unmap,
|
|
|
|
.remap_type = MREMAP_INVALID, /* We set later. */
|
|
};
|
|
|
|
return do_mremap(&vrm);
|
|
}
|