mirror of
git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
synced 2025-08-05 16:54:27 +00:00

When pmd_to_hmm_pfn_flags() is unused, it prevents kernel builds with clang, `make W=1` and CONFIG_TRANSPARENT_HUGEPAGE=n: mm/hmm.c:186:29: warning: unused function 'pmd_to_hmm_pfn_flags' [-Wunused-function] Fix this by moving the function to the respective existing ifdeffery for its the only user. See also:6863f5643d
("kbuild: allow Clang to find unused static inline functions for W=1 build") Link: https://lkml.kernel.org/r/20250710082403.664093-1-andriy.shevchenko@linux.intel.com Fixes:992de9a8b7
("mm/hmm: allow to mirror vma of a file on a DAX backed filesystem") Signed-off-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Reviewed-by: Leon Romanovsky <leonro@nvidia.com> Reviewed-by: Alistair Popple <apopple@nvidia.com> Cc: Andriy Shevchenko <andriy.shevchenko@linux.intel.com> Cc: Bill Wendling <morbo@google.com> Cc: Jerome Glisse <jglisse@redhat.com> Cc: Justin Stitt <justinstitt@google.com> Cc: Nathan Chancellor <nathan@kernel.org> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
829 lines
23 KiB
C
829 lines
23 KiB
C
// SPDX-License-Identifier: GPL-2.0-or-later
|
|
/*
|
|
* Copyright 2013 Red Hat Inc.
|
|
*
|
|
* Authors: Jérôme Glisse <jglisse@redhat.com>
|
|
*/
|
|
/*
|
|
* Refer to include/linux/hmm.h for information about heterogeneous memory
|
|
* management or HMM for short.
|
|
*/
|
|
#include <linux/pagewalk.h>
|
|
#include <linux/hmm.h>
|
|
#include <linux/hmm-dma.h>
|
|
#include <linux/init.h>
|
|
#include <linux/rmap.h>
|
|
#include <linux/swap.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/mmzone.h>
|
|
#include <linux/pagemap.h>
|
|
#include <linux/swapops.h>
|
|
#include <linux/hugetlb.h>
|
|
#include <linux/memremap.h>
|
|
#include <linux/sched/mm.h>
|
|
#include <linux/jump_label.h>
|
|
#include <linux/dma-mapping.h>
|
|
#include <linux/pci-p2pdma.h>
|
|
#include <linux/mmu_notifier.h>
|
|
#include <linux/memory_hotplug.h>
|
|
|
|
#include "internal.h"
|
|
|
|
struct hmm_vma_walk {
|
|
struct hmm_range *range;
|
|
unsigned long last;
|
|
};
|
|
|
|
enum {
|
|
HMM_NEED_FAULT = 1 << 0,
|
|
HMM_NEED_WRITE_FAULT = 1 << 1,
|
|
HMM_NEED_ALL_BITS = HMM_NEED_FAULT | HMM_NEED_WRITE_FAULT,
|
|
};
|
|
|
|
enum {
|
|
/* These flags are carried from input-to-output */
|
|
HMM_PFN_INOUT_FLAGS = HMM_PFN_DMA_MAPPED | HMM_PFN_P2PDMA |
|
|
HMM_PFN_P2PDMA_BUS,
|
|
};
|
|
|
|
static int hmm_pfns_fill(unsigned long addr, unsigned long end,
|
|
struct hmm_range *range, unsigned long cpu_flags)
|
|
{
|
|
unsigned long i = (addr - range->start) >> PAGE_SHIFT;
|
|
|
|
for (; addr < end; addr += PAGE_SIZE, i++) {
|
|
range->hmm_pfns[i] &= HMM_PFN_INOUT_FLAGS;
|
|
range->hmm_pfns[i] |= cpu_flags;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* hmm_vma_fault() - fault in a range lacking valid pmd or pte(s)
|
|
* @addr: range virtual start address (inclusive)
|
|
* @end: range virtual end address (exclusive)
|
|
* @required_fault: HMM_NEED_* flags
|
|
* @walk: mm_walk structure
|
|
* Return: -EBUSY after page fault, or page fault error
|
|
*
|
|
* This function will be called whenever pmd_none() or pte_none() returns true,
|
|
* or whenever there is no page directory covering the virtual address range.
|
|
*/
|
|
static int hmm_vma_fault(unsigned long addr, unsigned long end,
|
|
unsigned int required_fault, struct mm_walk *walk)
|
|
{
|
|
struct hmm_vma_walk *hmm_vma_walk = walk->private;
|
|
struct vm_area_struct *vma = walk->vma;
|
|
unsigned int fault_flags = FAULT_FLAG_REMOTE;
|
|
|
|
WARN_ON_ONCE(!required_fault);
|
|
hmm_vma_walk->last = addr;
|
|
|
|
if (required_fault & HMM_NEED_WRITE_FAULT) {
|
|
if (!(vma->vm_flags & VM_WRITE))
|
|
return -EPERM;
|
|
fault_flags |= FAULT_FLAG_WRITE;
|
|
}
|
|
|
|
for (; addr < end; addr += PAGE_SIZE)
|
|
if (handle_mm_fault(vma, addr, fault_flags, NULL) &
|
|
VM_FAULT_ERROR)
|
|
return -EFAULT;
|
|
return -EBUSY;
|
|
}
|
|
|
|
static unsigned int hmm_pte_need_fault(const struct hmm_vma_walk *hmm_vma_walk,
|
|
unsigned long pfn_req_flags,
|
|
unsigned long cpu_flags)
|
|
{
|
|
struct hmm_range *range = hmm_vma_walk->range;
|
|
|
|
/*
|
|
* So we not only consider the individual per page request we also
|
|
* consider the default flags requested for the range. The API can
|
|
* be used 2 ways. The first one where the HMM user coalesces
|
|
* multiple page faults into one request and sets flags per pfn for
|
|
* those faults. The second one where the HMM user wants to pre-
|
|
* fault a range with specific flags. For the latter one it is a
|
|
* waste to have the user pre-fill the pfn arrays with a default
|
|
* flags value.
|
|
*/
|
|
pfn_req_flags &= range->pfn_flags_mask;
|
|
pfn_req_flags |= range->default_flags;
|
|
|
|
/* We aren't ask to do anything ... */
|
|
if (!(pfn_req_flags & HMM_PFN_REQ_FAULT))
|
|
return 0;
|
|
|
|
/* Need to write fault ? */
|
|
if ((pfn_req_flags & HMM_PFN_REQ_WRITE) &&
|
|
!(cpu_flags & HMM_PFN_WRITE))
|
|
return HMM_NEED_FAULT | HMM_NEED_WRITE_FAULT;
|
|
|
|
/* If CPU page table is not valid then we need to fault */
|
|
if (!(cpu_flags & HMM_PFN_VALID))
|
|
return HMM_NEED_FAULT;
|
|
return 0;
|
|
}
|
|
|
|
static unsigned int
|
|
hmm_range_need_fault(const struct hmm_vma_walk *hmm_vma_walk,
|
|
const unsigned long hmm_pfns[], unsigned long npages,
|
|
unsigned long cpu_flags)
|
|
{
|
|
struct hmm_range *range = hmm_vma_walk->range;
|
|
unsigned int required_fault = 0;
|
|
unsigned long i;
|
|
|
|
/*
|
|
* If the default flags do not request to fault pages, and the mask does
|
|
* not allow for individual pages to be faulted, then
|
|
* hmm_pte_need_fault() will always return 0.
|
|
*/
|
|
if (!((range->default_flags | range->pfn_flags_mask) &
|
|
HMM_PFN_REQ_FAULT))
|
|
return 0;
|
|
|
|
for (i = 0; i < npages; ++i) {
|
|
required_fault |= hmm_pte_need_fault(hmm_vma_walk, hmm_pfns[i],
|
|
cpu_flags);
|
|
if (required_fault == HMM_NEED_ALL_BITS)
|
|
return required_fault;
|
|
}
|
|
return required_fault;
|
|
}
|
|
|
|
static int hmm_vma_walk_hole(unsigned long addr, unsigned long end,
|
|
__always_unused int depth, struct mm_walk *walk)
|
|
{
|
|
struct hmm_vma_walk *hmm_vma_walk = walk->private;
|
|
struct hmm_range *range = hmm_vma_walk->range;
|
|
unsigned int required_fault;
|
|
unsigned long i, npages;
|
|
unsigned long *hmm_pfns;
|
|
|
|
i = (addr - range->start) >> PAGE_SHIFT;
|
|
npages = (end - addr) >> PAGE_SHIFT;
|
|
hmm_pfns = &range->hmm_pfns[i];
|
|
required_fault =
|
|
hmm_range_need_fault(hmm_vma_walk, hmm_pfns, npages, 0);
|
|
if (!walk->vma) {
|
|
if (required_fault)
|
|
return -EFAULT;
|
|
return hmm_pfns_fill(addr, end, range, HMM_PFN_ERROR);
|
|
}
|
|
if (required_fault)
|
|
return hmm_vma_fault(addr, end, required_fault, walk);
|
|
return hmm_pfns_fill(addr, end, range, 0);
|
|
}
|
|
|
|
static inline unsigned long hmm_pfn_flags_order(unsigned long order)
|
|
{
|
|
return order << HMM_PFN_ORDER_SHIFT;
|
|
}
|
|
|
|
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
|
|
static inline unsigned long pmd_to_hmm_pfn_flags(struct hmm_range *range,
|
|
pmd_t pmd)
|
|
{
|
|
if (pmd_protnone(pmd))
|
|
return 0;
|
|
return (pmd_write(pmd) ? (HMM_PFN_VALID | HMM_PFN_WRITE) :
|
|
HMM_PFN_VALID) |
|
|
hmm_pfn_flags_order(PMD_SHIFT - PAGE_SHIFT);
|
|
}
|
|
|
|
static int hmm_vma_handle_pmd(struct mm_walk *walk, unsigned long addr,
|
|
unsigned long end, unsigned long hmm_pfns[],
|
|
pmd_t pmd)
|
|
{
|
|
struct hmm_vma_walk *hmm_vma_walk = walk->private;
|
|
struct hmm_range *range = hmm_vma_walk->range;
|
|
unsigned long pfn, npages, i;
|
|
unsigned int required_fault;
|
|
unsigned long cpu_flags;
|
|
|
|
npages = (end - addr) >> PAGE_SHIFT;
|
|
cpu_flags = pmd_to_hmm_pfn_flags(range, pmd);
|
|
required_fault =
|
|
hmm_range_need_fault(hmm_vma_walk, hmm_pfns, npages, cpu_flags);
|
|
if (required_fault)
|
|
return hmm_vma_fault(addr, end, required_fault, walk);
|
|
|
|
pfn = pmd_pfn(pmd) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
|
|
for (i = 0; addr < end; addr += PAGE_SIZE, i++, pfn++) {
|
|
hmm_pfns[i] &= HMM_PFN_INOUT_FLAGS;
|
|
hmm_pfns[i] |= pfn | cpu_flags;
|
|
}
|
|
return 0;
|
|
}
|
|
#else /* CONFIG_TRANSPARENT_HUGEPAGE */
|
|
/* stub to allow the code below to compile */
|
|
int hmm_vma_handle_pmd(struct mm_walk *walk, unsigned long addr,
|
|
unsigned long end, unsigned long hmm_pfns[], pmd_t pmd);
|
|
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
|
|
|
|
static inline unsigned long pte_to_hmm_pfn_flags(struct hmm_range *range,
|
|
pte_t pte)
|
|
{
|
|
if (pte_none(pte) || !pte_present(pte) || pte_protnone(pte))
|
|
return 0;
|
|
return pte_write(pte) ? (HMM_PFN_VALID | HMM_PFN_WRITE) : HMM_PFN_VALID;
|
|
}
|
|
|
|
static int hmm_vma_handle_pte(struct mm_walk *walk, unsigned long addr,
|
|
unsigned long end, pmd_t *pmdp, pte_t *ptep,
|
|
unsigned long *hmm_pfn)
|
|
{
|
|
struct hmm_vma_walk *hmm_vma_walk = walk->private;
|
|
struct hmm_range *range = hmm_vma_walk->range;
|
|
unsigned int required_fault;
|
|
unsigned long cpu_flags;
|
|
pte_t pte = ptep_get(ptep);
|
|
uint64_t pfn_req_flags = *hmm_pfn;
|
|
uint64_t new_pfn_flags = 0;
|
|
|
|
if (pte_none_mostly(pte)) {
|
|
required_fault =
|
|
hmm_pte_need_fault(hmm_vma_walk, pfn_req_flags, 0);
|
|
if (required_fault)
|
|
goto fault;
|
|
goto out;
|
|
}
|
|
|
|
if (!pte_present(pte)) {
|
|
swp_entry_t entry = pte_to_swp_entry(pte);
|
|
|
|
/*
|
|
* Don't fault in device private pages owned by the caller,
|
|
* just report the PFN.
|
|
*/
|
|
if (is_device_private_entry(entry) &&
|
|
page_pgmap(pfn_swap_entry_to_page(entry))->owner ==
|
|
range->dev_private_owner) {
|
|
cpu_flags = HMM_PFN_VALID;
|
|
if (is_writable_device_private_entry(entry))
|
|
cpu_flags |= HMM_PFN_WRITE;
|
|
new_pfn_flags = swp_offset_pfn(entry) | cpu_flags;
|
|
goto out;
|
|
}
|
|
|
|
required_fault =
|
|
hmm_pte_need_fault(hmm_vma_walk, pfn_req_flags, 0);
|
|
if (!required_fault)
|
|
goto out;
|
|
|
|
if (!non_swap_entry(entry))
|
|
goto fault;
|
|
|
|
if (is_device_private_entry(entry))
|
|
goto fault;
|
|
|
|
if (is_device_exclusive_entry(entry))
|
|
goto fault;
|
|
|
|
if (is_migration_entry(entry)) {
|
|
pte_unmap(ptep);
|
|
hmm_vma_walk->last = addr;
|
|
migration_entry_wait(walk->mm, pmdp, addr);
|
|
return -EBUSY;
|
|
}
|
|
|
|
/* Report error for everything else */
|
|
pte_unmap(ptep);
|
|
return -EFAULT;
|
|
}
|
|
|
|
cpu_flags = pte_to_hmm_pfn_flags(range, pte);
|
|
required_fault =
|
|
hmm_pte_need_fault(hmm_vma_walk, pfn_req_flags, cpu_flags);
|
|
if (required_fault)
|
|
goto fault;
|
|
|
|
/*
|
|
* Since each architecture defines a struct page for the zero page, just
|
|
* fall through and treat it like a normal page.
|
|
*/
|
|
if (!vm_normal_page(walk->vma, addr, pte) &&
|
|
!is_zero_pfn(pte_pfn(pte))) {
|
|
if (hmm_pte_need_fault(hmm_vma_walk, pfn_req_flags, 0)) {
|
|
pte_unmap(ptep);
|
|
return -EFAULT;
|
|
}
|
|
new_pfn_flags = HMM_PFN_ERROR;
|
|
goto out;
|
|
}
|
|
|
|
new_pfn_flags = pte_pfn(pte) | cpu_flags;
|
|
out:
|
|
*hmm_pfn = (*hmm_pfn & HMM_PFN_INOUT_FLAGS) | new_pfn_flags;
|
|
return 0;
|
|
|
|
fault:
|
|
pte_unmap(ptep);
|
|
/* Fault any virtual address we were asked to fault */
|
|
return hmm_vma_fault(addr, end, required_fault, walk);
|
|
}
|
|
|
|
static int hmm_vma_walk_pmd(pmd_t *pmdp,
|
|
unsigned long start,
|
|
unsigned long end,
|
|
struct mm_walk *walk)
|
|
{
|
|
struct hmm_vma_walk *hmm_vma_walk = walk->private;
|
|
struct hmm_range *range = hmm_vma_walk->range;
|
|
unsigned long *hmm_pfns =
|
|
&range->hmm_pfns[(start - range->start) >> PAGE_SHIFT];
|
|
unsigned long npages = (end - start) >> PAGE_SHIFT;
|
|
unsigned long addr = start;
|
|
pte_t *ptep;
|
|
pmd_t pmd;
|
|
|
|
again:
|
|
pmd = pmdp_get_lockless(pmdp);
|
|
if (pmd_none(pmd))
|
|
return hmm_vma_walk_hole(start, end, -1, walk);
|
|
|
|
if (thp_migration_supported() && is_pmd_migration_entry(pmd)) {
|
|
if (hmm_range_need_fault(hmm_vma_walk, hmm_pfns, npages, 0)) {
|
|
hmm_vma_walk->last = addr;
|
|
pmd_migration_entry_wait(walk->mm, pmdp);
|
|
return -EBUSY;
|
|
}
|
|
return hmm_pfns_fill(start, end, range, 0);
|
|
}
|
|
|
|
if (!pmd_present(pmd)) {
|
|
if (hmm_range_need_fault(hmm_vma_walk, hmm_pfns, npages, 0))
|
|
return -EFAULT;
|
|
return hmm_pfns_fill(start, end, range, HMM_PFN_ERROR);
|
|
}
|
|
|
|
if (pmd_trans_huge(pmd)) {
|
|
/*
|
|
* No need to take pmd_lock here, even if some other thread
|
|
* is splitting the huge pmd we will get that event through
|
|
* mmu_notifier callback.
|
|
*
|
|
* So just read pmd value and check again it's a transparent
|
|
* huge or device mapping one and compute corresponding pfn
|
|
* values.
|
|
*/
|
|
pmd = pmdp_get_lockless(pmdp);
|
|
if (!pmd_trans_huge(pmd))
|
|
goto again;
|
|
|
|
return hmm_vma_handle_pmd(walk, addr, end, hmm_pfns, pmd);
|
|
}
|
|
|
|
/*
|
|
* We have handled all the valid cases above ie either none, migration,
|
|
* huge or transparent huge. At this point either it is a valid pmd
|
|
* entry pointing to pte directory or it is a bad pmd that will not
|
|
* recover.
|
|
*/
|
|
if (pmd_bad(pmd)) {
|
|
if (hmm_range_need_fault(hmm_vma_walk, hmm_pfns, npages, 0))
|
|
return -EFAULT;
|
|
return hmm_pfns_fill(start, end, range, HMM_PFN_ERROR);
|
|
}
|
|
|
|
ptep = pte_offset_map(pmdp, addr);
|
|
if (!ptep)
|
|
goto again;
|
|
for (; addr < end; addr += PAGE_SIZE, ptep++, hmm_pfns++) {
|
|
int r;
|
|
|
|
r = hmm_vma_handle_pte(walk, addr, end, pmdp, ptep, hmm_pfns);
|
|
if (r) {
|
|
/* hmm_vma_handle_pte() did pte_unmap() */
|
|
return r;
|
|
}
|
|
}
|
|
pte_unmap(ptep - 1);
|
|
return 0;
|
|
}
|
|
|
|
#if defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
|
|
static inline unsigned long pud_to_hmm_pfn_flags(struct hmm_range *range,
|
|
pud_t pud)
|
|
{
|
|
if (!pud_present(pud))
|
|
return 0;
|
|
return (pud_write(pud) ? (HMM_PFN_VALID | HMM_PFN_WRITE) :
|
|
HMM_PFN_VALID) |
|
|
hmm_pfn_flags_order(PUD_SHIFT - PAGE_SHIFT);
|
|
}
|
|
|
|
static int hmm_vma_walk_pud(pud_t *pudp, unsigned long start, unsigned long end,
|
|
struct mm_walk *walk)
|
|
{
|
|
struct hmm_vma_walk *hmm_vma_walk = walk->private;
|
|
struct hmm_range *range = hmm_vma_walk->range;
|
|
unsigned long addr = start;
|
|
pud_t pud;
|
|
spinlock_t *ptl = pud_trans_huge_lock(pudp, walk->vma);
|
|
|
|
if (!ptl)
|
|
return 0;
|
|
|
|
/* Normally we don't want to split the huge page */
|
|
walk->action = ACTION_CONTINUE;
|
|
|
|
pud = READ_ONCE(*pudp);
|
|
if (!pud_present(pud)) {
|
|
spin_unlock(ptl);
|
|
return hmm_vma_walk_hole(start, end, -1, walk);
|
|
}
|
|
|
|
if (pud_leaf(pud)) {
|
|
unsigned long i, npages, pfn;
|
|
unsigned int required_fault;
|
|
unsigned long *hmm_pfns;
|
|
unsigned long cpu_flags;
|
|
|
|
i = (addr - range->start) >> PAGE_SHIFT;
|
|
npages = (end - addr) >> PAGE_SHIFT;
|
|
hmm_pfns = &range->hmm_pfns[i];
|
|
|
|
cpu_flags = pud_to_hmm_pfn_flags(range, pud);
|
|
required_fault = hmm_range_need_fault(hmm_vma_walk, hmm_pfns,
|
|
npages, cpu_flags);
|
|
if (required_fault) {
|
|
spin_unlock(ptl);
|
|
return hmm_vma_fault(addr, end, required_fault, walk);
|
|
}
|
|
|
|
pfn = pud_pfn(pud) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
|
|
for (i = 0; i < npages; ++i, ++pfn) {
|
|
hmm_pfns[i] &= HMM_PFN_INOUT_FLAGS;
|
|
hmm_pfns[i] |= pfn | cpu_flags;
|
|
}
|
|
goto out_unlock;
|
|
}
|
|
|
|
/* Ask for the PUD to be split */
|
|
walk->action = ACTION_SUBTREE;
|
|
|
|
out_unlock:
|
|
spin_unlock(ptl);
|
|
return 0;
|
|
}
|
|
#else
|
|
#define hmm_vma_walk_pud NULL
|
|
#endif
|
|
|
|
#ifdef CONFIG_HUGETLB_PAGE
|
|
static int hmm_vma_walk_hugetlb_entry(pte_t *pte, unsigned long hmask,
|
|
unsigned long start, unsigned long end,
|
|
struct mm_walk *walk)
|
|
{
|
|
unsigned long addr = start, i, pfn;
|
|
struct hmm_vma_walk *hmm_vma_walk = walk->private;
|
|
struct hmm_range *range = hmm_vma_walk->range;
|
|
struct vm_area_struct *vma = walk->vma;
|
|
unsigned int required_fault;
|
|
unsigned long pfn_req_flags;
|
|
unsigned long cpu_flags;
|
|
spinlock_t *ptl;
|
|
pte_t entry;
|
|
|
|
ptl = huge_pte_lock(hstate_vma(vma), walk->mm, pte);
|
|
entry = huge_ptep_get(walk->mm, addr, pte);
|
|
|
|
i = (start - range->start) >> PAGE_SHIFT;
|
|
pfn_req_flags = range->hmm_pfns[i];
|
|
cpu_flags = pte_to_hmm_pfn_flags(range, entry) |
|
|
hmm_pfn_flags_order(huge_page_order(hstate_vma(vma)));
|
|
required_fault =
|
|
hmm_pte_need_fault(hmm_vma_walk, pfn_req_flags, cpu_flags);
|
|
if (required_fault) {
|
|
int ret;
|
|
|
|
spin_unlock(ptl);
|
|
hugetlb_vma_unlock_read(vma);
|
|
/*
|
|
* Avoid deadlock: drop the vma lock before calling
|
|
* hmm_vma_fault(), which will itself potentially take and
|
|
* drop the vma lock. This is also correct from a
|
|
* protection point of view, because there is no further
|
|
* use here of either pte or ptl after dropping the vma
|
|
* lock.
|
|
*/
|
|
ret = hmm_vma_fault(addr, end, required_fault, walk);
|
|
hugetlb_vma_lock_read(vma);
|
|
return ret;
|
|
}
|
|
|
|
pfn = pte_pfn(entry) + ((start & ~hmask) >> PAGE_SHIFT);
|
|
for (; addr < end; addr += PAGE_SIZE, i++, pfn++) {
|
|
range->hmm_pfns[i] &= HMM_PFN_INOUT_FLAGS;
|
|
range->hmm_pfns[i] |= pfn | cpu_flags;
|
|
}
|
|
|
|
spin_unlock(ptl);
|
|
return 0;
|
|
}
|
|
#else
|
|
#define hmm_vma_walk_hugetlb_entry NULL
|
|
#endif /* CONFIG_HUGETLB_PAGE */
|
|
|
|
static int hmm_vma_walk_test(unsigned long start, unsigned long end,
|
|
struct mm_walk *walk)
|
|
{
|
|
struct hmm_vma_walk *hmm_vma_walk = walk->private;
|
|
struct hmm_range *range = hmm_vma_walk->range;
|
|
struct vm_area_struct *vma = walk->vma;
|
|
|
|
if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)) &&
|
|
vma->vm_flags & VM_READ)
|
|
return 0;
|
|
|
|
/*
|
|
* vma ranges that don't have struct page backing them or map I/O
|
|
* devices directly cannot be handled by hmm_range_fault().
|
|
*
|
|
* If the vma does not allow read access, then assume that it does not
|
|
* allow write access either. HMM does not support architectures that
|
|
* allow write without read.
|
|
*
|
|
* If a fault is requested for an unsupported range then it is a hard
|
|
* failure.
|
|
*/
|
|
if (hmm_range_need_fault(hmm_vma_walk,
|
|
range->hmm_pfns +
|
|
((start - range->start) >> PAGE_SHIFT),
|
|
(end - start) >> PAGE_SHIFT, 0))
|
|
return -EFAULT;
|
|
|
|
hmm_pfns_fill(start, end, range, HMM_PFN_ERROR);
|
|
|
|
/* Skip this vma and continue processing the next vma. */
|
|
return 1;
|
|
}
|
|
|
|
static const struct mm_walk_ops hmm_walk_ops = {
|
|
.pud_entry = hmm_vma_walk_pud,
|
|
.pmd_entry = hmm_vma_walk_pmd,
|
|
.pte_hole = hmm_vma_walk_hole,
|
|
.hugetlb_entry = hmm_vma_walk_hugetlb_entry,
|
|
.test_walk = hmm_vma_walk_test,
|
|
.walk_lock = PGWALK_RDLOCK,
|
|
};
|
|
|
|
/**
|
|
* hmm_range_fault - try to fault some address in a virtual address range
|
|
* @range: argument structure
|
|
*
|
|
* Returns 0 on success or one of the following error codes:
|
|
*
|
|
* -EINVAL: Invalid arguments or mm or virtual address is in an invalid vma
|
|
* (e.g., device file vma).
|
|
* -ENOMEM: Out of memory.
|
|
* -EPERM: Invalid permission (e.g., asking for write and range is read
|
|
* only).
|
|
* -EBUSY: The range has been invalidated and the caller needs to wait for
|
|
* the invalidation to finish.
|
|
* -EFAULT: A page was requested to be valid and could not be made valid
|
|
* ie it has no backing VMA or it is illegal to access
|
|
*
|
|
* This is similar to get_user_pages(), except that it can read the page tables
|
|
* without mutating them (ie causing faults).
|
|
*/
|
|
int hmm_range_fault(struct hmm_range *range)
|
|
{
|
|
struct hmm_vma_walk hmm_vma_walk = {
|
|
.range = range,
|
|
.last = range->start,
|
|
};
|
|
struct mm_struct *mm = range->notifier->mm;
|
|
int ret;
|
|
|
|
mmap_assert_locked(mm);
|
|
|
|
do {
|
|
/* If range is no longer valid force retry. */
|
|
if (mmu_interval_check_retry(range->notifier,
|
|
range->notifier_seq))
|
|
return -EBUSY;
|
|
ret = walk_page_range(mm, hmm_vma_walk.last, range->end,
|
|
&hmm_walk_ops, &hmm_vma_walk);
|
|
/*
|
|
* When -EBUSY is returned the loop restarts with
|
|
* hmm_vma_walk.last set to an address that has not been stored
|
|
* in pfns. All entries < last in the pfn array are set to their
|
|
* output, and all >= are still at their input values.
|
|
*/
|
|
} while (ret == -EBUSY);
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(hmm_range_fault);
|
|
|
|
/**
|
|
* hmm_dma_map_alloc - Allocate HMM map structure
|
|
* @dev: device to allocate structure for
|
|
* @map: HMM map to allocate
|
|
* @nr_entries: number of entries in the map
|
|
* @dma_entry_size: size of the DMA entry in the map
|
|
*
|
|
* Allocate the HMM map structure and all the lists it contains.
|
|
* Return 0 on success, -ENOMEM on failure.
|
|
*/
|
|
int hmm_dma_map_alloc(struct device *dev, struct hmm_dma_map *map,
|
|
size_t nr_entries, size_t dma_entry_size)
|
|
{
|
|
bool dma_need_sync = false;
|
|
bool use_iova;
|
|
|
|
WARN_ON_ONCE(!(nr_entries * PAGE_SIZE / dma_entry_size));
|
|
|
|
/*
|
|
* The HMM API violates our normal DMA buffer ownership rules and can't
|
|
* transfer buffer ownership. The dma_addressing_limited() check is a
|
|
* best approximation to ensure no swiotlb buffering happens.
|
|
*/
|
|
#ifdef CONFIG_DMA_NEED_SYNC
|
|
dma_need_sync = !dev->dma_skip_sync;
|
|
#endif /* CONFIG_DMA_NEED_SYNC */
|
|
if (dma_need_sync || dma_addressing_limited(dev))
|
|
return -EOPNOTSUPP;
|
|
|
|
map->dma_entry_size = dma_entry_size;
|
|
map->pfn_list = kvcalloc(nr_entries, sizeof(*map->pfn_list),
|
|
GFP_KERNEL | __GFP_NOWARN);
|
|
if (!map->pfn_list)
|
|
return -ENOMEM;
|
|
|
|
use_iova = dma_iova_try_alloc(dev, &map->state, 0,
|
|
nr_entries * PAGE_SIZE);
|
|
if (!use_iova && dma_need_unmap(dev)) {
|
|
map->dma_list = kvcalloc(nr_entries, sizeof(*map->dma_list),
|
|
GFP_KERNEL | __GFP_NOWARN);
|
|
if (!map->dma_list)
|
|
goto err_dma;
|
|
}
|
|
return 0;
|
|
|
|
err_dma:
|
|
kvfree(map->pfn_list);
|
|
return -ENOMEM;
|
|
}
|
|
EXPORT_SYMBOL_GPL(hmm_dma_map_alloc);
|
|
|
|
/**
|
|
* hmm_dma_map_free - iFree HMM map structure
|
|
* @dev: device to free structure from
|
|
* @map: HMM map containing the various lists and state
|
|
*
|
|
* Free the HMM map structure and all the lists it contains.
|
|
*/
|
|
void hmm_dma_map_free(struct device *dev, struct hmm_dma_map *map)
|
|
{
|
|
if (dma_use_iova(&map->state))
|
|
dma_iova_free(dev, &map->state);
|
|
kvfree(map->pfn_list);
|
|
kvfree(map->dma_list);
|
|
}
|
|
EXPORT_SYMBOL_GPL(hmm_dma_map_free);
|
|
|
|
/**
|
|
* hmm_dma_map_pfn - Map a physical HMM page to DMA address
|
|
* @dev: Device to map the page for
|
|
* @map: HMM map
|
|
* @idx: Index into the PFN and dma address arrays
|
|
* @p2pdma_state: PCI P2P state.
|
|
*
|
|
* dma_alloc_iova() allocates IOVA based on the size specified by their use in
|
|
* iova->size. Call this function after IOVA allocation to link whole @page
|
|
* to get the DMA address. Note that very first call to this function
|
|
* will have @offset set to 0 in the IOVA space allocated from
|
|
* dma_alloc_iova(). For subsequent calls to this function on same @iova,
|
|
* @offset needs to be advanced by the caller with the size of previous
|
|
* page that was linked + DMA address returned for the previous page that was
|
|
* linked by this function.
|
|
*/
|
|
dma_addr_t hmm_dma_map_pfn(struct device *dev, struct hmm_dma_map *map,
|
|
size_t idx,
|
|
struct pci_p2pdma_map_state *p2pdma_state)
|
|
{
|
|
struct dma_iova_state *state = &map->state;
|
|
dma_addr_t *dma_addrs = map->dma_list;
|
|
unsigned long *pfns = map->pfn_list;
|
|
struct page *page = hmm_pfn_to_page(pfns[idx]);
|
|
phys_addr_t paddr = hmm_pfn_to_phys(pfns[idx]);
|
|
size_t offset = idx * map->dma_entry_size;
|
|
unsigned long attrs = 0;
|
|
dma_addr_t dma_addr;
|
|
int ret;
|
|
|
|
if ((pfns[idx] & HMM_PFN_DMA_MAPPED) &&
|
|
!(pfns[idx] & HMM_PFN_P2PDMA_BUS)) {
|
|
/*
|
|
* We are in this flow when there is a need to resync flags,
|
|
* for example when page was already linked in prefetch call
|
|
* with READ flag and now we need to add WRITE flag
|
|
*
|
|
* This page was already programmed to HW and we don't want/need
|
|
* to unlink and link it again just to resync flags.
|
|
*/
|
|
if (dma_use_iova(state))
|
|
return state->addr + offset;
|
|
|
|
/*
|
|
* Without dma_need_unmap, the dma_addrs array is NULL, thus we
|
|
* need to regenerate the address below even if there already
|
|
* was a mapping. But !dma_need_unmap implies that the
|
|
* mapping stateless, so this is fine.
|
|
*/
|
|
if (dma_need_unmap(dev))
|
|
return dma_addrs[idx];
|
|
|
|
/* Continue to remapping */
|
|
}
|
|
|
|
switch (pci_p2pdma_state(p2pdma_state, dev, page)) {
|
|
case PCI_P2PDMA_MAP_NONE:
|
|
break;
|
|
case PCI_P2PDMA_MAP_THRU_HOST_BRIDGE:
|
|
attrs |= DMA_ATTR_SKIP_CPU_SYNC;
|
|
pfns[idx] |= HMM_PFN_P2PDMA;
|
|
break;
|
|
case PCI_P2PDMA_MAP_BUS_ADDR:
|
|
pfns[idx] |= HMM_PFN_P2PDMA_BUS | HMM_PFN_DMA_MAPPED;
|
|
return pci_p2pdma_bus_addr_map(p2pdma_state, paddr);
|
|
default:
|
|
return DMA_MAPPING_ERROR;
|
|
}
|
|
|
|
if (dma_use_iova(state)) {
|
|
ret = dma_iova_link(dev, state, paddr, offset,
|
|
map->dma_entry_size, DMA_BIDIRECTIONAL,
|
|
attrs);
|
|
if (ret)
|
|
goto error;
|
|
|
|
ret = dma_iova_sync(dev, state, offset, map->dma_entry_size);
|
|
if (ret) {
|
|
dma_iova_unlink(dev, state, offset, map->dma_entry_size,
|
|
DMA_BIDIRECTIONAL, attrs);
|
|
goto error;
|
|
}
|
|
|
|
dma_addr = state->addr + offset;
|
|
} else {
|
|
if (WARN_ON_ONCE(dma_need_unmap(dev) && !dma_addrs))
|
|
goto error;
|
|
|
|
dma_addr = dma_map_page(dev, page, 0, map->dma_entry_size,
|
|
DMA_BIDIRECTIONAL);
|
|
if (dma_mapping_error(dev, dma_addr))
|
|
goto error;
|
|
|
|
if (dma_need_unmap(dev))
|
|
dma_addrs[idx] = dma_addr;
|
|
}
|
|
pfns[idx] |= HMM_PFN_DMA_MAPPED;
|
|
return dma_addr;
|
|
error:
|
|
pfns[idx] &= ~HMM_PFN_P2PDMA;
|
|
return DMA_MAPPING_ERROR;
|
|
|
|
}
|
|
EXPORT_SYMBOL_GPL(hmm_dma_map_pfn);
|
|
|
|
/**
|
|
* hmm_dma_unmap_pfn - Unmap a physical HMM page from DMA address
|
|
* @dev: Device to unmap the page from
|
|
* @map: HMM map
|
|
* @idx: Index of the PFN to unmap
|
|
*
|
|
* Returns true if the PFN was mapped and has been unmapped, false otherwise.
|
|
*/
|
|
bool hmm_dma_unmap_pfn(struct device *dev, struct hmm_dma_map *map, size_t idx)
|
|
{
|
|
const unsigned long valid_dma = HMM_PFN_VALID | HMM_PFN_DMA_MAPPED;
|
|
struct dma_iova_state *state = &map->state;
|
|
dma_addr_t *dma_addrs = map->dma_list;
|
|
unsigned long *pfns = map->pfn_list;
|
|
unsigned long attrs = 0;
|
|
|
|
if ((pfns[idx] & valid_dma) != valid_dma)
|
|
return false;
|
|
|
|
if (pfns[idx] & HMM_PFN_P2PDMA_BUS)
|
|
; /* no need to unmap bus address P2P mappings */
|
|
else if (dma_use_iova(state)) {
|
|
if (pfns[idx] & HMM_PFN_P2PDMA)
|
|
attrs |= DMA_ATTR_SKIP_CPU_SYNC;
|
|
dma_iova_unlink(dev, state, idx * map->dma_entry_size,
|
|
map->dma_entry_size, DMA_BIDIRECTIONAL, attrs);
|
|
} else if (dma_need_unmap(dev))
|
|
dma_unmap_page(dev, dma_addrs[idx], map->dma_entry_size,
|
|
DMA_BIDIRECTIONAL);
|
|
|
|
pfns[idx] &=
|
|
~(HMM_PFN_DMA_MAPPED | HMM_PFN_P2PDMA | HMM_PFN_P2PDMA_BUS);
|
|
return true;
|
|
}
|
|
EXPORT_SYMBOL_GPL(hmm_dma_unmap_pfn);
|