linux/fs/xfs/xfs_zone_alloc.c
Christoph Hellwig 60e02f956d xfs: improve the comments in xfs_select_zone_nowait
The top of the function comment is outdated, and the parts still correct
duplicate information in comment inside the function.  Remove the top of
the function comment and instead improve a comment inside the function.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Carlos Maiolino <cem@kernel.org>
2025-07-24 17:30:14 +02:00

1333 lines
33 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (c) 2023-2025 Christoph Hellwig.
* Copyright (c) 2024-2025, Western Digital Corporation or its affiliates.
*/
#include "xfs.h"
#include "xfs_shared.h"
#include "xfs_format.h"
#include "xfs_log_format.h"
#include "xfs_error.h"
#include "xfs_trans_resv.h"
#include "xfs_mount.h"
#include "xfs_inode.h"
#include "xfs_iomap.h"
#include "xfs_trans.h"
#include "xfs_alloc.h"
#include "xfs_bmap.h"
#include "xfs_bmap_btree.h"
#include "xfs_trans_space.h"
#include "xfs_refcount.h"
#include "xfs_rtbitmap.h"
#include "xfs_rtrmap_btree.h"
#include "xfs_zone_alloc.h"
#include "xfs_zone_priv.h"
#include "xfs_zones.h"
#include "xfs_trace.h"
#include "xfs_mru_cache.h"
void
xfs_open_zone_put(
struct xfs_open_zone *oz)
{
if (atomic_dec_and_test(&oz->oz_ref)) {
xfs_rtgroup_rele(oz->oz_rtg);
kfree(oz);
}
}
static inline uint32_t
xfs_zone_bucket(
struct xfs_mount *mp,
uint32_t used_blocks)
{
return XFS_ZONE_USED_BUCKETS * used_blocks /
mp->m_groups[XG_TYPE_RTG].blocks;
}
static inline void
xfs_zone_add_to_bucket(
struct xfs_zone_info *zi,
xfs_rgnumber_t rgno,
uint32_t to_bucket)
{
__set_bit(rgno, zi->zi_used_bucket_bitmap[to_bucket]);
zi->zi_used_bucket_entries[to_bucket]++;
}
static inline void
xfs_zone_remove_from_bucket(
struct xfs_zone_info *zi,
xfs_rgnumber_t rgno,
uint32_t from_bucket)
{
__clear_bit(rgno, zi->zi_used_bucket_bitmap[from_bucket]);
zi->zi_used_bucket_entries[from_bucket]--;
}
static void
xfs_zone_account_reclaimable(
struct xfs_rtgroup *rtg,
uint32_t freed)
{
struct xfs_group *xg = &rtg->rtg_group;
struct xfs_mount *mp = rtg_mount(rtg);
struct xfs_zone_info *zi = mp->m_zone_info;
uint32_t used = rtg_rmap(rtg)->i_used_blocks;
xfs_rgnumber_t rgno = rtg_rgno(rtg);
uint32_t from_bucket = xfs_zone_bucket(mp, used + freed);
uint32_t to_bucket = xfs_zone_bucket(mp, used);
bool was_full = (used + freed == rtg_blocks(rtg));
/*
* This can be called from log recovery, where the zone_info structure
* hasn't been allocated yet. Skip all work as xfs_mount_zones will
* add the zones to the right buckets before the file systems becomes
* active.
*/
if (!zi)
return;
if (!used) {
/*
* The zone is now empty, remove it from the bottom bucket and
* trigger a reset.
*/
trace_xfs_zone_emptied(rtg);
if (!was_full)
xfs_group_clear_mark(xg, XFS_RTG_RECLAIMABLE);
spin_lock(&zi->zi_used_buckets_lock);
if (!was_full)
xfs_zone_remove_from_bucket(zi, rgno, from_bucket);
spin_unlock(&zi->zi_used_buckets_lock);
spin_lock(&zi->zi_reset_list_lock);
xg->xg_next_reset = zi->zi_reset_list;
zi->zi_reset_list = xg;
spin_unlock(&zi->zi_reset_list_lock);
if (zi->zi_gc_thread)
wake_up_process(zi->zi_gc_thread);
} else if (was_full) {
/*
* The zone transitioned from full, mark it up as reclaimable
* and wake up GC which might be waiting for zones to reclaim.
*/
spin_lock(&zi->zi_used_buckets_lock);
xfs_zone_add_to_bucket(zi, rgno, to_bucket);
spin_unlock(&zi->zi_used_buckets_lock);
xfs_group_set_mark(xg, XFS_RTG_RECLAIMABLE);
if (zi->zi_gc_thread && xfs_zoned_need_gc(mp))
wake_up_process(zi->zi_gc_thread);
} else if (to_bucket != from_bucket) {
/*
* Move the zone to a new bucket if it dropped below the
* threshold.
*/
spin_lock(&zi->zi_used_buckets_lock);
xfs_zone_add_to_bucket(zi, rgno, to_bucket);
xfs_zone_remove_from_bucket(zi, rgno, from_bucket);
spin_unlock(&zi->zi_used_buckets_lock);
}
}
static void
xfs_open_zone_mark_full(
struct xfs_open_zone *oz)
{
struct xfs_rtgroup *rtg = oz->oz_rtg;
struct xfs_mount *mp = rtg_mount(rtg);
struct xfs_zone_info *zi = mp->m_zone_info;
uint32_t used = rtg_rmap(rtg)->i_used_blocks;
trace_xfs_zone_full(rtg);
WRITE_ONCE(rtg->rtg_open_zone, NULL);
spin_lock(&zi->zi_open_zones_lock);
if (oz->oz_is_gc) {
ASSERT(current == zi->zi_gc_thread);
zi->zi_open_gc_zone = NULL;
} else {
zi->zi_nr_open_zones--;
list_del_init(&oz->oz_entry);
}
spin_unlock(&zi->zi_open_zones_lock);
xfs_open_zone_put(oz);
wake_up_all(&zi->zi_zone_wait);
if (used < rtg_blocks(rtg))
xfs_zone_account_reclaimable(rtg, rtg_blocks(rtg) - used);
}
static void
xfs_zone_record_blocks(
struct xfs_trans *tp,
xfs_fsblock_t fsbno,
xfs_filblks_t len,
struct xfs_open_zone *oz,
bool used)
{
struct xfs_mount *mp = tp->t_mountp;
struct xfs_rtgroup *rtg = oz->oz_rtg;
struct xfs_inode *rmapip = rtg_rmap(rtg);
trace_xfs_zone_record_blocks(oz, xfs_rtb_to_rgbno(mp, fsbno), len);
xfs_rtgroup_lock(rtg, XFS_RTGLOCK_RMAP);
xfs_rtgroup_trans_join(tp, rtg, XFS_RTGLOCK_RMAP);
if (used) {
rmapip->i_used_blocks += len;
ASSERT(rmapip->i_used_blocks <= rtg_blocks(rtg));
} else {
xfs_add_frextents(mp, len);
}
oz->oz_written += len;
if (oz->oz_written == rtg_blocks(rtg))
xfs_open_zone_mark_full(oz);
xfs_trans_log_inode(tp, rmapip, XFS_ILOG_CORE);
}
static int
xfs_zoned_map_extent(
struct xfs_trans *tp,
struct xfs_inode *ip,
struct xfs_bmbt_irec *new,
struct xfs_open_zone *oz,
xfs_fsblock_t old_startblock)
{
struct xfs_bmbt_irec data;
int nmaps = 1;
int error;
/* Grab the corresponding mapping in the data fork. */
error = xfs_bmapi_read(ip, new->br_startoff, new->br_blockcount, &data,
&nmaps, 0);
if (error)
return error;
/*
* Cap the update to the existing extent in the data fork because we can
* only overwrite one extent at a time.
*/
ASSERT(new->br_blockcount >= data.br_blockcount);
new->br_blockcount = data.br_blockcount;
/*
* If a data write raced with this GC write, keep the existing data in
* the data fork, mark our newly written GC extent as reclaimable, then
* move on to the next extent.
*/
if (old_startblock != NULLFSBLOCK &&
old_startblock != data.br_startblock)
goto skip;
trace_xfs_reflink_cow_remap_from(ip, new);
trace_xfs_reflink_cow_remap_to(ip, &data);
error = xfs_iext_count_extend(tp, ip, XFS_DATA_FORK,
XFS_IEXT_REFLINK_END_COW_CNT);
if (error)
return error;
if (data.br_startblock != HOLESTARTBLOCK) {
ASSERT(data.br_startblock != DELAYSTARTBLOCK);
ASSERT(!isnullstartblock(data.br_startblock));
xfs_bmap_unmap_extent(tp, ip, XFS_DATA_FORK, &data);
if (xfs_is_reflink_inode(ip)) {
xfs_refcount_decrease_extent(tp, true, &data);
} else {
error = xfs_free_extent_later(tp, data.br_startblock,
data.br_blockcount, NULL,
XFS_AG_RESV_NONE,
XFS_FREE_EXTENT_REALTIME);
if (error)
return error;
}
}
xfs_zone_record_blocks(tp, new->br_startblock, new->br_blockcount, oz,
true);
/* Map the new blocks into the data fork. */
xfs_bmap_map_extent(tp, ip, XFS_DATA_FORK, new);
return 0;
skip:
trace_xfs_reflink_cow_remap_skip(ip, new);
xfs_zone_record_blocks(tp, new->br_startblock, new->br_blockcount, oz,
false);
return 0;
}
int
xfs_zoned_end_io(
struct xfs_inode *ip,
xfs_off_t offset,
xfs_off_t count,
xfs_daddr_t daddr,
struct xfs_open_zone *oz,
xfs_fsblock_t old_startblock)
{
struct xfs_mount *mp = ip->i_mount;
xfs_fileoff_t end_fsb = XFS_B_TO_FSB(mp, offset + count);
struct xfs_bmbt_irec new = {
.br_startoff = XFS_B_TO_FSBT(mp, offset),
.br_startblock = xfs_daddr_to_rtb(mp, daddr),
.br_state = XFS_EXT_NORM,
};
unsigned int resblks =
XFS_EXTENTADD_SPACE_RES(mp, XFS_DATA_FORK);
struct xfs_trans *tp;
int error;
if (xfs_is_shutdown(mp))
return -EIO;
while (new.br_startoff < end_fsb) {
new.br_blockcount = end_fsb - new.br_startoff;
error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, resblks, 0,
XFS_TRANS_RESERVE | XFS_TRANS_RES_FDBLKS, &tp);
if (error)
return error;
xfs_ilock(ip, XFS_ILOCK_EXCL);
xfs_trans_ijoin(tp, ip, 0);
error = xfs_zoned_map_extent(tp, ip, &new, oz, old_startblock);
if (error)
xfs_trans_cancel(tp);
else
error = xfs_trans_commit(tp);
xfs_iunlock(ip, XFS_ILOCK_EXCL);
if (error)
return error;
new.br_startoff += new.br_blockcount;
new.br_startblock += new.br_blockcount;
if (old_startblock != NULLFSBLOCK)
old_startblock += new.br_blockcount;
}
return 0;
}
/*
* "Free" blocks allocated in a zone.
*
* Just decrement the used blocks counter and report the space as freed.
*/
int
xfs_zone_free_blocks(
struct xfs_trans *tp,
struct xfs_rtgroup *rtg,
xfs_fsblock_t fsbno,
xfs_filblks_t len)
{
struct xfs_mount *mp = tp->t_mountp;
struct xfs_inode *rmapip = rtg_rmap(rtg);
xfs_assert_ilocked(rmapip, XFS_ILOCK_EXCL);
if (len > rmapip->i_used_blocks) {
xfs_err(mp,
"trying to free more blocks (%lld) than used counter (%u).",
len, rmapip->i_used_blocks);
ASSERT(len <= rmapip->i_used_blocks);
xfs_rtginode_mark_sick(rtg, XFS_RTGI_RMAP);
xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
return -EFSCORRUPTED;
}
trace_xfs_zone_free_blocks(rtg, xfs_rtb_to_rgbno(mp, fsbno), len);
rmapip->i_used_blocks -= len;
/*
* Don't add open zones to the reclaimable buckets. The I/O completion
* for writing the last block will take care of accounting for already
* unused blocks instead.
*/
if (!READ_ONCE(rtg->rtg_open_zone))
xfs_zone_account_reclaimable(rtg, len);
xfs_add_frextents(mp, len);
xfs_trans_log_inode(tp, rmapip, XFS_ILOG_CORE);
return 0;
}
/*
* Check if the zone containing the data just before the offset we are
* writing to is still open and has space.
*/
static struct xfs_open_zone *
xfs_last_used_zone(
struct iomap_ioend *ioend)
{
struct xfs_inode *ip = XFS_I(ioend->io_inode);
struct xfs_mount *mp = ip->i_mount;
xfs_fileoff_t offset_fsb = XFS_B_TO_FSB(mp, ioend->io_offset);
struct xfs_rtgroup *rtg = NULL;
struct xfs_open_zone *oz = NULL;
struct xfs_iext_cursor icur;
struct xfs_bmbt_irec got;
xfs_ilock(ip, XFS_ILOCK_SHARED);
if (!xfs_iext_lookup_extent_before(ip, &ip->i_df, &offset_fsb,
&icur, &got)) {
xfs_iunlock(ip, XFS_ILOCK_SHARED);
return NULL;
}
xfs_iunlock(ip, XFS_ILOCK_SHARED);
rtg = xfs_rtgroup_grab(mp, xfs_rtb_to_rgno(mp, got.br_startblock));
if (!rtg)
return NULL;
xfs_ilock(rtg_rmap(rtg), XFS_ILOCK_SHARED);
oz = READ_ONCE(rtg->rtg_open_zone);
if (oz && (oz->oz_is_gc || !atomic_inc_not_zero(&oz->oz_ref)))
oz = NULL;
xfs_iunlock(rtg_rmap(rtg), XFS_ILOCK_SHARED);
xfs_rtgroup_rele(rtg);
return oz;
}
static struct xfs_group *
xfs_find_free_zone(
struct xfs_mount *mp,
unsigned long start,
unsigned long end)
{
struct xfs_zone_info *zi = mp->m_zone_info;
XA_STATE (xas, &mp->m_groups[XG_TYPE_RTG].xa, start);
struct xfs_group *xg;
xas_lock(&xas);
xas_for_each_marked(&xas, xg, end, XFS_RTG_FREE)
if (atomic_inc_not_zero(&xg->xg_active_ref))
goto found;
xas_unlock(&xas);
return NULL;
found:
xas_clear_mark(&xas, XFS_RTG_FREE);
atomic_dec(&zi->zi_nr_free_zones);
zi->zi_free_zone_cursor = xg->xg_gno;
xas_unlock(&xas);
return xg;
}
static struct xfs_open_zone *
xfs_init_open_zone(
struct xfs_rtgroup *rtg,
xfs_rgblock_t write_pointer,
enum rw_hint write_hint,
bool is_gc)
{
struct xfs_open_zone *oz;
oz = kzalloc(sizeof(*oz), GFP_NOFS | __GFP_NOFAIL);
spin_lock_init(&oz->oz_alloc_lock);
atomic_set(&oz->oz_ref, 1);
oz->oz_rtg = rtg;
oz->oz_allocated = write_pointer;
oz->oz_written = write_pointer;
oz->oz_write_hint = write_hint;
oz->oz_is_gc = is_gc;
/*
* All dereferences of rtg->rtg_open_zone hold the ILOCK for the rmap
* inode, but we don't really want to take that here because we are
* under the zone_list_lock. Ensure the pointer is only set for a fully
* initialized open zone structure so that a racy lookup finding it is
* fine.
*/
WRITE_ONCE(rtg->rtg_open_zone, oz);
return oz;
}
/*
* Find a completely free zone, open it, and return a reference.
*/
struct xfs_open_zone *
xfs_open_zone(
struct xfs_mount *mp,
enum rw_hint write_hint,
bool is_gc)
{
struct xfs_zone_info *zi = mp->m_zone_info;
struct xfs_group *xg;
xg = xfs_find_free_zone(mp, zi->zi_free_zone_cursor, ULONG_MAX);
if (!xg)
xg = xfs_find_free_zone(mp, 0, zi->zi_free_zone_cursor);
if (!xg)
return NULL;
set_current_state(TASK_RUNNING);
return xfs_init_open_zone(to_rtg(xg), 0, write_hint, is_gc);
}
static struct xfs_open_zone *
xfs_try_open_zone(
struct xfs_mount *mp,
enum rw_hint write_hint)
{
struct xfs_zone_info *zi = mp->m_zone_info;
struct xfs_open_zone *oz;
if (zi->zi_nr_open_zones >= mp->m_max_open_zones - XFS_OPEN_GC_ZONES)
return NULL;
if (atomic_read(&zi->zi_nr_free_zones) <
XFS_GC_ZONES - XFS_OPEN_GC_ZONES)
return NULL;
/*
* Increment the open zone count to reserve our slot before dropping
* zi_open_zones_lock.
*/
zi->zi_nr_open_zones++;
spin_unlock(&zi->zi_open_zones_lock);
oz = xfs_open_zone(mp, write_hint, false);
spin_lock(&zi->zi_open_zones_lock);
if (!oz) {
zi->zi_nr_open_zones--;
return NULL;
}
atomic_inc(&oz->oz_ref);
list_add_tail(&oz->oz_entry, &zi->zi_open_zones);
/*
* If this was the last free zone, other waiters might be waiting
* on us to write to it as well.
*/
wake_up_all(&zi->zi_zone_wait);
if (xfs_zoned_need_gc(mp))
wake_up_process(zi->zi_gc_thread);
trace_xfs_zone_opened(oz->oz_rtg);
return oz;
}
/*
* For data with short or medium lifetime, try to colocated it into an
* already open zone with a matching temperature.
*/
static bool
xfs_colocate_eagerly(
enum rw_hint file_hint)
{
switch (file_hint) {
case WRITE_LIFE_MEDIUM:
case WRITE_LIFE_SHORT:
case WRITE_LIFE_NONE:
return true;
default:
return false;
}
}
static bool
xfs_good_hint_match(
struct xfs_open_zone *oz,
enum rw_hint file_hint)
{
switch (oz->oz_write_hint) {
case WRITE_LIFE_LONG:
case WRITE_LIFE_EXTREME:
/* colocate long and extreme */
if (file_hint == WRITE_LIFE_LONG ||
file_hint == WRITE_LIFE_EXTREME)
return true;
break;
case WRITE_LIFE_MEDIUM:
/* colocate medium with medium */
if (file_hint == WRITE_LIFE_MEDIUM)
return true;
break;
case WRITE_LIFE_SHORT:
case WRITE_LIFE_NONE:
case WRITE_LIFE_NOT_SET:
/* colocate short and none */
if (file_hint <= WRITE_LIFE_SHORT)
return true;
break;
}
return false;
}
static bool
xfs_try_use_zone(
struct xfs_zone_info *zi,
enum rw_hint file_hint,
struct xfs_open_zone *oz,
bool lowspace)
{
if (oz->oz_allocated == rtg_blocks(oz->oz_rtg))
return false;
if (!lowspace && !xfs_good_hint_match(oz, file_hint))
return false;
if (!atomic_inc_not_zero(&oz->oz_ref))
return false;
/*
* If we have a hint set for the data, use that for the zone even if
* some data was written already without any hint set, but don't change
* the temperature after that as that would make little sense without
* tracking per-temperature class written block counts, which is
* probably overkill anyway.
*/
if (file_hint != WRITE_LIFE_NOT_SET &&
oz->oz_write_hint == WRITE_LIFE_NOT_SET)
oz->oz_write_hint = file_hint;
/*
* If we couldn't match by inode or life time we just pick the first
* zone with enough space above. For that we want the least busy zone
* for some definition of "least" busy. For now this simple LRU
* algorithm that rotates every zone to the end of the list will do it,
* even if it isn't exactly cache friendly.
*/
if (!list_is_last(&oz->oz_entry, &zi->zi_open_zones))
list_move_tail(&oz->oz_entry, &zi->zi_open_zones);
return true;
}
static struct xfs_open_zone *
xfs_select_open_zone_lru(
struct xfs_zone_info *zi,
enum rw_hint file_hint,
bool lowspace)
{
struct xfs_open_zone *oz;
lockdep_assert_held(&zi->zi_open_zones_lock);
list_for_each_entry(oz, &zi->zi_open_zones, oz_entry)
if (xfs_try_use_zone(zi, file_hint, oz, lowspace))
return oz;
cond_resched_lock(&zi->zi_open_zones_lock);
return NULL;
}
static struct xfs_open_zone *
xfs_select_open_zone_mru(
struct xfs_zone_info *zi,
enum rw_hint file_hint)
{
struct xfs_open_zone *oz;
lockdep_assert_held(&zi->zi_open_zones_lock);
list_for_each_entry_reverse(oz, &zi->zi_open_zones, oz_entry)
if (xfs_try_use_zone(zi, file_hint, oz, false))
return oz;
cond_resched_lock(&zi->zi_open_zones_lock);
return NULL;
}
static inline enum rw_hint xfs_inode_write_hint(struct xfs_inode *ip)
{
if (xfs_has_nolifetime(ip->i_mount))
return WRITE_LIFE_NOT_SET;
return VFS_I(ip)->i_write_hint;
}
/*
* Try to pack inodes that are written back after they were closed tight instead
* of trying to open new zones for them or spread them to the least recently
* used zone. This optimizes the data layout for workloads that untar or copy
* a lot of small files. Right now this does not separate multiple such
* streams.
*/
static inline bool xfs_zoned_pack_tight(struct xfs_inode *ip)
{
return !inode_is_open_for_write(VFS_I(ip)) &&
!(ip->i_diflags & XFS_DIFLAG_APPEND);
}
static struct xfs_open_zone *
xfs_select_zone_nowait(
struct xfs_mount *mp,
enum rw_hint write_hint,
bool pack_tight)
{
struct xfs_zone_info *zi = mp->m_zone_info;
struct xfs_open_zone *oz = NULL;
if (xfs_is_shutdown(mp))
return NULL;
/*
* Try to fill up open zones with matching temperature if available. It
* is better to try to co-locate data when this is favorable, so we can
* activate empty zones when it is statistically better to separate
* data.
*/
spin_lock(&zi->zi_open_zones_lock);
if (xfs_colocate_eagerly(write_hint))
oz = xfs_select_open_zone_lru(zi, write_hint, false);
else if (pack_tight)
oz = xfs_select_open_zone_mru(zi, write_hint);
if (oz)
goto out_unlock;
/*
* See if we can open a new zone and use that so that data for different
* files is mixed as little as possible.
*/
oz = xfs_try_open_zone(mp, write_hint);
if (oz)
goto out_unlock;
/*
* Try to colocate cold data with other cold data if we failed to open a
* new zone for it.
*/
if (write_hint != WRITE_LIFE_NOT_SET &&
!xfs_colocate_eagerly(write_hint))
oz = xfs_select_open_zone_lru(zi, write_hint, false);
if (!oz)
oz = xfs_select_open_zone_lru(zi, WRITE_LIFE_NOT_SET, false);
if (!oz)
oz = xfs_select_open_zone_lru(zi, WRITE_LIFE_NOT_SET, true);
out_unlock:
spin_unlock(&zi->zi_open_zones_lock);
return oz;
}
static struct xfs_open_zone *
xfs_select_zone(
struct xfs_mount *mp,
enum rw_hint write_hint,
bool pack_tight)
{
struct xfs_zone_info *zi = mp->m_zone_info;
DEFINE_WAIT (wait);
struct xfs_open_zone *oz;
oz = xfs_select_zone_nowait(mp, write_hint, pack_tight);
if (oz)
return oz;
for (;;) {
prepare_to_wait(&zi->zi_zone_wait, &wait, TASK_UNINTERRUPTIBLE);
oz = xfs_select_zone_nowait(mp, write_hint, pack_tight);
if (oz || xfs_is_shutdown(mp))
break;
schedule();
}
finish_wait(&zi->zi_zone_wait, &wait);
return oz;
}
static unsigned int
xfs_zone_alloc_blocks(
struct xfs_open_zone *oz,
xfs_filblks_t count_fsb,
sector_t *sector,
bool *is_seq)
{
struct xfs_rtgroup *rtg = oz->oz_rtg;
struct xfs_mount *mp = rtg_mount(rtg);
xfs_rgblock_t allocated;
spin_lock(&oz->oz_alloc_lock);
count_fsb = min3(count_fsb, XFS_MAX_BMBT_EXTLEN,
(xfs_filblks_t)rtg_blocks(rtg) - oz->oz_allocated);
if (!count_fsb) {
spin_unlock(&oz->oz_alloc_lock);
return 0;
}
allocated = oz->oz_allocated;
oz->oz_allocated += count_fsb;
spin_unlock(&oz->oz_alloc_lock);
trace_xfs_zone_alloc_blocks(oz, allocated, count_fsb);
*sector = xfs_gbno_to_daddr(&rtg->rtg_group, 0);
*is_seq = bdev_zone_is_seq(mp->m_rtdev_targp->bt_bdev, *sector);
if (!*is_seq)
*sector += XFS_FSB_TO_BB(mp, allocated);
return XFS_FSB_TO_B(mp, count_fsb);
}
void
xfs_mark_rtg_boundary(
struct iomap_ioend *ioend)
{
struct xfs_mount *mp = XFS_I(ioend->io_inode)->i_mount;
sector_t sector = ioend->io_bio.bi_iter.bi_sector;
if (xfs_rtb_to_rgbno(mp, xfs_daddr_to_rtb(mp, sector)) == 0)
ioend->io_flags |= IOMAP_IOEND_BOUNDARY;
}
/*
* Cache the last zone written to for an inode so that it is considered first
* for subsequent writes.
*/
struct xfs_zone_cache_item {
struct xfs_mru_cache_elem mru;
struct xfs_open_zone *oz;
};
static inline struct xfs_zone_cache_item *
xfs_zone_cache_item(struct xfs_mru_cache_elem *mru)
{
return container_of(mru, struct xfs_zone_cache_item, mru);
}
static void
xfs_zone_cache_free_func(
void *data,
struct xfs_mru_cache_elem *mru)
{
struct xfs_zone_cache_item *item = xfs_zone_cache_item(mru);
xfs_open_zone_put(item->oz);
kfree(item);
}
/*
* Check if we have a cached last open zone available for the inode and
* if yes return a reference to it.
*/
static struct xfs_open_zone *
xfs_cached_zone(
struct xfs_mount *mp,
struct xfs_inode *ip)
{
struct xfs_mru_cache_elem *mru;
struct xfs_open_zone *oz;
mru = xfs_mru_cache_lookup(mp->m_zone_cache, ip->i_ino);
if (!mru)
return NULL;
oz = xfs_zone_cache_item(mru)->oz;
if (oz) {
/*
* GC only steals open zones at mount time, so no GC zones
* should end up in the cache.
*/
ASSERT(!oz->oz_is_gc);
ASSERT(atomic_read(&oz->oz_ref) > 0);
atomic_inc(&oz->oz_ref);
}
xfs_mru_cache_done(mp->m_zone_cache);
return oz;
}
/*
* Update the last used zone cache for a given inode.
*
* The caller must have a reference on the open zone.
*/
static void
xfs_zone_cache_create_association(
struct xfs_inode *ip,
struct xfs_open_zone *oz)
{
struct xfs_mount *mp = ip->i_mount;
struct xfs_zone_cache_item *item = NULL;
struct xfs_mru_cache_elem *mru;
ASSERT(atomic_read(&oz->oz_ref) > 0);
atomic_inc(&oz->oz_ref);
mru = xfs_mru_cache_lookup(mp->m_zone_cache, ip->i_ino);
if (mru) {
/*
* If we have an association already, update it to point to the
* new zone.
*/
item = xfs_zone_cache_item(mru);
xfs_open_zone_put(item->oz);
item->oz = oz;
xfs_mru_cache_done(mp->m_zone_cache);
return;
}
item = kmalloc(sizeof(*item), GFP_KERNEL);
if (!item) {
xfs_open_zone_put(oz);
return;
}
item->oz = oz;
xfs_mru_cache_insert(mp->m_zone_cache, ip->i_ino, &item->mru);
}
static void
xfs_submit_zoned_bio(
struct iomap_ioend *ioend,
struct xfs_open_zone *oz,
bool is_seq)
{
ioend->io_bio.bi_iter.bi_sector = ioend->io_sector;
ioend->io_private = oz;
atomic_inc(&oz->oz_ref); /* for xfs_zoned_end_io */
if (is_seq) {
ioend->io_bio.bi_opf &= ~REQ_OP_WRITE;
ioend->io_bio.bi_opf |= REQ_OP_ZONE_APPEND;
} else {
xfs_mark_rtg_boundary(ioend);
}
submit_bio(&ioend->io_bio);
}
void
xfs_zone_alloc_and_submit(
struct iomap_ioend *ioend,
struct xfs_open_zone **oz)
{
struct xfs_inode *ip = XFS_I(ioend->io_inode);
struct xfs_mount *mp = ip->i_mount;
enum rw_hint write_hint = xfs_inode_write_hint(ip);
bool pack_tight = xfs_zoned_pack_tight(ip);
unsigned int alloc_len;
struct iomap_ioend *split;
bool is_seq;
if (xfs_is_shutdown(mp))
goto out_error;
/*
* If we don't have a cached zone in this write context, see if the
* last extent before the one we are writing to points to an active
* zone. If so, just continue writing to it.
*/
if (!*oz && ioend->io_offset)
*oz = xfs_last_used_zone(ioend);
if (!*oz)
*oz = xfs_cached_zone(mp, ip);
if (!*oz) {
select_zone:
*oz = xfs_select_zone(mp, write_hint, pack_tight);
if (!*oz)
goto out_error;
xfs_zone_cache_create_association(ip, *oz);
}
alloc_len = xfs_zone_alloc_blocks(*oz, XFS_B_TO_FSB(mp, ioend->io_size),
&ioend->io_sector, &is_seq);
if (!alloc_len) {
xfs_open_zone_put(*oz);
goto select_zone;
}
while ((split = iomap_split_ioend(ioend, alloc_len, is_seq))) {
if (IS_ERR(split))
goto out_split_error;
alloc_len -= split->io_bio.bi_iter.bi_size;
xfs_submit_zoned_bio(split, *oz, is_seq);
if (!alloc_len) {
xfs_open_zone_put(*oz);
goto select_zone;
}
}
xfs_submit_zoned_bio(ioend, *oz, is_seq);
return;
out_split_error:
ioend->io_bio.bi_status = errno_to_blk_status(PTR_ERR(split));
out_error:
bio_io_error(&ioend->io_bio);
}
/*
* Wake up all threads waiting for a zoned space allocation when the file system
* is shut down.
*/
void
xfs_zoned_wake_all(
struct xfs_mount *mp)
{
/*
* Don't wake up if there is no m_zone_info. This is complicated by the
* fact that unmount can't atomically clear m_zone_info and thus we need
* to check SB_ACTIVE for that, but mount temporarily enables SB_ACTIVE
* during log recovery so we can't entirely rely on that either.
*/
if ((mp->m_super->s_flags & SB_ACTIVE) && mp->m_zone_info)
wake_up_all(&mp->m_zone_info->zi_zone_wait);
}
/*
* Check if @rgbno in @rgb is a potentially valid block. It might still be
* unused, but that information is only found in the rmap.
*/
bool
xfs_zone_rgbno_is_valid(
struct xfs_rtgroup *rtg,
xfs_rgnumber_t rgbno)
{
lockdep_assert_held(&rtg_rmap(rtg)->i_lock);
if (rtg->rtg_open_zone)
return rgbno < rtg->rtg_open_zone->oz_allocated;
return !xa_get_mark(&rtg_mount(rtg)->m_groups[XG_TYPE_RTG].xa,
rtg_rgno(rtg), XFS_RTG_FREE);
}
static void
xfs_free_open_zones(
struct xfs_zone_info *zi)
{
struct xfs_open_zone *oz;
spin_lock(&zi->zi_open_zones_lock);
while ((oz = list_first_entry_or_null(&zi->zi_open_zones,
struct xfs_open_zone, oz_entry))) {
list_del(&oz->oz_entry);
xfs_open_zone_put(oz);
}
spin_unlock(&zi->zi_open_zones_lock);
}
struct xfs_init_zones {
struct xfs_mount *mp;
uint64_t available;
uint64_t reclaimable;
};
static int
xfs_init_zone(
struct xfs_init_zones *iz,
struct xfs_rtgroup *rtg,
struct blk_zone *zone)
{
struct xfs_mount *mp = rtg_mount(rtg);
struct xfs_zone_info *zi = mp->m_zone_info;
uint32_t used = rtg_rmap(rtg)->i_used_blocks;
xfs_rgblock_t write_pointer, highest_rgbno;
int error;
if (zone && !xfs_zone_validate(zone, rtg, &write_pointer))
return -EFSCORRUPTED;
/*
* For sequential write required zones we retrieved the hardware write
* pointer above.
*
* For conventional zones or conventional devices we don't have that
* luxury. Instead query the rmap to find the highest recorded block
* and set the write pointer to the block after that. In case of a
* power loss this misses blocks where the data I/O has completed but
* not recorded in the rmap yet, and it also rewrites blocks if the most
* recently written ones got deleted again before unmount, but this is
* the best we can do without hardware support.
*/
if (!zone || zone->cond == BLK_ZONE_COND_NOT_WP) {
xfs_rtgroup_lock(rtg, XFS_RTGLOCK_RMAP);
highest_rgbno = xfs_rtrmap_highest_rgbno(rtg);
if (highest_rgbno == NULLRGBLOCK)
write_pointer = 0;
else
write_pointer = highest_rgbno + 1;
xfs_rtgroup_unlock(rtg, XFS_RTGLOCK_RMAP);
}
/*
* If there are no used blocks, but the zone is not in empty state yet
* we lost power before the zoned reset. In that case finish the work
* here.
*/
if (write_pointer == rtg_blocks(rtg) && used == 0) {
error = xfs_zone_gc_reset_sync(rtg);
if (error)
return error;
write_pointer = 0;
}
if (write_pointer == 0) {
/* zone is empty */
atomic_inc(&zi->zi_nr_free_zones);
xfs_group_set_mark(&rtg->rtg_group, XFS_RTG_FREE);
iz->available += rtg_blocks(rtg);
} else if (write_pointer < rtg_blocks(rtg)) {
/* zone is open */
struct xfs_open_zone *oz;
atomic_inc(&rtg_group(rtg)->xg_active_ref);
oz = xfs_init_open_zone(rtg, write_pointer, WRITE_LIFE_NOT_SET,
false);
list_add_tail(&oz->oz_entry, &zi->zi_open_zones);
zi->zi_nr_open_zones++;
iz->available += (rtg_blocks(rtg) - write_pointer);
iz->reclaimable += write_pointer - used;
} else if (used < rtg_blocks(rtg)) {
/* zone fully written, but has freed blocks */
xfs_zone_account_reclaimable(rtg, rtg_blocks(rtg) - used);
iz->reclaimable += (rtg_blocks(rtg) - used);
}
return 0;
}
static int
xfs_get_zone_info_cb(
struct blk_zone *zone,
unsigned int idx,
void *data)
{
struct xfs_init_zones *iz = data;
struct xfs_mount *mp = iz->mp;
xfs_fsblock_t zsbno = xfs_daddr_to_rtb(mp, zone->start);
xfs_rgnumber_t rgno;
struct xfs_rtgroup *rtg;
int error;
if (xfs_rtb_to_rgbno(mp, zsbno) != 0) {
xfs_warn(mp, "mismatched zone start 0x%llx.", zsbno);
return -EFSCORRUPTED;
}
rgno = xfs_rtb_to_rgno(mp, zsbno);
rtg = xfs_rtgroup_grab(mp, rgno);
if (!rtg) {
xfs_warn(mp, "realtime group not found for zone %u.", rgno);
return -EFSCORRUPTED;
}
error = xfs_init_zone(iz, rtg, zone);
xfs_rtgroup_rele(rtg);
return error;
}
/*
* Calculate the max open zone limit based on the of number of backing zones
* available.
*/
static inline uint32_t
xfs_max_open_zones(
struct xfs_mount *mp)
{
unsigned int max_open, max_open_data_zones;
/*
* We need two zones for every open data zone, one in reserve as we
* don't reclaim open zones. One data zone and its spare is included
* in XFS_MIN_ZONES to support at least one user data writer.
*/
max_open_data_zones = (mp->m_sb.sb_rgcount - XFS_MIN_ZONES) / 2 + 1;
max_open = max_open_data_zones + XFS_OPEN_GC_ZONES;
/*
* Cap the max open limit to 1/4 of available space. Without this we'd
* run out of easy reclaim targets too quickly and storage devices don't
* handle huge numbers of concurrent write streams overly well.
*/
max_open = min(max_open, mp->m_sb.sb_rgcount / 4);
return max(XFS_MIN_OPEN_ZONES, max_open);
}
/*
* Normally we use the open zone limit that the device reports. If there is
* none let the user pick one from the command line.
*
* If the device doesn't report an open zone limit and there is no override,
* allow to hold about a quarter of the zones open. In theory we could allow
* all to be open, but at that point we run into GC deadlocks because we can't
* reclaim open zones.
*
* When used on conventional SSDs a lower open limit is advisable as we'll
* otherwise overwhelm the FTL just as much as a conventional block allocator.
*
* Note: To debug the open zone management code, force max_open to 1 here.
*/
static int
xfs_calc_open_zones(
struct xfs_mount *mp)
{
struct block_device *bdev = mp->m_rtdev_targp->bt_bdev;
unsigned int bdev_open_zones = bdev_max_open_zones(bdev);
if (!mp->m_max_open_zones) {
if (bdev_open_zones)
mp->m_max_open_zones = bdev_open_zones;
else
mp->m_max_open_zones = xfs_max_open_zones(mp);
}
if (mp->m_max_open_zones < XFS_MIN_OPEN_ZONES) {
xfs_notice(mp, "need at least %u open zones.",
XFS_MIN_OPEN_ZONES);
return -EIO;
}
if (bdev_open_zones && bdev_open_zones < mp->m_max_open_zones) {
mp->m_max_open_zones = bdev_open_zones;
xfs_info(mp, "limiting open zones to %u due to hardware limit.\n",
bdev_open_zones);
}
if (mp->m_max_open_zones > xfs_max_open_zones(mp)) {
mp->m_max_open_zones = xfs_max_open_zones(mp);
xfs_info(mp,
"limiting open zones to %u due to total zone count (%u)",
mp->m_max_open_zones, mp->m_sb.sb_rgcount);
}
return 0;
}
static unsigned long *
xfs_alloc_bucket_bitmap(
struct xfs_mount *mp)
{
return kvmalloc_array(BITS_TO_LONGS(mp->m_sb.sb_rgcount),
sizeof(unsigned long), GFP_KERNEL | __GFP_ZERO);
}
static struct xfs_zone_info *
xfs_alloc_zone_info(
struct xfs_mount *mp)
{
struct xfs_zone_info *zi;
int i;
zi = kzalloc(sizeof(*zi), GFP_KERNEL);
if (!zi)
return NULL;
INIT_LIST_HEAD(&zi->zi_open_zones);
INIT_LIST_HEAD(&zi->zi_reclaim_reservations);
spin_lock_init(&zi->zi_reset_list_lock);
spin_lock_init(&zi->zi_open_zones_lock);
spin_lock_init(&zi->zi_reservation_lock);
init_waitqueue_head(&zi->zi_zone_wait);
spin_lock_init(&zi->zi_used_buckets_lock);
for (i = 0; i < XFS_ZONE_USED_BUCKETS; i++) {
zi->zi_used_bucket_bitmap[i] = xfs_alloc_bucket_bitmap(mp);
if (!zi->zi_used_bucket_bitmap[i])
goto out_free_bitmaps;
}
return zi;
out_free_bitmaps:
while (--i > 0)
kvfree(zi->zi_used_bucket_bitmap[i]);
kfree(zi);
return NULL;
}
static void
xfs_free_zone_info(
struct xfs_zone_info *zi)
{
int i;
xfs_free_open_zones(zi);
for (i = 0; i < XFS_ZONE_USED_BUCKETS; i++)
kvfree(zi->zi_used_bucket_bitmap[i]);
kfree(zi);
}
int
xfs_mount_zones(
struct xfs_mount *mp)
{
struct xfs_init_zones iz = {
.mp = mp,
};
struct xfs_buftarg *bt = mp->m_rtdev_targp;
int error;
if (!bt) {
xfs_notice(mp, "RT device missing.");
return -EINVAL;
}
if (!xfs_has_rtgroups(mp) || !xfs_has_rmapbt(mp)) {
xfs_notice(mp, "invalid flag combination.");
return -EFSCORRUPTED;
}
if (mp->m_sb.sb_rextsize != 1) {
xfs_notice(mp, "zoned file systems do not support rextsize.");
return -EFSCORRUPTED;
}
if (mp->m_sb.sb_rgcount < XFS_MIN_ZONES) {
xfs_notice(mp,
"zoned file systems need to have at least %u zones.", XFS_MIN_ZONES);
return -EFSCORRUPTED;
}
error = xfs_calc_open_zones(mp);
if (error)
return error;
mp->m_zone_info = xfs_alloc_zone_info(mp);
if (!mp->m_zone_info)
return -ENOMEM;
xfs_info(mp, "%u zones of %u blocks size (%u max open)",
mp->m_sb.sb_rgcount, mp->m_groups[XG_TYPE_RTG].blocks,
mp->m_max_open_zones);
trace_xfs_zones_mount(mp);
if (bdev_is_zoned(bt->bt_bdev)) {
error = blkdev_report_zones(bt->bt_bdev,
XFS_FSB_TO_BB(mp, mp->m_sb.sb_rtstart),
mp->m_sb.sb_rgcount, xfs_get_zone_info_cb, &iz);
if (error < 0)
goto out_free_zone_info;
} else {
struct xfs_rtgroup *rtg = NULL;
while ((rtg = xfs_rtgroup_next(mp, rtg))) {
error = xfs_init_zone(&iz, rtg, NULL);
if (error)
goto out_free_zone_info;
}
}
xfs_set_freecounter(mp, XC_FREE_RTAVAILABLE, iz.available);
xfs_set_freecounter(mp, XC_FREE_RTEXTENTS,
iz.available + iz.reclaimable);
/*
* The user may configure GC to free up a percentage of unused blocks.
* By default this is 0. GC will always trigger at the minimum level
* for keeping max_open_zones available for data placement.
*/
mp->m_zonegc_low_space = 0;
error = xfs_zone_gc_mount(mp);
if (error)
goto out_free_zone_info;
/*
* Set up a mru cache to track inode to open zone for data placement
* purposes. The magic values for group count and life time is the
* same as the defaults for file streams, which seems sane enough.
*/
xfs_mru_cache_create(&mp->m_zone_cache, mp,
5000, 10, xfs_zone_cache_free_func);
return 0;
out_free_zone_info:
xfs_free_zone_info(mp->m_zone_info);
return error;
}
void
xfs_unmount_zones(
struct xfs_mount *mp)
{
xfs_zone_gc_unmount(mp);
xfs_free_zone_info(mp->m_zone_info);
xfs_mru_cache_destroy(mp->m_zone_cache);
}