linux/kernel/bpf/stream.c
Kumar Kartikeya Dwivedi bfa2bb9abd bpf: Fix improper int-to-ptr cast in dump_stack_cb
On 32-bit platforms, we'll try to convert a u64 directly to a pointer
type which is 32-bit, which causes the compiler to complain about cast
from an integer of a different size to a pointer type. Cast to long
before casting to the pointer type to match the pointer width.

Reported-by: kernelci.org bot <bot@kernelci.org>
Reported-by: Randy Dunlap <rdunlap@infradead.org>
Fixes: d7c431cafc ("bpf: Add dump_stack() analogue to print to BPF stderr")
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Acked-by: Randy Dunlap <rdunlap@infradead.org>
Tested-by: Randy Dunlap <rdunlap@infradead.org>
Link: https://lore.kernel.org/r/20250705053035.3020320-3-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2025-07-07 08:30:15 -07:00

526 lines
13 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/* Copyright (c) 2025 Meta Platforms, Inc. and affiliates. */
#include <linux/bpf.h>
#include <linux/filter.h>
#include <linux/bpf_mem_alloc.h>
#include <linux/percpu.h>
#include <linux/refcount.h>
#include <linux/gfp.h>
#include <linux/memory.h>
#include <linux/local_lock.h>
#include <linux/mutex.h>
/*
* Simple per-CPU NMI-safe bump allocation mechanism, backed by the NMI-safe
* try_alloc_pages()/free_pages_nolock() primitives. We allocate a page and
* stash it in a local per-CPU variable, and bump allocate from the page
* whenever items need to be printed to a stream. Each page holds a global
* atomic refcount in its first 4 bytes, and then records of variable length
* that describe the printed messages. Once the global refcount has dropped to
* zero, it is a signal to free the page back to the kernel's page allocator,
* given all the individual records in it have been consumed.
*
* It is possible the same page is used to serve allocations across different
* programs, which may be consumed at different times individually, hence
* maintaining a reference count per-page is critical for correct lifetime
* tracking.
*
* The bpf_stream_page code will be replaced to use kmalloc_nolock() once it
* lands.
*/
struct bpf_stream_page {
refcount_t ref;
u32 consumed;
char buf[];
};
/* Available room to add data to a refcounted page. */
#define BPF_STREAM_PAGE_SZ (PAGE_SIZE - offsetofend(struct bpf_stream_page, consumed))
static DEFINE_PER_CPU(local_trylock_t, stream_local_lock) = INIT_LOCAL_TRYLOCK(stream_local_lock);
static DEFINE_PER_CPU(struct bpf_stream_page *, stream_pcpu_page);
static bool bpf_stream_page_local_lock(unsigned long *flags)
{
return local_trylock_irqsave(&stream_local_lock, *flags);
}
static void bpf_stream_page_local_unlock(unsigned long *flags)
{
local_unlock_irqrestore(&stream_local_lock, *flags);
}
static void bpf_stream_page_free(struct bpf_stream_page *stream_page)
{
struct page *p;
if (!stream_page)
return;
p = virt_to_page(stream_page);
free_pages_nolock(p, 0);
}
static void bpf_stream_page_get(struct bpf_stream_page *stream_page)
{
refcount_inc(&stream_page->ref);
}
static void bpf_stream_page_put(struct bpf_stream_page *stream_page)
{
if (refcount_dec_and_test(&stream_page->ref))
bpf_stream_page_free(stream_page);
}
static void bpf_stream_page_init(struct bpf_stream_page *stream_page)
{
refcount_set(&stream_page->ref, 1);
stream_page->consumed = 0;
}
static struct bpf_stream_page *bpf_stream_page_replace(void)
{
struct bpf_stream_page *stream_page, *old_stream_page;
struct page *page;
page = alloc_pages_nolock(NUMA_NO_NODE, 0);
if (!page)
return NULL;
stream_page = page_address(page);
bpf_stream_page_init(stream_page);
old_stream_page = this_cpu_read(stream_pcpu_page);
if (old_stream_page)
bpf_stream_page_put(old_stream_page);
this_cpu_write(stream_pcpu_page, stream_page);
return stream_page;
}
static int bpf_stream_page_check_room(struct bpf_stream_page *stream_page, int len)
{
int min = offsetof(struct bpf_stream_elem, str[0]);
int consumed = stream_page->consumed;
int total = BPF_STREAM_PAGE_SZ;
int rem = max(0, total - consumed - min);
/* Let's give room of at least 8 bytes. */
WARN_ON_ONCE(rem % 8 != 0);
rem = rem < 8 ? 0 : rem;
return min(len, rem);
}
static void bpf_stream_elem_init(struct bpf_stream_elem *elem, int len)
{
init_llist_node(&elem->node);
elem->total_len = len;
elem->consumed_len = 0;
}
static struct bpf_stream_page *bpf_stream_page_from_elem(struct bpf_stream_elem *elem)
{
unsigned long addr = (unsigned long)elem;
return (struct bpf_stream_page *)PAGE_ALIGN_DOWN(addr);
}
static struct bpf_stream_elem *bpf_stream_page_push_elem(struct bpf_stream_page *stream_page, int len)
{
u32 consumed = stream_page->consumed;
stream_page->consumed += round_up(offsetof(struct bpf_stream_elem, str[len]), 8);
return (struct bpf_stream_elem *)&stream_page->buf[consumed];
}
static struct bpf_stream_elem *bpf_stream_page_reserve_elem(int len)
{
struct bpf_stream_elem *elem = NULL;
struct bpf_stream_page *page;
int room = 0;
page = this_cpu_read(stream_pcpu_page);
if (!page)
page = bpf_stream_page_replace();
if (!page)
return NULL;
room = bpf_stream_page_check_room(page, len);
if (room != len)
page = bpf_stream_page_replace();
if (!page)
return NULL;
bpf_stream_page_get(page);
room = bpf_stream_page_check_room(page, len);
WARN_ON_ONCE(room != len);
elem = bpf_stream_page_push_elem(page, room);
bpf_stream_elem_init(elem, room);
return elem;
}
static struct bpf_stream_elem *bpf_stream_elem_alloc(int len)
{
const int max_len = ARRAY_SIZE((struct bpf_bprintf_buffers){}.buf);
struct bpf_stream_elem *elem;
unsigned long flags;
BUILD_BUG_ON(max_len > BPF_STREAM_PAGE_SZ);
/*
* Length denotes the amount of data to be written as part of stream element,
* thus includes '\0' byte. We're capped by how much bpf_bprintf_buffers can
* accomodate, therefore deny allocations that won't fit into them.
*/
if (len < 0 || len > max_len)
return NULL;
if (!bpf_stream_page_local_lock(&flags))
return NULL;
elem = bpf_stream_page_reserve_elem(len);
bpf_stream_page_local_unlock(&flags);
return elem;
}
static int __bpf_stream_push_str(struct llist_head *log, const char *str, int len)
{
struct bpf_stream_elem *elem = NULL;
/*
* Allocate a bpf_prog_stream_elem and push it to the bpf_prog_stream
* log, elements will be popped at once and reversed to print the log.
*/
elem = bpf_stream_elem_alloc(len);
if (!elem)
return -ENOMEM;
memcpy(elem->str, str, len);
llist_add(&elem->node, log);
return 0;
}
static int bpf_stream_consume_capacity(struct bpf_stream *stream, int len)
{
if (atomic_read(&stream->capacity) >= BPF_STREAM_MAX_CAPACITY)
return -ENOSPC;
if (atomic_add_return(len, &stream->capacity) >= BPF_STREAM_MAX_CAPACITY) {
atomic_sub(len, &stream->capacity);
return -ENOSPC;
}
return 0;
}
static void bpf_stream_release_capacity(struct bpf_stream *stream, struct bpf_stream_elem *elem)
{
int len = elem->total_len;
atomic_sub(len, &stream->capacity);
}
static int bpf_stream_push_str(struct bpf_stream *stream, const char *str, int len)
{
int ret = bpf_stream_consume_capacity(stream, len);
return ret ?: __bpf_stream_push_str(&stream->log, str, len);
}
static struct bpf_stream *bpf_stream_get(enum bpf_stream_id stream_id, struct bpf_prog_aux *aux)
{
if (stream_id != BPF_STDOUT && stream_id != BPF_STDERR)
return NULL;
return &aux->stream[stream_id - 1];
}
static void bpf_stream_free_elem(struct bpf_stream_elem *elem)
{
struct bpf_stream_page *p;
p = bpf_stream_page_from_elem(elem);
bpf_stream_page_put(p);
}
static void bpf_stream_free_list(struct llist_node *list)
{
struct bpf_stream_elem *elem, *tmp;
llist_for_each_entry_safe(elem, tmp, list, node)
bpf_stream_free_elem(elem);
}
static struct llist_node *bpf_stream_backlog_peek(struct bpf_stream *stream)
{
return stream->backlog_head;
}
static struct llist_node *bpf_stream_backlog_pop(struct bpf_stream *stream)
{
struct llist_node *node;
node = stream->backlog_head;
if (stream->backlog_head == stream->backlog_tail)
stream->backlog_head = stream->backlog_tail = NULL;
else
stream->backlog_head = node->next;
return node;
}
static void bpf_stream_backlog_fill(struct bpf_stream *stream)
{
struct llist_node *head, *tail;
if (llist_empty(&stream->log))
return;
tail = llist_del_all(&stream->log);
if (!tail)
return;
head = llist_reverse_order(tail);
if (!stream->backlog_head) {
stream->backlog_head = head;
stream->backlog_tail = tail;
} else {
stream->backlog_tail->next = head;
stream->backlog_tail = tail;
}
return;
}
static bool bpf_stream_consume_elem(struct bpf_stream_elem *elem, int *len)
{
int rem = elem->total_len - elem->consumed_len;
int used = min(rem, *len);
elem->consumed_len += used;
*len -= used;
return elem->consumed_len == elem->total_len;
}
static int bpf_stream_read(struct bpf_stream *stream, void __user *buf, int len)
{
int rem_len = len, cons_len, ret = 0;
struct bpf_stream_elem *elem = NULL;
struct llist_node *node;
mutex_lock(&stream->lock);
while (rem_len) {
int pos = len - rem_len;
bool cont;
node = bpf_stream_backlog_peek(stream);
if (!node) {
bpf_stream_backlog_fill(stream);
node = bpf_stream_backlog_peek(stream);
}
if (!node)
break;
elem = container_of(node, typeof(*elem), node);
cons_len = elem->consumed_len;
cont = bpf_stream_consume_elem(elem, &rem_len) == false;
ret = copy_to_user(buf + pos, elem->str + cons_len,
elem->consumed_len - cons_len);
/* Restore in case of error. */
if (ret) {
ret = -EFAULT;
elem->consumed_len = cons_len;
break;
}
if (cont)
continue;
bpf_stream_backlog_pop(stream);
bpf_stream_release_capacity(stream, elem);
bpf_stream_free_elem(elem);
}
mutex_unlock(&stream->lock);
return ret ? ret : len - rem_len;
}
int bpf_prog_stream_read(struct bpf_prog *prog, enum bpf_stream_id stream_id, void __user *buf, int len)
{
struct bpf_stream *stream;
stream = bpf_stream_get(stream_id, prog->aux);
if (!stream)
return -ENOENT;
return bpf_stream_read(stream, buf, len);
}
__bpf_kfunc_start_defs();
/*
* Avoid using enum bpf_stream_id so that kfunc users don't have to pull in the
* enum in headers.
*/
__bpf_kfunc int bpf_stream_vprintk(int stream_id, const char *fmt__str, const void *args, u32 len__sz, void *aux__prog)
{
struct bpf_bprintf_data data = {
.get_bin_args = true,
.get_buf = true,
};
struct bpf_prog_aux *aux = aux__prog;
u32 fmt_size = strlen(fmt__str) + 1;
struct bpf_stream *stream;
u32 data_len = len__sz;
int ret, num_args;
stream = bpf_stream_get(stream_id, aux);
if (!stream)
return -ENOENT;
if (data_len & 7 || data_len > MAX_BPRINTF_VARARGS * 8 ||
(data_len && !args))
return -EINVAL;
num_args = data_len / 8;
ret = bpf_bprintf_prepare(fmt__str, fmt_size, args, num_args, &data);
if (ret < 0)
return ret;
ret = bstr_printf(data.buf, MAX_BPRINTF_BUF, fmt__str, data.bin_args);
/* Exclude NULL byte during push. */
ret = bpf_stream_push_str(stream, data.buf, ret);
bpf_bprintf_cleanup(&data);
return ret;
}
__bpf_kfunc_end_defs();
/* Added kfunc to common_btf_ids */
void bpf_prog_stream_init(struct bpf_prog *prog)
{
int i;
for (i = 0; i < ARRAY_SIZE(prog->aux->stream); i++) {
atomic_set(&prog->aux->stream[i].capacity, 0);
init_llist_head(&prog->aux->stream[i].log);
mutex_init(&prog->aux->stream[i].lock);
prog->aux->stream[i].backlog_head = NULL;
prog->aux->stream[i].backlog_tail = NULL;
}
}
void bpf_prog_stream_free(struct bpf_prog *prog)
{
struct llist_node *list;
int i;
for (i = 0; i < ARRAY_SIZE(prog->aux->stream); i++) {
list = llist_del_all(&prog->aux->stream[i].log);
bpf_stream_free_list(list);
bpf_stream_free_list(prog->aux->stream[i].backlog_head);
}
}
void bpf_stream_stage_init(struct bpf_stream_stage *ss)
{
init_llist_head(&ss->log);
ss->len = 0;
}
void bpf_stream_stage_free(struct bpf_stream_stage *ss)
{
struct llist_node *node;
node = llist_del_all(&ss->log);
bpf_stream_free_list(node);
}
int bpf_stream_stage_printk(struct bpf_stream_stage *ss, const char *fmt, ...)
{
struct bpf_bprintf_buffers *buf;
va_list args;
int ret;
if (bpf_try_get_buffers(&buf))
return -EBUSY;
va_start(args, fmt);
ret = vsnprintf(buf->buf, ARRAY_SIZE(buf->buf), fmt, args);
va_end(args);
ss->len += ret;
/* Exclude NULL byte during push. */
ret = __bpf_stream_push_str(&ss->log, buf->buf, ret);
bpf_put_buffers();
return ret;
}
int bpf_stream_stage_commit(struct bpf_stream_stage *ss, struct bpf_prog *prog,
enum bpf_stream_id stream_id)
{
struct llist_node *list, *head, *tail;
struct bpf_stream *stream;
int ret;
stream = bpf_stream_get(stream_id, prog->aux);
if (!stream)
return -EINVAL;
ret = bpf_stream_consume_capacity(stream, ss->len);
if (ret)
return ret;
list = llist_del_all(&ss->log);
head = tail = list;
if (!list)
return 0;
while (llist_next(list)) {
tail = llist_next(list);
list = tail;
}
llist_add_batch(head, tail, &stream->log);
return 0;
}
struct dump_stack_ctx {
struct bpf_stream_stage *ss;
int err;
};
static bool dump_stack_cb(void *cookie, u64 ip, u64 sp, u64 bp)
{
struct dump_stack_ctx *ctxp = cookie;
const char *file = "", *line = "";
struct bpf_prog *prog;
int num, ret;
rcu_read_lock();
prog = bpf_prog_ksym_find(ip);
rcu_read_unlock();
if (prog) {
ret = bpf_prog_get_file_line(prog, ip, &file, &line, &num);
if (ret < 0)
goto end;
ctxp->err = bpf_stream_stage_printk(ctxp->ss, "%pS\n %s @ %s:%d\n",
(void *)(long)ip, line, file, num);
return !ctxp->err;
}
end:
ctxp->err = bpf_stream_stage_printk(ctxp->ss, "%pS\n", (void *)(long)ip);
return !ctxp->err;
}
int bpf_stream_stage_dump_stack(struct bpf_stream_stage *ss)
{
struct dump_stack_ctx ctx = { .ss = ss };
int ret;
ret = bpf_stream_stage_printk(ss, "CPU: %d UID: %d PID: %d Comm: %s\n",
raw_smp_processor_id(), __kuid_val(current_real_cred()->euid),
current->pid, current->comm);
if (ret)
return ret;
ret = bpf_stream_stage_printk(ss, "Call trace:\n");
if (ret)
return ret;
arch_bpf_stack_walk(dump_stack_cb, &ctx);
if (ctx.err)
return ctx.err;
return bpf_stream_stage_printk(ss, "\n");
}