linux/lib/crypto/sha512.c
Eric Biggers 7941ad6965 lib/crypto: sha2: Add hmac_sha*_init_usingrawkey()
While the HMAC library functions support both incremental and one-shot
computation and both prepared and raw keys, the combination of raw key
+ incremental was missing.  It turns out that several potential users of
the HMAC library functions (tpm2-sessions.c, smb2transport.c,
trusted_tpm1.c) want exactly that.

Therefore, add the missing functions hmac_sha*_init_usingrawkey().

Implement them in an optimized way that directly initializes the HMAC
context without a separate key preparation step.

Reimplement the one-shot raw key functions hmac_sha*_usingrawkey() on
top of the new functions, which makes them a bit more efficient.

Reviewed-by: Ard Biesheuvel <ardb@kernel.org>
Link: https://lore.kernel.org/r/20250711215844.41715-1-ebiggers@kernel.org
Signed-off-by: Eric Biggers <ebiggers@kernel.org>
2025-07-14 08:20:37 -07:00

423 lines
13 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* SHA-384, SHA-512, HMAC-SHA384, and HMAC-SHA512 library functions
*
* Copyright (c) Jean-Luc Cooke <jlcooke@certainkey.com>
* Copyright (c) Andrew McDonald <andrew@mcdonald.org.uk>
* Copyright (c) 2003 Kyle McMartin <kyle@debian.org>
* Copyright 2025 Google LLC
*/
#include <crypto/hmac.h>
#include <crypto/sha2.h>
#include <linux/export.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/overflow.h>
#include <linux/string.h>
#include <linux/unaligned.h>
#include <linux/wordpart.h>
static const struct sha512_block_state sha384_iv = {
.h = {
SHA384_H0, SHA384_H1, SHA384_H2, SHA384_H3,
SHA384_H4, SHA384_H5, SHA384_H6, SHA384_H7,
},
};
static const struct sha512_block_state sha512_iv = {
.h = {
SHA512_H0, SHA512_H1, SHA512_H2, SHA512_H3,
SHA512_H4, SHA512_H5, SHA512_H6, SHA512_H7,
},
};
static const u64 sha512_K[80] = {
0x428a2f98d728ae22ULL, 0x7137449123ef65cdULL, 0xb5c0fbcfec4d3b2fULL,
0xe9b5dba58189dbbcULL, 0x3956c25bf348b538ULL, 0x59f111f1b605d019ULL,
0x923f82a4af194f9bULL, 0xab1c5ed5da6d8118ULL, 0xd807aa98a3030242ULL,
0x12835b0145706fbeULL, 0x243185be4ee4b28cULL, 0x550c7dc3d5ffb4e2ULL,
0x72be5d74f27b896fULL, 0x80deb1fe3b1696b1ULL, 0x9bdc06a725c71235ULL,
0xc19bf174cf692694ULL, 0xe49b69c19ef14ad2ULL, 0xefbe4786384f25e3ULL,
0x0fc19dc68b8cd5b5ULL, 0x240ca1cc77ac9c65ULL, 0x2de92c6f592b0275ULL,
0x4a7484aa6ea6e483ULL, 0x5cb0a9dcbd41fbd4ULL, 0x76f988da831153b5ULL,
0x983e5152ee66dfabULL, 0xa831c66d2db43210ULL, 0xb00327c898fb213fULL,
0xbf597fc7beef0ee4ULL, 0xc6e00bf33da88fc2ULL, 0xd5a79147930aa725ULL,
0x06ca6351e003826fULL, 0x142929670a0e6e70ULL, 0x27b70a8546d22ffcULL,
0x2e1b21385c26c926ULL, 0x4d2c6dfc5ac42aedULL, 0x53380d139d95b3dfULL,
0x650a73548baf63deULL, 0x766a0abb3c77b2a8ULL, 0x81c2c92e47edaee6ULL,
0x92722c851482353bULL, 0xa2bfe8a14cf10364ULL, 0xa81a664bbc423001ULL,
0xc24b8b70d0f89791ULL, 0xc76c51a30654be30ULL, 0xd192e819d6ef5218ULL,
0xd69906245565a910ULL, 0xf40e35855771202aULL, 0x106aa07032bbd1b8ULL,
0x19a4c116b8d2d0c8ULL, 0x1e376c085141ab53ULL, 0x2748774cdf8eeb99ULL,
0x34b0bcb5e19b48a8ULL, 0x391c0cb3c5c95a63ULL, 0x4ed8aa4ae3418acbULL,
0x5b9cca4f7763e373ULL, 0x682e6ff3d6b2b8a3ULL, 0x748f82ee5defb2fcULL,
0x78a5636f43172f60ULL, 0x84c87814a1f0ab72ULL, 0x8cc702081a6439ecULL,
0x90befffa23631e28ULL, 0xa4506cebde82bde9ULL, 0xbef9a3f7b2c67915ULL,
0xc67178f2e372532bULL, 0xca273eceea26619cULL, 0xd186b8c721c0c207ULL,
0xeada7dd6cde0eb1eULL, 0xf57d4f7fee6ed178ULL, 0x06f067aa72176fbaULL,
0x0a637dc5a2c898a6ULL, 0x113f9804bef90daeULL, 0x1b710b35131c471bULL,
0x28db77f523047d84ULL, 0x32caab7b40c72493ULL, 0x3c9ebe0a15c9bebcULL,
0x431d67c49c100d4cULL, 0x4cc5d4becb3e42b6ULL, 0x597f299cfc657e2aULL,
0x5fcb6fab3ad6faecULL, 0x6c44198c4a475817ULL,
};
#define Ch(x, y, z) ((z) ^ ((x) & ((y) ^ (z))))
#define Maj(x, y, z) (((x) & (y)) | ((z) & ((x) | (y))))
#define e0(x) (ror64((x), 28) ^ ror64((x), 34) ^ ror64((x), 39))
#define e1(x) (ror64((x), 14) ^ ror64((x), 18) ^ ror64((x), 41))
#define s0(x) (ror64((x), 1) ^ ror64((x), 8) ^ ((x) >> 7))
#define s1(x) (ror64((x), 19) ^ ror64((x), 61) ^ ((x) >> 6))
static void sha512_block_generic(struct sha512_block_state *state,
const u8 *data)
{
u64 a = state->h[0];
u64 b = state->h[1];
u64 c = state->h[2];
u64 d = state->h[3];
u64 e = state->h[4];
u64 f = state->h[5];
u64 g = state->h[6];
u64 h = state->h[7];
u64 t1, t2;
u64 W[16];
for (int j = 0; j < 16; j++)
W[j] = get_unaligned_be64(data + j * sizeof(u64));
for (int i = 0; i < 80; i += 8) {
if ((i & 15) == 0 && i != 0) {
for (int j = 0; j < 16; j++) {
W[j & 15] += s1(W[(j - 2) & 15]) +
W[(j - 7) & 15] +
s0(W[(j - 15) & 15]);
}
}
t1 = h + e1(e) + Ch(e, f, g) + sha512_K[i] + W[(i & 15)];
t2 = e0(a) + Maj(a, b, c); d += t1; h = t1 + t2;
t1 = g + e1(d) + Ch(d, e, f) + sha512_K[i+1] + W[(i & 15) + 1];
t2 = e0(h) + Maj(h, a, b); c += t1; g = t1 + t2;
t1 = f + e1(c) + Ch(c, d, e) + sha512_K[i+2] + W[(i & 15) + 2];
t2 = e0(g) + Maj(g, h, a); b += t1; f = t1 + t2;
t1 = e + e1(b) + Ch(b, c, d) + sha512_K[i+3] + W[(i & 15) + 3];
t2 = e0(f) + Maj(f, g, h); a += t1; e = t1 + t2;
t1 = d + e1(a) + Ch(a, b, c) + sha512_K[i+4] + W[(i & 15) + 4];
t2 = e0(e) + Maj(e, f, g); h += t1; d = t1 + t2;
t1 = c + e1(h) + Ch(h, a, b) + sha512_K[i+5] + W[(i & 15) + 5];
t2 = e0(d) + Maj(d, e, f); g += t1; c = t1 + t2;
t1 = b + e1(g) + Ch(g, h, a) + sha512_K[i+6] + W[(i & 15) + 6];
t2 = e0(c) + Maj(c, d, e); f += t1; b = t1 + t2;
t1 = a + e1(f) + Ch(f, g, h) + sha512_K[i+7] + W[(i & 15) + 7];
t2 = e0(b) + Maj(b, c, d); e += t1; a = t1 + t2;
}
state->h[0] += a;
state->h[1] += b;
state->h[2] += c;
state->h[3] += d;
state->h[4] += e;
state->h[5] += f;
state->h[6] += g;
state->h[7] += h;
}
static void __maybe_unused
sha512_blocks_generic(struct sha512_block_state *state,
const u8 *data, size_t nblocks)
{
do {
sha512_block_generic(state, data);
data += SHA512_BLOCK_SIZE;
} while (--nblocks);
}
#ifdef CONFIG_CRYPTO_LIB_SHA512_ARCH
#include "sha512.h" /* $(SRCARCH)/sha512.h */
#else
#define sha512_blocks sha512_blocks_generic
#endif
static void __sha512_init(struct __sha512_ctx *ctx,
const struct sha512_block_state *iv,
u64 initial_bytecount)
{
ctx->state = *iv;
ctx->bytecount_lo = initial_bytecount;
ctx->bytecount_hi = 0;
}
void sha384_init(struct sha384_ctx *ctx)
{
__sha512_init(&ctx->ctx, &sha384_iv, 0);
}
EXPORT_SYMBOL_GPL(sha384_init);
void sha512_init(struct sha512_ctx *ctx)
{
__sha512_init(&ctx->ctx, &sha512_iv, 0);
}
EXPORT_SYMBOL_GPL(sha512_init);
void __sha512_update(struct __sha512_ctx *ctx, const u8 *data, size_t len)
{
size_t partial = ctx->bytecount_lo % SHA512_BLOCK_SIZE;
if (check_add_overflow(ctx->bytecount_lo, len, &ctx->bytecount_lo))
ctx->bytecount_hi++;
if (partial + len >= SHA512_BLOCK_SIZE) {
size_t nblocks;
if (partial) {
size_t l = SHA512_BLOCK_SIZE - partial;
memcpy(&ctx->buf[partial], data, l);
data += l;
len -= l;
sha512_blocks(&ctx->state, ctx->buf, 1);
}
nblocks = len / SHA512_BLOCK_SIZE;
len %= SHA512_BLOCK_SIZE;
if (nblocks) {
sha512_blocks(&ctx->state, data, nblocks);
data += nblocks * SHA512_BLOCK_SIZE;
}
partial = 0;
}
if (len)
memcpy(&ctx->buf[partial], data, len);
}
EXPORT_SYMBOL_GPL(__sha512_update);
static void __sha512_final(struct __sha512_ctx *ctx,
u8 *out, size_t digest_size)
{
u64 bitcount_hi = (ctx->bytecount_hi << 3) | (ctx->bytecount_lo >> 61);
u64 bitcount_lo = ctx->bytecount_lo << 3;
size_t partial = ctx->bytecount_lo % SHA512_BLOCK_SIZE;
ctx->buf[partial++] = 0x80;
if (partial > SHA512_BLOCK_SIZE - 16) {
memset(&ctx->buf[partial], 0, SHA512_BLOCK_SIZE - partial);
sha512_blocks(&ctx->state, ctx->buf, 1);
partial = 0;
}
memset(&ctx->buf[partial], 0, SHA512_BLOCK_SIZE - 16 - partial);
*(__be64 *)&ctx->buf[SHA512_BLOCK_SIZE - 16] = cpu_to_be64(bitcount_hi);
*(__be64 *)&ctx->buf[SHA512_BLOCK_SIZE - 8] = cpu_to_be64(bitcount_lo);
sha512_blocks(&ctx->state, ctx->buf, 1);
for (size_t i = 0; i < digest_size; i += 8)
put_unaligned_be64(ctx->state.h[i / 8], out + i);
}
void sha384_final(struct sha384_ctx *ctx, u8 out[SHA384_DIGEST_SIZE])
{
__sha512_final(&ctx->ctx, out, SHA384_DIGEST_SIZE);
memzero_explicit(ctx, sizeof(*ctx));
}
EXPORT_SYMBOL_GPL(sha384_final);
void sha512_final(struct sha512_ctx *ctx, u8 out[SHA512_DIGEST_SIZE])
{
__sha512_final(&ctx->ctx, out, SHA512_DIGEST_SIZE);
memzero_explicit(ctx, sizeof(*ctx));
}
EXPORT_SYMBOL_GPL(sha512_final);
void sha384(const u8 *data, size_t len, u8 out[SHA384_DIGEST_SIZE])
{
struct sha384_ctx ctx;
sha384_init(&ctx);
sha384_update(&ctx, data, len);
sha384_final(&ctx, out);
}
EXPORT_SYMBOL_GPL(sha384);
void sha512(const u8 *data, size_t len, u8 out[SHA512_DIGEST_SIZE])
{
struct sha512_ctx ctx;
sha512_init(&ctx);
sha512_update(&ctx, data, len);
sha512_final(&ctx, out);
}
EXPORT_SYMBOL_GPL(sha512);
static void __hmac_sha512_preparekey(struct sha512_block_state *istate,
struct sha512_block_state *ostate,
const u8 *raw_key, size_t raw_key_len,
const struct sha512_block_state *iv)
{
union {
u8 b[SHA512_BLOCK_SIZE];
unsigned long w[SHA512_BLOCK_SIZE / sizeof(unsigned long)];
} derived_key = { 0 };
if (unlikely(raw_key_len > SHA512_BLOCK_SIZE)) {
if (iv == &sha384_iv)
sha384(raw_key, raw_key_len, derived_key.b);
else
sha512(raw_key, raw_key_len, derived_key.b);
} else {
memcpy(derived_key.b, raw_key, raw_key_len);
}
for (size_t i = 0; i < ARRAY_SIZE(derived_key.w); i++)
derived_key.w[i] ^= REPEAT_BYTE(HMAC_IPAD_VALUE);
*istate = *iv;
sha512_blocks(istate, derived_key.b, 1);
for (size_t i = 0; i < ARRAY_SIZE(derived_key.w); i++)
derived_key.w[i] ^= REPEAT_BYTE(HMAC_OPAD_VALUE ^
HMAC_IPAD_VALUE);
*ostate = *iv;
sha512_blocks(ostate, derived_key.b, 1);
memzero_explicit(&derived_key, sizeof(derived_key));
}
void hmac_sha384_preparekey(struct hmac_sha384_key *key,
const u8 *raw_key, size_t raw_key_len)
{
__hmac_sha512_preparekey(&key->key.istate, &key->key.ostate,
raw_key, raw_key_len, &sha384_iv);
}
EXPORT_SYMBOL_GPL(hmac_sha384_preparekey);
void hmac_sha512_preparekey(struct hmac_sha512_key *key,
const u8 *raw_key, size_t raw_key_len)
{
__hmac_sha512_preparekey(&key->key.istate, &key->key.ostate,
raw_key, raw_key_len, &sha512_iv);
}
EXPORT_SYMBOL_GPL(hmac_sha512_preparekey);
void __hmac_sha512_init(struct __hmac_sha512_ctx *ctx,
const struct __hmac_sha512_key *key)
{
__sha512_init(&ctx->sha_ctx, &key->istate, SHA512_BLOCK_SIZE);
ctx->ostate = key->ostate;
}
EXPORT_SYMBOL_GPL(__hmac_sha512_init);
void hmac_sha384_init_usingrawkey(struct hmac_sha384_ctx *ctx,
const u8 *raw_key, size_t raw_key_len)
{
__hmac_sha512_preparekey(&ctx->ctx.sha_ctx.state, &ctx->ctx.ostate,
raw_key, raw_key_len, &sha384_iv);
ctx->ctx.sha_ctx.bytecount_lo = SHA512_BLOCK_SIZE;
ctx->ctx.sha_ctx.bytecount_hi = 0;
}
EXPORT_SYMBOL_GPL(hmac_sha384_init_usingrawkey);
void hmac_sha512_init_usingrawkey(struct hmac_sha512_ctx *ctx,
const u8 *raw_key, size_t raw_key_len)
{
__hmac_sha512_preparekey(&ctx->ctx.sha_ctx.state, &ctx->ctx.ostate,
raw_key, raw_key_len, &sha512_iv);
ctx->ctx.sha_ctx.bytecount_lo = SHA512_BLOCK_SIZE;
ctx->ctx.sha_ctx.bytecount_hi = 0;
}
EXPORT_SYMBOL_GPL(hmac_sha512_init_usingrawkey);
static void __hmac_sha512_final(struct __hmac_sha512_ctx *ctx,
u8 *out, size_t digest_size)
{
/* Generate the padded input for the outer hash in ctx->sha_ctx.buf. */
__sha512_final(&ctx->sha_ctx, ctx->sha_ctx.buf, digest_size);
memset(&ctx->sha_ctx.buf[digest_size], 0,
SHA512_BLOCK_SIZE - digest_size);
ctx->sha_ctx.buf[digest_size] = 0x80;
*(__be32 *)&ctx->sha_ctx.buf[SHA512_BLOCK_SIZE - 4] =
cpu_to_be32(8 * (SHA512_BLOCK_SIZE + digest_size));
/* Compute the outer hash, which gives the HMAC value. */
sha512_blocks(&ctx->ostate, ctx->sha_ctx.buf, 1);
for (size_t i = 0; i < digest_size; i += 8)
put_unaligned_be64(ctx->ostate.h[i / 8], out + i);
memzero_explicit(ctx, sizeof(*ctx));
}
void hmac_sha384_final(struct hmac_sha384_ctx *ctx,
u8 out[SHA384_DIGEST_SIZE])
{
__hmac_sha512_final(&ctx->ctx, out, SHA384_DIGEST_SIZE);
}
EXPORT_SYMBOL_GPL(hmac_sha384_final);
void hmac_sha512_final(struct hmac_sha512_ctx *ctx,
u8 out[SHA512_DIGEST_SIZE])
{
__hmac_sha512_final(&ctx->ctx, out, SHA512_DIGEST_SIZE);
}
EXPORT_SYMBOL_GPL(hmac_sha512_final);
void hmac_sha384(const struct hmac_sha384_key *key,
const u8 *data, size_t data_len, u8 out[SHA384_DIGEST_SIZE])
{
struct hmac_sha384_ctx ctx;
hmac_sha384_init(&ctx, key);
hmac_sha384_update(&ctx, data, data_len);
hmac_sha384_final(&ctx, out);
}
EXPORT_SYMBOL_GPL(hmac_sha384);
void hmac_sha512(const struct hmac_sha512_key *key,
const u8 *data, size_t data_len, u8 out[SHA512_DIGEST_SIZE])
{
struct hmac_sha512_ctx ctx;
hmac_sha512_init(&ctx, key);
hmac_sha512_update(&ctx, data, data_len);
hmac_sha512_final(&ctx, out);
}
EXPORT_SYMBOL_GPL(hmac_sha512);
void hmac_sha384_usingrawkey(const u8 *raw_key, size_t raw_key_len,
const u8 *data, size_t data_len,
u8 out[SHA384_DIGEST_SIZE])
{
struct hmac_sha384_ctx ctx;
hmac_sha384_init_usingrawkey(&ctx, raw_key, raw_key_len);
hmac_sha384_update(&ctx, data, data_len);
hmac_sha384_final(&ctx, out);
}
EXPORT_SYMBOL_GPL(hmac_sha384_usingrawkey);
void hmac_sha512_usingrawkey(const u8 *raw_key, size_t raw_key_len,
const u8 *data, size_t data_len,
u8 out[SHA512_DIGEST_SIZE])
{
struct hmac_sha512_ctx ctx;
hmac_sha512_init_usingrawkey(&ctx, raw_key, raw_key_len);
hmac_sha512_update(&ctx, data, data_len);
hmac_sha512_final(&ctx, out);
}
EXPORT_SYMBOL_GPL(hmac_sha512_usingrawkey);
#ifdef sha512_mod_init_arch
static int __init sha512_mod_init(void)
{
sha512_mod_init_arch();
return 0;
}
subsys_initcall(sha512_mod_init);
static void __exit sha512_mod_exit(void)
{
}
module_exit(sha512_mod_exit);
#endif
MODULE_DESCRIPTION("SHA-384, SHA-512, HMAC-SHA384, and HMAC-SHA512 library functions");
MODULE_LICENSE("GPL");