linux/mm/damon/vaddr.c
Bijan Tabatabai dee3ab621f mm/damon/vaddr: skip isolating folios already in destination nid
damos_va_migrate_dests_add() determines the node a folio should be in
based on the struct damos_migrate_dests associated with the migration
scheme and adds the folio to the linked list corresponding to that node so
it can be migrated later.  Currently, folios are isolated and added to the
list even if they are already in the node they should be in.

In using damon weighted interleave more, I've found that the overhead of
needlessly adding these folios to the migration lists can be quite high. 
The overhead comes from isolating folios and placing them in the migration
lists inside of damos_va_migrate_dests_add(), as well as the cost of
handling those folios in damon_migrate_pages().  This patch eliminates
that overhead by simply avoiding the addition of folios that are already
in their intended location to the migration list.

To show the benefit of this patch, we start the test workload and start a
DAMON instance attached to that workload with a migrate_hot scheme that
has one dest field sending data to the local node.  This way, we are only
measuring the overheads of the scheme, and not the cost of migrating
pages, since data will be allocated to the local node by default.  I
tested with two workloads: the embedding reduction workload used in [1]
and a microbenchmark that allocates 20GB of data then sleeps, which is
similar to the memory usage of the embedding reduction workload.

The time taken in damos_va_migrate_dests_add() and damon_migrate_pages()
each aggregation interval is shown below.

Before this patch:
                       damos_va_migrate_dests_add damon_migrate_pages
microbenchmark                   ~2ms                      ~3ms
embedding reduction              ~1s                       ~3s

After this patch:
                       damos_va_migrate_dests_add damon_migrate_pages
microbenchmark                    0us                      ~40us
embedding reduction               0us                      ~100us

I did not do an in depth analysis for why things are much slower in the
embedding reduction workload than the microbenchmark.  However, I assume
it's because the embedding reduction workload oversaturates the bandwidth
of the local memory node, increasing the memory access latency, and in
turn making the pointer chasing involved in iterating through a linked
list much slower.  Regardless of that, this patch results in a significant
speedup.

[1] https://lore.kernel.org/damon/20250709005952.17776-1-bijan311@gmail.com/

Link: https://lkml.kernel.org/r/20250725163300.4602-1-bijan311@gmail.com
Fixes: 19c1dc15c8 ("mm/damon/vaddr: use damos->migrate_dests in migrate_{hot,cold}")
Signed-off-by: Bijan Tabatabai <bijantabatab@micron.com>
Reviewed-by: SeongJae Park <sj@kernel.org>
Reviewed-by: Raghavendra K T <raghavendra.kt@amd.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-08-02 12:06:09 -07:00

980 lines
24 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* DAMON Code for Virtual Address Spaces
*
* Author: SeongJae Park <sj@kernel.org>
*/
#define pr_fmt(fmt) "damon-va: " fmt
#include <linux/highmem.h>
#include <linux/hugetlb.h>
#include <linux/mman.h>
#include <linux/mmu_notifier.h>
#include <linux/page_idle.h>
#include <linux/pagewalk.h>
#include <linux/sched/mm.h>
#include "../internal.h"
#include "ops-common.h"
#ifdef CONFIG_DAMON_VADDR_KUNIT_TEST
#undef DAMON_MIN_REGION
#define DAMON_MIN_REGION 1
#endif
/*
* 't->pid' should be the pointer to the relevant 'struct pid' having reference
* count. Caller must put the returned task, unless it is NULL.
*/
static inline struct task_struct *damon_get_task_struct(struct damon_target *t)
{
return get_pid_task(t->pid, PIDTYPE_PID);
}
/*
* Get the mm_struct of the given target
*
* Caller _must_ put the mm_struct after use, unless it is NULL.
*
* Returns the mm_struct of the target on success, NULL on failure
*/
static struct mm_struct *damon_get_mm(struct damon_target *t)
{
struct task_struct *task;
struct mm_struct *mm;
task = damon_get_task_struct(t);
if (!task)
return NULL;
mm = get_task_mm(task);
put_task_struct(task);
return mm;
}
/*
* Functions for the initial monitoring target regions construction
*/
/*
* Size-evenly split a region into 'nr_pieces' small regions
*
* Returns 0 on success, or negative error code otherwise.
*/
static int damon_va_evenly_split_region(struct damon_target *t,
struct damon_region *r, unsigned int nr_pieces)
{
unsigned long sz_orig, sz_piece, orig_end;
struct damon_region *n = NULL, *next;
unsigned long start;
unsigned int i;
if (!r || !nr_pieces)
return -EINVAL;
if (nr_pieces == 1)
return 0;
orig_end = r->ar.end;
sz_orig = damon_sz_region(r);
sz_piece = ALIGN_DOWN(sz_orig / nr_pieces, DAMON_MIN_REGION);
if (!sz_piece)
return -EINVAL;
r->ar.end = r->ar.start + sz_piece;
next = damon_next_region(r);
for (start = r->ar.end, i = 1; i < nr_pieces; start += sz_piece, i++) {
n = damon_new_region(start, start + sz_piece);
if (!n)
return -ENOMEM;
damon_insert_region(n, r, next, t);
r = n;
}
/* complement last region for possible rounding error */
if (n)
n->ar.end = orig_end;
return 0;
}
static unsigned long sz_range(struct damon_addr_range *r)
{
return r->end - r->start;
}
/*
* Find three regions separated by two biggest unmapped regions
*
* vma the head vma of the target address space
* regions an array of three address ranges that results will be saved
*
* This function receives an address space and finds three regions in it which
* separated by the two biggest unmapped regions in the space. Please refer to
* below comments of '__damon_va_init_regions()' function to know why this is
* necessary.
*
* Returns 0 if success, or negative error code otherwise.
*/
static int __damon_va_three_regions(struct mm_struct *mm,
struct damon_addr_range regions[3])
{
struct damon_addr_range first_gap = {0}, second_gap = {0};
VMA_ITERATOR(vmi, mm, 0);
struct vm_area_struct *vma, *prev = NULL;
unsigned long start;
/*
* Find the two biggest gaps so that first_gap > second_gap > others.
* If this is too slow, it can be optimised to examine the maple
* tree gaps.
*/
rcu_read_lock();
for_each_vma(vmi, vma) {
unsigned long gap;
if (!prev) {
start = vma->vm_start;
goto next;
}
gap = vma->vm_start - prev->vm_end;
if (gap > sz_range(&first_gap)) {
second_gap = first_gap;
first_gap.start = prev->vm_end;
first_gap.end = vma->vm_start;
} else if (gap > sz_range(&second_gap)) {
second_gap.start = prev->vm_end;
second_gap.end = vma->vm_start;
}
next:
prev = vma;
}
rcu_read_unlock();
if (!sz_range(&second_gap) || !sz_range(&first_gap))
return -EINVAL;
/* Sort the two biggest gaps by address */
if (first_gap.start > second_gap.start)
swap(first_gap, second_gap);
/* Store the result */
regions[0].start = ALIGN(start, DAMON_MIN_REGION);
regions[0].end = ALIGN(first_gap.start, DAMON_MIN_REGION);
regions[1].start = ALIGN(first_gap.end, DAMON_MIN_REGION);
regions[1].end = ALIGN(second_gap.start, DAMON_MIN_REGION);
regions[2].start = ALIGN(second_gap.end, DAMON_MIN_REGION);
regions[2].end = ALIGN(prev->vm_end, DAMON_MIN_REGION);
return 0;
}
/*
* Get the three regions in the given target (task)
*
* Returns 0 on success, negative error code otherwise.
*/
static int damon_va_three_regions(struct damon_target *t,
struct damon_addr_range regions[3])
{
struct mm_struct *mm;
int rc;
mm = damon_get_mm(t);
if (!mm)
return -EINVAL;
mmap_read_lock(mm);
rc = __damon_va_three_regions(mm, regions);
mmap_read_unlock(mm);
mmput(mm);
return rc;
}
/*
* Initialize the monitoring target regions for the given target (task)
*
* t the given target
*
* Because only a number of small portions of the entire address space
* is actually mapped to the memory and accessed, monitoring the unmapped
* regions is wasteful. That said, because we can deal with small noises,
* tracking every mapping is not strictly required but could even incur a high
* overhead if the mapping frequently changes or the number of mappings is
* high. The adaptive regions adjustment mechanism will further help to deal
* with the noise by simply identifying the unmapped areas as a region that
* has no access. Moreover, applying the real mappings that would have many
* unmapped areas inside will make the adaptive mechanism quite complex. That
* said, too huge unmapped areas inside the monitoring target should be removed
* to not take the time for the adaptive mechanism.
*
* For the reason, we convert the complex mappings to three distinct regions
* that cover every mapped area of the address space. Also the two gaps
* between the three regions are the two biggest unmapped areas in the given
* address space. In detail, this function first identifies the start and the
* end of the mappings and the two biggest unmapped areas of the address space.
* Then, it constructs the three regions as below:
*
* [mappings[0]->start, big_two_unmapped_areas[0]->start)
* [big_two_unmapped_areas[0]->end, big_two_unmapped_areas[1]->start)
* [big_two_unmapped_areas[1]->end, mappings[nr_mappings - 1]->end)
*
* As usual memory map of processes is as below, the gap between the heap and
* the uppermost mmap()-ed region, and the gap between the lowermost mmap()-ed
* region and the stack will be two biggest unmapped regions. Because these
* gaps are exceptionally huge areas in usual address space, excluding these
* two biggest unmapped regions will be sufficient to make a trade-off.
*
* <heap>
* <BIG UNMAPPED REGION 1>
* <uppermost mmap()-ed region>
* (other mmap()-ed regions and small unmapped regions)
* <lowermost mmap()-ed region>
* <BIG UNMAPPED REGION 2>
* <stack>
*/
static void __damon_va_init_regions(struct damon_ctx *ctx,
struct damon_target *t)
{
struct damon_target *ti;
struct damon_region *r;
struct damon_addr_range regions[3];
unsigned long sz = 0, nr_pieces;
int i, tidx = 0;
if (damon_va_three_regions(t, regions)) {
damon_for_each_target(ti, ctx) {
if (ti == t)
break;
tidx++;
}
pr_debug("Failed to get three regions of %dth target\n", tidx);
return;
}
for (i = 0; i < 3; i++)
sz += regions[i].end - regions[i].start;
if (ctx->attrs.min_nr_regions)
sz /= ctx->attrs.min_nr_regions;
if (sz < DAMON_MIN_REGION)
sz = DAMON_MIN_REGION;
/* Set the initial three regions of the target */
for (i = 0; i < 3; i++) {
r = damon_new_region(regions[i].start, regions[i].end);
if (!r) {
pr_err("%d'th init region creation failed\n", i);
return;
}
damon_add_region(r, t);
nr_pieces = (regions[i].end - regions[i].start) / sz;
damon_va_evenly_split_region(t, r, nr_pieces);
}
}
/* Initialize '->regions_list' of every target (task) */
static void damon_va_init(struct damon_ctx *ctx)
{
struct damon_target *t;
damon_for_each_target(t, ctx) {
/* the user may set the target regions as they want */
if (!damon_nr_regions(t))
__damon_va_init_regions(ctx, t);
}
}
/*
* Update regions for current memory mappings
*/
static void damon_va_update(struct damon_ctx *ctx)
{
struct damon_addr_range three_regions[3];
struct damon_target *t;
damon_for_each_target(t, ctx) {
if (damon_va_three_regions(t, three_regions))
continue;
damon_set_regions(t, three_regions, 3);
}
}
static int damon_mkold_pmd_entry(pmd_t *pmd, unsigned long addr,
unsigned long next, struct mm_walk *walk)
{
pte_t *pte;
pmd_t pmde;
spinlock_t *ptl;
if (pmd_trans_huge(pmdp_get(pmd))) {
ptl = pmd_lock(walk->mm, pmd);
pmde = pmdp_get(pmd);
if (!pmd_present(pmde)) {
spin_unlock(ptl);
return 0;
}
if (pmd_trans_huge(pmde)) {
damon_pmdp_mkold(pmd, walk->vma, addr);
spin_unlock(ptl);
return 0;
}
spin_unlock(ptl);
}
pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
if (!pte) {
walk->action = ACTION_AGAIN;
return 0;
}
if (!pte_present(ptep_get(pte)))
goto out;
damon_ptep_mkold(pte, walk->vma, addr);
out:
pte_unmap_unlock(pte, ptl);
return 0;
}
#ifdef CONFIG_HUGETLB_PAGE
static void damon_hugetlb_mkold(pte_t *pte, struct mm_struct *mm,
struct vm_area_struct *vma, unsigned long addr)
{
bool referenced = false;
pte_t entry = huge_ptep_get(mm, addr, pte);
struct folio *folio = pfn_folio(pte_pfn(entry));
unsigned long psize = huge_page_size(hstate_vma(vma));
folio_get(folio);
if (pte_young(entry)) {
referenced = true;
entry = pte_mkold(entry);
set_huge_pte_at(mm, addr, pte, entry, psize);
}
if (mmu_notifier_clear_young(mm, addr,
addr + huge_page_size(hstate_vma(vma))))
referenced = true;
if (referenced)
folio_set_young(folio);
folio_set_idle(folio);
folio_put(folio);
}
static int damon_mkold_hugetlb_entry(pte_t *pte, unsigned long hmask,
unsigned long addr, unsigned long end,
struct mm_walk *walk)
{
struct hstate *h = hstate_vma(walk->vma);
spinlock_t *ptl;
pte_t entry;
ptl = huge_pte_lock(h, walk->mm, pte);
entry = huge_ptep_get(walk->mm, addr, pte);
if (!pte_present(entry))
goto out;
damon_hugetlb_mkold(pte, walk->mm, walk->vma, addr);
out:
spin_unlock(ptl);
return 0;
}
#else
#define damon_mkold_hugetlb_entry NULL
#endif /* CONFIG_HUGETLB_PAGE */
static const struct mm_walk_ops damon_mkold_ops = {
.pmd_entry = damon_mkold_pmd_entry,
.hugetlb_entry = damon_mkold_hugetlb_entry,
.walk_lock = PGWALK_RDLOCK,
};
static void damon_va_mkold(struct mm_struct *mm, unsigned long addr)
{
mmap_read_lock(mm);
walk_page_range(mm, addr, addr + 1, &damon_mkold_ops, NULL);
mmap_read_unlock(mm);
}
/*
* Functions for the access checking of the regions
*/
static void __damon_va_prepare_access_check(struct mm_struct *mm,
struct damon_region *r)
{
r->sampling_addr = damon_rand(r->ar.start, r->ar.end);
damon_va_mkold(mm, r->sampling_addr);
}
static void damon_va_prepare_access_checks(struct damon_ctx *ctx)
{
struct damon_target *t;
struct mm_struct *mm;
struct damon_region *r;
damon_for_each_target(t, ctx) {
mm = damon_get_mm(t);
if (!mm)
continue;
damon_for_each_region(r, t)
__damon_va_prepare_access_check(mm, r);
mmput(mm);
}
}
struct damon_young_walk_private {
/* size of the folio for the access checked virtual memory address */
unsigned long *folio_sz;
bool young;
};
static int damon_young_pmd_entry(pmd_t *pmd, unsigned long addr,
unsigned long next, struct mm_walk *walk)
{
pte_t *pte;
pte_t ptent;
spinlock_t *ptl;
struct folio *folio;
struct damon_young_walk_private *priv = walk->private;
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
if (pmd_trans_huge(pmdp_get(pmd))) {
pmd_t pmde;
ptl = pmd_lock(walk->mm, pmd);
pmde = pmdp_get(pmd);
if (!pmd_present(pmde)) {
spin_unlock(ptl);
return 0;
}
if (!pmd_trans_huge(pmde)) {
spin_unlock(ptl);
goto regular_page;
}
folio = damon_get_folio(pmd_pfn(pmde));
if (!folio)
goto huge_out;
if (pmd_young(pmde) || !folio_test_idle(folio) ||
mmu_notifier_test_young(walk->mm,
addr))
priv->young = true;
*priv->folio_sz = HPAGE_PMD_SIZE;
folio_put(folio);
huge_out:
spin_unlock(ptl);
return 0;
}
regular_page:
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
if (!pte) {
walk->action = ACTION_AGAIN;
return 0;
}
ptent = ptep_get(pte);
if (!pte_present(ptent))
goto out;
folio = damon_get_folio(pte_pfn(ptent));
if (!folio)
goto out;
if (pte_young(ptent) || !folio_test_idle(folio) ||
mmu_notifier_test_young(walk->mm, addr))
priv->young = true;
*priv->folio_sz = folio_size(folio);
folio_put(folio);
out:
pte_unmap_unlock(pte, ptl);
return 0;
}
#ifdef CONFIG_HUGETLB_PAGE
static int damon_young_hugetlb_entry(pte_t *pte, unsigned long hmask,
unsigned long addr, unsigned long end,
struct mm_walk *walk)
{
struct damon_young_walk_private *priv = walk->private;
struct hstate *h = hstate_vma(walk->vma);
struct folio *folio;
spinlock_t *ptl;
pte_t entry;
ptl = huge_pte_lock(h, walk->mm, pte);
entry = huge_ptep_get(walk->mm, addr, pte);
if (!pte_present(entry))
goto out;
folio = pfn_folio(pte_pfn(entry));
folio_get(folio);
if (pte_young(entry) || !folio_test_idle(folio) ||
mmu_notifier_test_young(walk->mm, addr))
priv->young = true;
*priv->folio_sz = huge_page_size(h);
folio_put(folio);
out:
spin_unlock(ptl);
return 0;
}
#else
#define damon_young_hugetlb_entry NULL
#endif /* CONFIG_HUGETLB_PAGE */
static const struct mm_walk_ops damon_young_ops = {
.pmd_entry = damon_young_pmd_entry,
.hugetlb_entry = damon_young_hugetlb_entry,
.walk_lock = PGWALK_RDLOCK,
};
static bool damon_va_young(struct mm_struct *mm, unsigned long addr,
unsigned long *folio_sz)
{
struct damon_young_walk_private arg = {
.folio_sz = folio_sz,
.young = false,
};
mmap_read_lock(mm);
walk_page_range(mm, addr, addr + 1, &damon_young_ops, &arg);
mmap_read_unlock(mm);
return arg.young;
}
/*
* Check whether the region was accessed after the last preparation
*
* mm 'mm_struct' for the given virtual address space
* r the region to be checked
*/
static void __damon_va_check_access(struct mm_struct *mm,
struct damon_region *r, bool same_target,
struct damon_attrs *attrs)
{
static unsigned long last_addr;
static unsigned long last_folio_sz = PAGE_SIZE;
static bool last_accessed;
if (!mm) {
damon_update_region_access_rate(r, false, attrs);
return;
}
/* If the region is in the last checked page, reuse the result */
if (same_target && (ALIGN_DOWN(last_addr, last_folio_sz) ==
ALIGN_DOWN(r->sampling_addr, last_folio_sz))) {
damon_update_region_access_rate(r, last_accessed, attrs);
return;
}
last_accessed = damon_va_young(mm, r->sampling_addr, &last_folio_sz);
damon_update_region_access_rate(r, last_accessed, attrs);
last_addr = r->sampling_addr;
}
static unsigned int damon_va_check_accesses(struct damon_ctx *ctx)
{
struct damon_target *t;
struct mm_struct *mm;
struct damon_region *r;
unsigned int max_nr_accesses = 0;
bool same_target;
damon_for_each_target(t, ctx) {
mm = damon_get_mm(t);
same_target = false;
damon_for_each_region(r, t) {
__damon_va_check_access(mm, r, same_target,
&ctx->attrs);
max_nr_accesses = max(r->nr_accesses, max_nr_accesses);
same_target = true;
}
if (mm)
mmput(mm);
}
return max_nr_accesses;
}
static bool damos_va_filter_young_match(struct damos_filter *filter,
struct folio *folio, struct vm_area_struct *vma,
unsigned long addr, pte_t *ptep, pmd_t *pmdp)
{
bool young = false;
if (ptep)
young = pte_young(ptep_get(ptep));
else if (pmdp)
young = pmd_young(pmdp_get(pmdp));
young = young || !folio_test_idle(folio) ||
mmu_notifier_test_young(vma->vm_mm, addr);
if (young && ptep)
damon_ptep_mkold(ptep, vma, addr);
else if (young && pmdp)
damon_pmdp_mkold(pmdp, vma, addr);
return young == filter->matching;
}
static bool damos_va_filter_out(struct damos *scheme, struct folio *folio,
struct vm_area_struct *vma, unsigned long addr,
pte_t *ptep, pmd_t *pmdp)
{
struct damos_filter *filter;
bool matched;
if (scheme->core_filters_allowed)
return false;
damos_for_each_ops_filter(filter, scheme) {
/*
* damos_folio_filter_match checks the young filter by doing an
* rmap on the folio to find its page table. However, being the
* vaddr scheme, we have direct access to the page tables, so
* use that instead.
*/
if (filter->type == DAMOS_FILTER_TYPE_YOUNG)
matched = damos_va_filter_young_match(filter, folio,
vma, addr, ptep, pmdp);
else
matched = damos_folio_filter_match(filter, folio);
if (matched)
return !filter->allow;
}
return scheme->ops_filters_default_reject;
}
struct damos_va_migrate_private {
struct list_head *migration_lists;
struct damos *scheme;
};
/*
* Place the given folio in the migration_list corresponding to where the folio
* should be migrated.
*
* The algorithm used here is similar to weighted_interleave_nid()
*/
static void damos_va_migrate_dests_add(struct folio *folio,
struct vm_area_struct *vma, unsigned long addr,
struct damos_migrate_dests *dests,
struct list_head *migration_lists)
{
pgoff_t ilx;
int order;
unsigned int target;
unsigned int weight_total = 0;
int i;
/*
* If dests is empty, there is only one migration list corresponding
* to s->target_nid.
*/
if (!dests->nr_dests) {
i = 0;
goto isolate;
}
order = folio_order(folio);
ilx = vma->vm_pgoff >> order;
ilx += (addr - vma->vm_start) >> (PAGE_SHIFT + order);
for (i = 0; i < dests->nr_dests; i++)
weight_total += dests->weight_arr[i];
/* If the total weights are somehow 0, don't migrate at all */
if (!weight_total)
return;
target = ilx % weight_total;
for (i = 0; i < dests->nr_dests; i++) {
if (target < dests->weight_arr[i])
break;
target -= dests->weight_arr[i];
}
/* If the folio is already in the right node, don't do anything */
if (folio_nid(folio) == dests->node_id_arr[i])
return;
isolate:
if (!folio_isolate_lru(folio))
return;
list_add(&folio->lru, &migration_lists[i]);
}
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
static int damos_va_migrate_pmd_entry(pmd_t *pmd, unsigned long addr,
unsigned long next, struct mm_walk *walk)
{
struct damos_va_migrate_private *priv = walk->private;
struct list_head *migration_lists = priv->migration_lists;
struct damos *s = priv->scheme;
struct damos_migrate_dests *dests = &s->migrate_dests;
struct folio *folio;
spinlock_t *ptl;
pmd_t pmde;
ptl = pmd_lock(walk->mm, pmd);
pmde = pmdp_get(pmd);
if (!pmd_present(pmde) || !pmd_trans_huge(pmde))
goto unlock;
/* Tell page walk code to not split the PMD */
walk->action = ACTION_CONTINUE;
folio = damon_get_folio(pmd_pfn(pmde));
if (!folio)
goto unlock;
if (damos_va_filter_out(s, folio, walk->vma, addr, NULL, pmd))
goto put_folio;
damos_va_migrate_dests_add(folio, walk->vma, addr, dests,
migration_lists);
put_folio:
folio_put(folio);
unlock:
spin_unlock(ptl);
return 0;
}
#else
#define damos_va_migrate_pmd_entry NULL
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
static int damos_va_migrate_pte_entry(pte_t *pte, unsigned long addr,
unsigned long next, struct mm_walk *walk)
{
struct damos_va_migrate_private *priv = walk->private;
struct list_head *migration_lists = priv->migration_lists;
struct damos *s = priv->scheme;
struct damos_migrate_dests *dests = &s->migrate_dests;
struct folio *folio;
pte_t ptent;
ptent = ptep_get(pte);
if (pte_none(ptent) || !pte_present(ptent))
return 0;
folio = damon_get_folio(pte_pfn(ptent));
if (!folio)
return 0;
if (damos_va_filter_out(s, folio, walk->vma, addr, pte, NULL))
goto put_folio;
damos_va_migrate_dests_add(folio, walk->vma, addr, dests,
migration_lists);
put_folio:
folio_put(folio);
return 0;
}
/*
* Functions for the target validity check and cleanup
*/
static bool damon_va_target_valid(struct damon_target *t)
{
struct task_struct *task;
task = damon_get_task_struct(t);
if (task) {
put_task_struct(task);
return true;
}
return false;
}
static void damon_va_cleanup_target(struct damon_target *t)
{
put_pid(t->pid);
}
#ifndef CONFIG_ADVISE_SYSCALLS
static unsigned long damos_madvise(struct damon_target *target,
struct damon_region *r, int behavior)
{
return 0;
}
#else
static unsigned long damos_madvise(struct damon_target *target,
struct damon_region *r, int behavior)
{
struct mm_struct *mm;
unsigned long start = PAGE_ALIGN(r->ar.start);
unsigned long len = PAGE_ALIGN(damon_sz_region(r));
unsigned long applied;
mm = damon_get_mm(target);
if (!mm)
return 0;
applied = do_madvise(mm, start, len, behavior) ? 0 : len;
mmput(mm);
return applied;
}
#endif /* CONFIG_ADVISE_SYSCALLS */
static unsigned long damos_va_migrate(struct damon_target *target,
struct damon_region *r, struct damos *s,
unsigned long *sz_filter_passed)
{
LIST_HEAD(folio_list);
struct damos_va_migrate_private priv;
struct mm_struct *mm;
int nr_dests;
int nid;
bool use_target_nid;
unsigned long applied = 0;
struct damos_migrate_dests *dests = &s->migrate_dests;
struct mm_walk_ops walk_ops = {
.pmd_entry = damos_va_migrate_pmd_entry,
.pte_entry = damos_va_migrate_pte_entry,
.walk_lock = PGWALK_RDLOCK,
};
use_target_nid = dests->nr_dests == 0;
nr_dests = use_target_nid ? 1 : dests->nr_dests;
priv.scheme = s;
priv.migration_lists = kmalloc_array(nr_dests,
sizeof(*priv.migration_lists), GFP_KERNEL);
if (!priv.migration_lists)
return 0;
for (int i = 0; i < nr_dests; i++)
INIT_LIST_HEAD(&priv.migration_lists[i]);
mm = damon_get_mm(target);
if (!mm)
goto free_lists;
mmap_read_lock(mm);
walk_page_range(mm, r->ar.start, r->ar.end, &walk_ops, &priv);
mmap_read_unlock(mm);
mmput(mm);
for (int i = 0; i < nr_dests; i++) {
nid = use_target_nid ? s->target_nid : dests->node_id_arr[i];
applied += damon_migrate_pages(&priv.migration_lists[i], nid);
cond_resched();
}
free_lists:
kfree(priv.migration_lists);
return applied * PAGE_SIZE;
}
static unsigned long damon_va_apply_scheme(struct damon_ctx *ctx,
struct damon_target *t, struct damon_region *r,
struct damos *scheme, unsigned long *sz_filter_passed)
{
int madv_action;
switch (scheme->action) {
case DAMOS_WILLNEED:
madv_action = MADV_WILLNEED;
break;
case DAMOS_COLD:
madv_action = MADV_COLD;
break;
case DAMOS_PAGEOUT:
madv_action = MADV_PAGEOUT;
break;
case DAMOS_HUGEPAGE:
madv_action = MADV_HUGEPAGE;
break;
case DAMOS_NOHUGEPAGE:
madv_action = MADV_NOHUGEPAGE;
break;
case DAMOS_MIGRATE_HOT:
case DAMOS_MIGRATE_COLD:
return damos_va_migrate(t, r, scheme, sz_filter_passed);
case DAMOS_STAT:
return 0;
default:
/*
* DAMOS actions that are not yet supported by 'vaddr'.
*/
return 0;
}
return damos_madvise(t, r, madv_action);
}
static int damon_va_scheme_score(struct damon_ctx *context,
struct damon_target *t, struct damon_region *r,
struct damos *scheme)
{
switch (scheme->action) {
case DAMOS_PAGEOUT:
return damon_cold_score(context, r, scheme);
case DAMOS_MIGRATE_HOT:
return damon_hot_score(context, r, scheme);
case DAMOS_MIGRATE_COLD:
return damon_cold_score(context, r, scheme);
default:
break;
}
return DAMOS_MAX_SCORE;
}
static int __init damon_va_initcall(void)
{
struct damon_operations ops = {
.id = DAMON_OPS_VADDR,
.init = damon_va_init,
.update = damon_va_update,
.prepare_access_checks = damon_va_prepare_access_checks,
.check_accesses = damon_va_check_accesses,
.target_valid = damon_va_target_valid,
.cleanup_target = damon_va_cleanup_target,
.cleanup = NULL,
.apply_scheme = damon_va_apply_scheme,
.get_scheme_score = damon_va_scheme_score,
};
/* ops for fixed virtual address ranges */
struct damon_operations ops_fvaddr = ops;
int err;
/* Don't set the monitoring target regions for the entire mapping */
ops_fvaddr.id = DAMON_OPS_FVADDR;
ops_fvaddr.init = NULL;
ops_fvaddr.update = NULL;
err = damon_register_ops(&ops);
if (err)
return err;
return damon_register_ops(&ops_fvaddr);
};
subsys_initcall(damon_va_initcall);
#include "tests/vaddr-kunit.h"