linux/lib/crc/s390/crc32be-vx.c
Eric Biggers 2374bf2386 lib/crc: s390: Migrate optimized CRC code into lib/crc/
Move the s390-optimized CRC code from arch/s390/lib/crc* into its new
location in lib/crc/s390/, and wire it up in the new way.  This new way
of organizing the CRC code eliminates the need to artificially split the
code for each CRC variant into separate arch and generic modules,
enabling better inlining and dead code elimination.  For more details,
see "lib/crc: Prepare for arch-optimized code in subdirs of lib/crc/".

Reviewed-by: "Martin K. Petersen" <martin.petersen@oracle.com>
Acked-by: Ingo Molnar <mingo@kernel.org>
Acked-by: "Jason A. Donenfeld" <Jason@zx2c4.com>
Link: https://lore.kernel.org/r/20250607200454.73587-10-ebiggers@kernel.org
Signed-off-by: Eric Biggers <ebiggers@kernel.org>
2025-06-30 09:31:57 -07:00

174 lines
5.4 KiB
C

/* SPDX-License-Identifier: GPL-2.0 */
/*
* Hardware-accelerated CRC-32 variants for Linux on z Systems
*
* Use the z/Architecture Vector Extension Facility to accelerate the
* computing of CRC-32 checksums.
*
* This CRC-32 implementation algorithm processes the most-significant
* bit first (BE).
*
* Copyright IBM Corp. 2015
* Author(s): Hendrik Brueckner <brueckner@linux.vnet.ibm.com>
*/
#include <linux/types.h>
#include <asm/fpu.h>
#include "crc32-vx.h"
/* Vector register range containing CRC-32 constants */
#define CONST_R1R2 9
#define CONST_R3R4 10
#define CONST_R5 11
#define CONST_R6 12
#define CONST_RU_POLY 13
#define CONST_CRC_POLY 14
/*
* The CRC-32 constant block contains reduction constants to fold and
* process particular chunks of the input data stream in parallel.
*
* For the CRC-32 variants, the constants are precomputed according to
* these definitions:
*
* R1 = x4*128+64 mod P(x)
* R2 = x4*128 mod P(x)
* R3 = x128+64 mod P(x)
* R4 = x128 mod P(x)
* R5 = x96 mod P(x)
* R6 = x64 mod P(x)
*
* Barret reduction constant, u, is defined as floor(x**64 / P(x)).
*
* where P(x) is the polynomial in the normal domain and the P'(x) is the
* polynomial in the reversed (bitreflected) domain.
*
* Note that the constant definitions below are extended in order to compute
* intermediate results with a single VECTOR GALOIS FIELD MULTIPLY instruction.
* The rightmost doubleword can be 0 to prevent contribution to the result or
* can be multiplied by 1 to perform an XOR without the need for a separate
* VECTOR EXCLUSIVE OR instruction.
*
* CRC-32 (IEEE 802.3 Ethernet, ...) polynomials:
*
* P(x) = 0x04C11DB7
* P'(x) = 0xEDB88320
*/
static unsigned long constants_CRC_32_BE[] = {
0x08833794c, 0x0e6228b11, /* R1, R2 */
0x0c5b9cd4c, 0x0e8a45605, /* R3, R4 */
0x0f200aa66, 1UL << 32, /* R5, x32 */
0x0490d678d, 1, /* R6, 1 */
0x104d101df, 0, /* u */
0x104C11DB7, 0, /* P(x) */
};
/**
* crc32_be_vgfm_16 - Compute CRC-32 (BE variant) with vector registers
* @crc: Initial CRC value, typically ~0.
* @buf: Input buffer pointer, performance might be improved if the
* buffer is on a doubleword boundary.
* @size: Size of the buffer, must be 64 bytes or greater.
*
* Register usage:
* V0: Initial CRC value and intermediate constants and results.
* V1..V4: Data for CRC computation.
* V5..V8: Next data chunks that are fetched from the input buffer.
* V9..V14: CRC-32 constants.
*/
u32 crc32_be_vgfm_16(u32 crc, unsigned char const *buf, size_t size)
{
/* Load CRC-32 constants */
fpu_vlm(CONST_R1R2, CONST_CRC_POLY, &constants_CRC_32_BE);
fpu_vzero(0);
/* Load the initial CRC value into the leftmost word of V0. */
fpu_vlvgf(0, crc, 0);
/* Load a 64-byte data chunk and XOR with CRC */
fpu_vlm(1, 4, buf);
fpu_vx(1, 0, 1);
buf += 64;
size -= 64;
while (size >= 64) {
/* Load the next 64-byte data chunk into V5 to V8 */
fpu_vlm(5, 8, buf);
/*
* Perform a GF(2) multiplication of the doublewords in V1 with
* the reduction constants in V0. The intermediate result is
* then folded (accumulated) with the next data chunk in V5 and
* stored in V1. Repeat this step for the register contents
* in V2, V3, and V4 respectively.
*/
fpu_vgfmag(1, CONST_R1R2, 1, 5);
fpu_vgfmag(2, CONST_R1R2, 2, 6);
fpu_vgfmag(3, CONST_R1R2, 3, 7);
fpu_vgfmag(4, CONST_R1R2, 4, 8);
buf += 64;
size -= 64;
}
/* Fold V1 to V4 into a single 128-bit value in V1 */
fpu_vgfmag(1, CONST_R3R4, 1, 2);
fpu_vgfmag(1, CONST_R3R4, 1, 3);
fpu_vgfmag(1, CONST_R3R4, 1, 4);
while (size >= 16) {
fpu_vl(2, buf);
fpu_vgfmag(1, CONST_R3R4, 1, 2);
buf += 16;
size -= 16;
}
/*
* The R5 constant is used to fold a 128-bit value into an 96-bit value
* that is XORed with the next 96-bit input data chunk. To use a single
* VGFMG instruction, multiply the rightmost 64-bit with x^32 (1<<32) to
* form an intermediate 96-bit value (with appended zeros) which is then
* XORed with the intermediate reduction result.
*/
fpu_vgfmg(1, CONST_R5, 1);
/*
* Further reduce the remaining 96-bit value to a 64-bit value using a
* single VGFMG, the rightmost doubleword is multiplied with 0x1. The
* intermediate result is then XORed with the product of the leftmost
* doubleword with R6. The result is a 64-bit value and is subject to
* the Barret reduction.
*/
fpu_vgfmg(1, CONST_R6, 1);
/*
* The input values to the Barret reduction are the degree-63 polynomial
* in V1 (R(x)), degree-32 generator polynomial, and the reduction
* constant u. The Barret reduction result is the CRC value of R(x) mod
* P(x).
*
* The Barret reduction algorithm is defined as:
*
* 1. T1(x) = floor( R(x) / x^32 ) GF2MUL u
* 2. T2(x) = floor( T1(x) / x^32 ) GF2MUL P(x)
* 3. C(x) = R(x) XOR T2(x) mod x^32
*
* Note: To compensate the division by x^32, use the vector unpack
* instruction to move the leftmost word into the leftmost doubleword
* of the vector register. The rightmost doubleword is multiplied
* with zero to not contribute to the intermediate results.
*/
/* T1(x) = floor( R(x) / x^32 ) GF2MUL u */
fpu_vupllf(2, 1);
fpu_vgfmg(2, CONST_RU_POLY, 2);
/*
* Compute the GF(2) product of the CRC polynomial in VO with T1(x) in
* V2 and XOR the intermediate result, T2(x), with the value in V1.
* The final result is in the rightmost word of V2.
*/
fpu_vupllf(2, 2);
fpu_vgfmag(2, CONST_CRC_POLY, 2, 1);
return fpu_vlgvf(2, 3);
}