linux/fs/xfs/scrub/rtrmap_repair.c
Christoph Hellwig e4a1df35be xfs: remove xrep_trans_{alloc,cancel}_hook_dummy
XFS stopped using current->journal_info in commit f2e812c152 ("xfs:
don't use current->journal_info"), so there is no point in saving and
restoring it.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Carlos Maiolino <cem@kernel.org>
2025-07-24 17:30:13 +02:00

981 lines
24 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Copyright (c) 2020-2024 Oracle. All Rights Reserved.
* Author: Darrick J. Wong <djwong@kernel.org>
*/
#include "xfs.h"
#include "xfs_fs.h"
#include "xfs_shared.h"
#include "xfs_format.h"
#include "xfs_trans_resv.h"
#include "xfs_mount.h"
#include "xfs_defer.h"
#include "xfs_btree.h"
#include "xfs_btree_staging.h"
#include "xfs_buf_mem.h"
#include "xfs_btree_mem.h"
#include "xfs_bit.h"
#include "xfs_log_format.h"
#include "xfs_trans.h"
#include "xfs_sb.h"
#include "xfs_alloc.h"
#include "xfs_rmap.h"
#include "xfs_rmap_btree.h"
#include "xfs_rtrmap_btree.h"
#include "xfs_inode.h"
#include "xfs_icache.h"
#include "xfs_bmap.h"
#include "xfs_bmap_btree.h"
#include "xfs_quota.h"
#include "xfs_rtalloc.h"
#include "xfs_ag.h"
#include "xfs_rtgroup.h"
#include "xfs_refcount.h"
#include "scrub/xfs_scrub.h"
#include "scrub/scrub.h"
#include "scrub/common.h"
#include "scrub/btree.h"
#include "scrub/trace.h"
#include "scrub/repair.h"
#include "scrub/bitmap.h"
#include "scrub/fsb_bitmap.h"
#include "scrub/rgb_bitmap.h"
#include "scrub/xfile.h"
#include "scrub/xfarray.h"
#include "scrub/iscan.h"
#include "scrub/newbt.h"
#include "scrub/reap.h"
/*
* Realtime Reverse Mapping Btree Repair
* =====================================
*
* This isn't quite as difficult as repairing the rmap btree on the data
* device, since we only store the data fork extents of realtime files on the
* realtime device. We still have to freeze the filesystem and stop the
* background threads like we do for the rmap repair, but we only have to scan
* realtime inodes.
*
* Collecting entries for the new realtime rmap btree is easy -- all we have
* to do is generate rtrmap entries from the data fork mappings of all realtime
* files in the filesystem. We then scan the rmap btrees of the data device
* looking for extents belonging to the old btree and note them in a bitmap.
*
* To rebuild the realtime rmap btree, we bulk-load the collected mappings into
* a new btree cursor and atomically swap that into the realtime inode. Then
* we can free the blocks from the old btree.
*
* We use the 'xrep_rtrmap' prefix for all the rmap functions.
*/
/* Context for collecting rmaps */
struct xrep_rtrmap {
/* new rtrmapbt information */
struct xrep_newbt new_btree;
/* lock for the xfbtree and xfile */
struct mutex lock;
/* rmap records generated from primary metadata */
struct xfbtree rtrmap_btree;
struct xfs_scrub *sc;
/* bitmap of old rtrmapbt blocks */
struct xfsb_bitmap old_rtrmapbt_blocks;
/* Hooks into rtrmap update code. */
struct xfs_rmap_hook rhook;
/* inode scan cursor */
struct xchk_iscan iscan;
/* in-memory btree cursor for the ->get_blocks walk */
struct xfs_btree_cur *mcur;
/* Number of records we're staging in the new btree. */
uint64_t nr_records;
};
/* Set us up to repair rt reverse mapping btrees. */
int
xrep_setup_rtrmapbt(
struct xfs_scrub *sc)
{
struct xrep_rtrmap *rr;
char *descr;
int error;
xchk_fsgates_enable(sc, XCHK_FSGATES_RMAP);
descr = xchk_xfile_rtgroup_descr(sc, "reverse mapping records");
error = xrep_setup_xfbtree(sc, descr);
kfree(descr);
if (error)
return error;
rr = kzalloc(sizeof(struct xrep_rtrmap), XCHK_GFP_FLAGS);
if (!rr)
return -ENOMEM;
rr->sc = sc;
sc->buf = rr;
return 0;
}
/* Make sure there's nothing funny about this mapping. */
STATIC int
xrep_rtrmap_check_mapping(
struct xfs_scrub *sc,
const struct xfs_rmap_irec *rec)
{
if (xfs_rtrmap_check_irec(sc->sr.rtg, rec) != NULL)
return -EFSCORRUPTED;
/* Make sure this isn't free space. */
return xrep_require_rtext_inuse(sc, rec->rm_startblock,
rec->rm_blockcount);
}
/* Store a reverse-mapping record. */
static inline int
xrep_rtrmap_stash(
struct xrep_rtrmap *rr,
xfs_rgblock_t startblock,
xfs_extlen_t blockcount,
uint64_t owner,
uint64_t offset,
unsigned int flags)
{
struct xfs_rmap_irec rmap = {
.rm_startblock = startblock,
.rm_blockcount = blockcount,
.rm_owner = owner,
.rm_offset = offset,
.rm_flags = flags,
};
struct xfs_scrub *sc = rr->sc;
struct xfs_btree_cur *mcur;
int error = 0;
if (xchk_should_terminate(sc, &error))
return error;
if (xchk_iscan_aborted(&rr->iscan))
return -EFSCORRUPTED;
trace_xrep_rtrmap_found(sc->mp, &rmap);
/* Add entry to in-memory btree. */
mutex_lock(&rr->lock);
mcur = xfs_rtrmapbt_mem_cursor(sc->sr.rtg, sc->tp, &rr->rtrmap_btree);
error = xfs_rmap_map_raw(mcur, &rmap);
xfs_btree_del_cursor(mcur, error);
if (error)
goto out_cancel;
error = xfbtree_trans_commit(&rr->rtrmap_btree, sc->tp);
if (error)
goto out_abort;
mutex_unlock(&rr->lock);
return 0;
out_cancel:
xfbtree_trans_cancel(&rr->rtrmap_btree, sc->tp);
out_abort:
xchk_iscan_abort(&rr->iscan);
mutex_unlock(&rr->lock);
return error;
}
/* Finding all file and bmbt extents. */
/* Context for accumulating rmaps for an inode fork. */
struct xrep_rtrmap_ifork {
/*
* Accumulate rmap data here to turn multiple adjacent bmaps into a
* single rmap.
*/
struct xfs_rmap_irec accum;
struct xrep_rtrmap *rr;
};
/* Stash an rmap that we accumulated while walking an inode fork. */
STATIC int
xrep_rtrmap_stash_accumulated(
struct xrep_rtrmap_ifork *rf)
{
if (rf->accum.rm_blockcount == 0)
return 0;
return xrep_rtrmap_stash(rf->rr, rf->accum.rm_startblock,
rf->accum.rm_blockcount, rf->accum.rm_owner,
rf->accum.rm_offset, rf->accum.rm_flags);
}
/* Accumulate a bmbt record. */
STATIC int
xrep_rtrmap_visit_bmbt(
struct xfs_btree_cur *cur,
struct xfs_bmbt_irec *rec,
void *priv)
{
struct xrep_rtrmap_ifork *rf = priv;
struct xfs_rmap_irec *accum = &rf->accum;
struct xfs_mount *mp = rf->rr->sc->mp;
xfs_rgblock_t rgbno;
unsigned int rmap_flags = 0;
int error;
if (xfs_rtb_to_rgno(mp, rec->br_startblock) !=
rtg_rgno(rf->rr->sc->sr.rtg))
return 0;
if (rec->br_state == XFS_EXT_UNWRITTEN)
rmap_flags |= XFS_RMAP_UNWRITTEN;
/* If this bmap is adjacent to the previous one, just add it. */
rgbno = xfs_rtb_to_rgbno(mp, rec->br_startblock);
if (accum->rm_blockcount > 0 &&
rec->br_startoff == accum->rm_offset + accum->rm_blockcount &&
rgbno == accum->rm_startblock + accum->rm_blockcount &&
rmap_flags == accum->rm_flags) {
accum->rm_blockcount += rec->br_blockcount;
return 0;
}
/* Otherwise stash the old rmap and start accumulating a new one. */
error = xrep_rtrmap_stash_accumulated(rf);
if (error)
return error;
accum->rm_startblock = rgbno;
accum->rm_blockcount = rec->br_blockcount;
accum->rm_offset = rec->br_startoff;
accum->rm_flags = rmap_flags;
return 0;
}
/*
* Iterate the block mapping btree to collect rmap records for anything in this
* fork that maps to the rt volume. Sets @mappings_done to true if we've
* scanned the block mappings in this fork.
*/
STATIC int
xrep_rtrmap_scan_bmbt(
struct xrep_rtrmap_ifork *rf,
struct xfs_inode *ip,
bool *mappings_done)
{
struct xrep_rtrmap *rr = rf->rr;
struct xfs_btree_cur *cur;
struct xfs_ifork *ifp = xfs_ifork_ptr(ip, XFS_DATA_FORK);
int error = 0;
*mappings_done = false;
/*
* If the incore extent cache is already loaded, we'll just use the
* incore extent scanner to record mappings. Don't bother walking the
* ondisk extent tree.
*/
if (!xfs_need_iread_extents(ifp))
return 0;
/* Accumulate all the mappings in the bmap btree. */
cur = xfs_bmbt_init_cursor(rr->sc->mp, rr->sc->tp, ip, XFS_DATA_FORK);
error = xfs_bmap_query_all(cur, xrep_rtrmap_visit_bmbt, rf);
xfs_btree_del_cursor(cur, error);
if (error)
return error;
/* Stash any remaining accumulated rmaps and exit. */
*mappings_done = true;
return xrep_rtrmap_stash_accumulated(rf);
}
/*
* Iterate the in-core extent cache to collect rmap records for anything in
* this fork that matches the AG.
*/
STATIC int
xrep_rtrmap_scan_iext(
struct xrep_rtrmap_ifork *rf,
struct xfs_ifork *ifp)
{
struct xfs_bmbt_irec rec;
struct xfs_iext_cursor icur;
int error;
for_each_xfs_iext(ifp, &icur, &rec) {
if (isnullstartblock(rec.br_startblock))
continue;
error = xrep_rtrmap_visit_bmbt(NULL, &rec, rf);
if (error)
return error;
}
return xrep_rtrmap_stash_accumulated(rf);
}
/* Find all the extents on the realtime device mapped by an inode fork. */
STATIC int
xrep_rtrmap_scan_dfork(
struct xrep_rtrmap *rr,
struct xfs_inode *ip)
{
struct xrep_rtrmap_ifork rf = {
.accum = { .rm_owner = ip->i_ino, },
.rr = rr,
};
struct xfs_ifork *ifp = xfs_ifork_ptr(ip, XFS_DATA_FORK);
int error = 0;
if (ifp->if_format == XFS_DINODE_FMT_BTREE) {
bool mappings_done;
/*
* Scan the bmbt for mappings. If the incore extent tree is
* loaded, we want to scan the cached mappings since that's
* faster when the extent counts are very high.
*/
error = xrep_rtrmap_scan_bmbt(&rf, ip, &mappings_done);
if (error || mappings_done)
return error;
} else if (ifp->if_format != XFS_DINODE_FMT_EXTENTS) {
/* realtime data forks should only be extents or btree */
return -EFSCORRUPTED;
}
/* Scan incore extent cache. */
return xrep_rtrmap_scan_iext(&rf, ifp);
}
/* Record reverse mappings for a file. */
STATIC int
xrep_rtrmap_scan_inode(
struct xrep_rtrmap *rr,
struct xfs_inode *ip)
{
unsigned int lock_mode;
int error = 0;
/* Skip the rt rmap btree inode. */
if (rr->sc->ip == ip)
return 0;
lock_mode = xfs_ilock_data_map_shared(ip);
/* Check the data fork if it's on the realtime device. */
if (XFS_IS_REALTIME_INODE(ip)) {
error = xrep_rtrmap_scan_dfork(rr, ip);
if (error)
goto out_unlock;
}
xchk_iscan_mark_visited(&rr->iscan, ip);
out_unlock:
xfs_iunlock(ip, lock_mode);
return error;
}
/* Record extents that belong to the realtime rmap inode. */
STATIC int
xrep_rtrmap_walk_rmap(
struct xfs_btree_cur *cur,
const struct xfs_rmap_irec *rec,
void *priv)
{
struct xrep_rtrmap *rr = priv;
int error = 0;
if (xchk_should_terminate(rr->sc, &error))
return error;
/* Skip extents which are not owned by this inode and fork. */
if (rec->rm_owner != rr->sc->ip->i_ino)
return 0;
error = xrep_check_ino_btree_mapping(rr->sc, rec);
if (error)
return error;
return xfsb_bitmap_set(&rr->old_rtrmapbt_blocks,
xfs_gbno_to_fsb(cur->bc_group, rec->rm_startblock),
rec->rm_blockcount);
}
/* Scan one AG for reverse mappings for the realtime rmap btree. */
STATIC int
xrep_rtrmap_scan_ag(
struct xrep_rtrmap *rr,
struct xfs_perag *pag)
{
struct xfs_scrub *sc = rr->sc;
int error;
error = xrep_ag_init(sc, pag, &sc->sa);
if (error)
return error;
error = xfs_rmap_query_all(sc->sa.rmap_cur, xrep_rtrmap_walk_rmap, rr);
xchk_ag_free(sc, &sc->sa);
return error;
}
struct xrep_rtrmap_stash_run {
struct xrep_rtrmap *rr;
uint64_t owner;
};
static int
xrep_rtrmap_stash_run(
uint32_t start,
uint32_t len,
void *priv)
{
struct xrep_rtrmap_stash_run *rsr = priv;
struct xrep_rtrmap *rr = rsr->rr;
xfs_rgblock_t rgbno = start;
return xrep_rtrmap_stash(rr, rgbno, len, rsr->owner, 0, 0);
}
/*
* Emit rmaps for every extent of bits set in the bitmap. Caller must ensure
* that the ranges are in units of FS blocks.
*/
STATIC int
xrep_rtrmap_stash_bitmap(
struct xrep_rtrmap *rr,
struct xrgb_bitmap *bitmap,
const struct xfs_owner_info *oinfo)
{
struct xrep_rtrmap_stash_run rsr = {
.rr = rr,
.owner = oinfo->oi_owner,
};
return xrgb_bitmap_walk(bitmap, xrep_rtrmap_stash_run, &rsr);
}
/* Record a CoW staging extent. */
STATIC int
xrep_rtrmap_walk_cowblocks(
struct xfs_btree_cur *cur,
const struct xfs_refcount_irec *irec,
void *priv)
{
struct xrgb_bitmap *bitmap = priv;
if (!xfs_refcount_check_domain(irec) ||
irec->rc_domain != XFS_REFC_DOMAIN_COW)
return -EFSCORRUPTED;
return xrgb_bitmap_set(bitmap, irec->rc_startblock,
irec->rc_blockcount);
}
/*
* Collect rmaps for the blocks containing the refcount btree, and all CoW
* staging extents.
*/
STATIC int
xrep_rtrmap_find_refcount_rmaps(
struct xrep_rtrmap *rr)
{
struct xrgb_bitmap cow_blocks; /* COWBIT */
struct xfs_refcount_irec low = {
.rc_startblock = 0,
.rc_domain = XFS_REFC_DOMAIN_COW,
};
struct xfs_refcount_irec high = {
.rc_startblock = -1U,
.rc_domain = XFS_REFC_DOMAIN_COW,
};
struct xfs_scrub *sc = rr->sc;
int error;
if (!xfs_has_rtreflink(sc->mp))
return 0;
xrgb_bitmap_init(&cow_blocks);
/* Collect rmaps for CoW staging extents. */
error = xfs_refcount_query_range(sc->sr.refc_cur, &low, &high,
xrep_rtrmap_walk_cowblocks, &cow_blocks);
if (error)
goto out_bitmap;
/* Generate rmaps for everything. */
error = xrep_rtrmap_stash_bitmap(rr, &cow_blocks, &XFS_RMAP_OINFO_COW);
if (error)
goto out_bitmap;
out_bitmap:
xrgb_bitmap_destroy(&cow_blocks);
return error;
}
/* Count and check all collected records. */
STATIC int
xrep_rtrmap_check_record(
struct xfs_btree_cur *cur,
const struct xfs_rmap_irec *rec,
void *priv)
{
struct xrep_rtrmap *rr = priv;
int error;
error = xrep_rtrmap_check_mapping(rr->sc, rec);
if (error)
return error;
rr->nr_records++;
return 0;
}
/* Generate all the reverse-mappings for the realtime device. */
STATIC int
xrep_rtrmap_find_rmaps(
struct xrep_rtrmap *rr)
{
struct xfs_scrub *sc = rr->sc;
struct xfs_perag *pag = NULL;
struct xfs_inode *ip;
struct xfs_btree_cur *mcur;
int error;
/* Generate rmaps for the realtime superblock */
if (xfs_has_rtsb(sc->mp) && rtg_rgno(rr->sc->sr.rtg) == 0) {
error = xrep_rtrmap_stash(rr, 0, sc->mp->m_sb.sb_rextsize,
XFS_RMAP_OWN_FS, 0, 0);
if (error)
return error;
}
/* Find CoW staging extents. */
xrep_rtgroup_btcur_init(sc, &sc->sr);
error = xrep_rtrmap_find_refcount_rmaps(rr);
xchk_rtgroup_btcur_free(&sc->sr);
if (error)
return error;
/*
* Set up for a potentially lengthy filesystem scan by reducing our
* transaction resource usage for the duration. Specifically:
*
* Unlock the realtime metadata inodes and cancel the transaction to
* release the log grant space while we scan the filesystem.
*
* Create a new empty transaction to eliminate the possibility of the
* inode scan deadlocking on cyclical metadata.
*
* We pass the empty transaction to the file scanning function to avoid
* repeatedly cycling empty transactions. This can be done even though
* we take the IOLOCK to quiesce the file because empty transactions
* do not take sb_internal.
*/
xchk_trans_cancel(sc);
xchk_rtgroup_unlock(&sc->sr);
xchk_trans_alloc_empty(sc);
while ((error = xchk_iscan_iter(&rr->iscan, &ip)) == 1) {
error = xrep_rtrmap_scan_inode(rr, ip);
xchk_irele(sc, ip);
if (error)
break;
if (xchk_should_terminate(sc, &error))
break;
}
xchk_iscan_iter_finish(&rr->iscan);
if (error)
return error;
/*
* Switch out for a real transaction and lock the RT metadata in
* preparation for building a new tree.
*/
xchk_trans_cancel(sc);
error = xchk_setup_rt(sc);
if (error)
return error;
error = xchk_rtgroup_lock(sc, &sc->sr, XCHK_RTGLOCK_ALL);
if (error)
return error;
/*
* If a hook failed to update the in-memory btree, we lack the data to
* continue the repair.
*/
if (xchk_iscan_aborted(&rr->iscan))
return -EFSCORRUPTED;
/* Scan for old rtrmap blocks. */
while ((pag = xfs_perag_next(sc->mp, pag))) {
error = xrep_rtrmap_scan_ag(rr, pag);
if (error) {
xfs_perag_rele(pag);
return error;
}
}
/*
* Now that we have everything locked again, we need to count the
* number of rmap records stashed in the btree. This should reflect
* all actively-owned rt files in the filesystem. At the same time,
* check all our records before we start building a new btree, which
* requires the rtbitmap lock.
*/
mcur = xfs_rtrmapbt_mem_cursor(rr->sc->sr.rtg, NULL, &rr->rtrmap_btree);
rr->nr_records = 0;
error = xfs_rmap_query_all(mcur, xrep_rtrmap_check_record, rr);
xfs_btree_del_cursor(mcur, error);
return error;
}
/* Building the new rtrmap btree. */
/* Retrieve rtrmapbt data for bulk load. */
STATIC int
xrep_rtrmap_get_records(
struct xfs_btree_cur *cur,
unsigned int idx,
struct xfs_btree_block *block,
unsigned int nr_wanted,
void *priv)
{
struct xrep_rtrmap *rr = priv;
union xfs_btree_rec *block_rec;
unsigned int loaded;
int error;
for (loaded = 0; loaded < nr_wanted; loaded++, idx++) {
int stat = 0;
error = xfs_btree_increment(rr->mcur, 0, &stat);
if (error)
return error;
if (!stat)
return -EFSCORRUPTED;
error = xfs_rmap_get_rec(rr->mcur, &cur->bc_rec.r, &stat);
if (error)
return error;
if (!stat)
return -EFSCORRUPTED;
block_rec = xfs_btree_rec_addr(cur, idx, block);
cur->bc_ops->init_rec_from_cur(cur, block_rec);
}
return loaded;
}
/* Feed one of the new btree blocks to the bulk loader. */
STATIC int
xrep_rtrmap_claim_block(
struct xfs_btree_cur *cur,
union xfs_btree_ptr *ptr,
void *priv)
{
struct xrep_rtrmap *rr = priv;
return xrep_newbt_claim_block(cur, &rr->new_btree, ptr);
}
/* Figure out how much space we need to create the incore btree root block. */
STATIC size_t
xrep_rtrmap_iroot_size(
struct xfs_btree_cur *cur,
unsigned int level,
unsigned int nr_this_level,
void *priv)
{
return xfs_rtrmap_broot_space_calc(cur->bc_mp, level, nr_this_level);
}
/*
* Use the collected rmap information to stage a new rmap btree. If this is
* successful we'll return with the new btree root information logged to the
* repair transaction but not yet committed. This implements section (III)
* above.
*/
STATIC int
xrep_rtrmap_build_new_tree(
struct xrep_rtrmap *rr)
{
struct xfs_scrub *sc = rr->sc;
struct xfs_rtgroup *rtg = sc->sr.rtg;
struct xfs_btree_cur *rmap_cur;
int error;
/*
* Prepare to construct the new btree by reserving disk space for the
* new btree and setting up all the accounting information we'll need
* to root the new btree while it's under construction and before we
* attach it to the realtime rmapbt inode.
*/
error = xrep_newbt_init_metadir_inode(&rr->new_btree, sc);
if (error)
return error;
rr->new_btree.bload.get_records = xrep_rtrmap_get_records;
rr->new_btree.bload.claim_block = xrep_rtrmap_claim_block;
rr->new_btree.bload.iroot_size = xrep_rtrmap_iroot_size;
rmap_cur = xfs_rtrmapbt_init_cursor(NULL, rtg);
xfs_btree_stage_ifakeroot(rmap_cur, &rr->new_btree.ifake);
/* Compute how many blocks we'll need for the rmaps collected. */
error = xfs_btree_bload_compute_geometry(rmap_cur,
&rr->new_btree.bload, rr->nr_records);
if (error)
goto err_cur;
/* Last chance to abort before we start committing fixes. */
if (xchk_should_terminate(sc, &error))
goto err_cur;
/*
* Guess how many blocks we're going to need to rebuild an entire
* rtrmapbt from the number of extents we found, and pump up our
* transaction to have sufficient block reservation. We're allowed
* to exceed quota to repair inconsistent metadata, though this is
* unlikely.
*/
error = xfs_trans_reserve_more_inode(sc->tp, rtg_rmap(rtg),
rr->new_btree.bload.nr_blocks, 0, true);
if (error)
goto err_cur;
/* Reserve the space we'll need for the new btree. */
error = xrep_newbt_alloc_blocks(&rr->new_btree,
rr->new_btree.bload.nr_blocks);
if (error)
goto err_cur;
/*
* Create a cursor to the in-memory btree so that we can bulk load the
* new btree.
*/
rr->mcur = xfs_rtrmapbt_mem_cursor(sc->sr.rtg, NULL, &rr->rtrmap_btree);
error = xfs_btree_goto_left_edge(rr->mcur);
if (error)
goto err_mcur;
/* Add all observed rmap records. */
rr->new_btree.ifake.if_fork->if_format = XFS_DINODE_FMT_META_BTREE;
error = xfs_btree_bload(rmap_cur, &rr->new_btree.bload, rr);
if (error)
goto err_mcur;
/*
* Install the new rtrmap btree in the inode. After this point the old
* btree is no longer accessible, the new tree is live, and we can
* delete the cursor.
*/
xfs_rtrmapbt_commit_staged_btree(rmap_cur, sc->tp);
xrep_inode_set_nblocks(rr->sc, rr->new_btree.ifake.if_blocks);
xfs_btree_del_cursor(rmap_cur, 0);
xfs_btree_del_cursor(rr->mcur, 0);
rr->mcur = NULL;
/*
* Now that we've written the new btree to disk, we don't need to keep
* updating the in-memory btree. Abort the scan to stop live updates.
*/
xchk_iscan_abort(&rr->iscan);
/* Dispose of any unused blocks and the accounting information. */
error = xrep_newbt_commit(&rr->new_btree);
if (error)
return error;
return xrep_roll_trans(sc);
err_mcur:
xfs_btree_del_cursor(rr->mcur, error);
err_cur:
xfs_btree_del_cursor(rmap_cur, error);
xrep_newbt_cancel(&rr->new_btree);
return error;
}
/* Reaping the old btree. */
static inline bool
xrep_rtrmapbt_want_live_update(
struct xchk_iscan *iscan,
const struct xfs_owner_info *oi)
{
if (xchk_iscan_aborted(iscan))
return false;
/*
* We scanned the CoW staging extents before we started the iscan, so
* we need all the updates.
*/
if (XFS_RMAP_NON_INODE_OWNER(oi->oi_owner))
return true;
/* Ignore updates to files that the scanner hasn't visited yet. */
return xchk_iscan_want_live_update(iscan, oi->oi_owner);
}
/*
* Apply a rtrmapbt update from the regular filesystem into our shadow btree.
* We're running from the thread that owns the rtrmap ILOCK and is generating
* the update, so we must be careful about which parts of the struct
* xrep_rtrmap that we change.
*/
static int
xrep_rtrmapbt_live_update(
struct notifier_block *nb,
unsigned long action,
void *data)
{
struct xfs_rmap_update_params *p = data;
struct xrep_rtrmap *rr;
struct xfs_mount *mp;
struct xfs_btree_cur *mcur;
struct xfs_trans *tp;
int error;
rr = container_of(nb, struct xrep_rtrmap, rhook.rmap_hook.nb);
mp = rr->sc->mp;
if (!xrep_rtrmapbt_want_live_update(&rr->iscan, &p->oinfo))
goto out_unlock;
trace_xrep_rmap_live_update(rtg_group(rr->sc->sr.rtg), action, p);
tp = xfs_trans_alloc_empty(mp);
mutex_lock(&rr->lock);
mcur = xfs_rtrmapbt_mem_cursor(rr->sc->sr.rtg, tp, &rr->rtrmap_btree);
error = __xfs_rmap_finish_intent(mcur, action, p->startblock,
p->blockcount, &p->oinfo, p->unwritten);
xfs_btree_del_cursor(mcur, error);
if (error)
goto out_cancel;
error = xfbtree_trans_commit(&rr->rtrmap_btree, tp);
if (error)
goto out_cancel;
xfs_trans_cancel(tp);
mutex_unlock(&rr->lock);
return NOTIFY_DONE;
out_cancel:
xfbtree_trans_cancel(&rr->rtrmap_btree, tp);
xfs_trans_cancel(tp);
xchk_iscan_abort(&rr->iscan);
mutex_unlock(&rr->lock);
out_unlock:
return NOTIFY_DONE;
}
/* Set up the filesystem scan components. */
STATIC int
xrep_rtrmap_setup_scan(
struct xrep_rtrmap *rr)
{
struct xfs_scrub *sc = rr->sc;
int error;
mutex_init(&rr->lock);
xfsb_bitmap_init(&rr->old_rtrmapbt_blocks);
/* Set up some storage */
error = xfs_rtrmapbt_mem_init(sc->mp, &rr->rtrmap_btree, sc->xmbtp,
rtg_rgno(sc->sr.rtg));
if (error)
goto out_bitmap;
/* Retry iget every tenth of a second for up to 30 seconds. */
xchk_iscan_start(sc, 30000, 100, &rr->iscan);
/*
* Hook into live rtrmap operations so that we can update our in-memory
* btree to reflect live changes on the filesystem. Since we drop the
* rtrmap ILOCK to scan all the inodes, we need this piece to avoid
* installing a stale btree.
*/
ASSERT(sc->flags & XCHK_FSGATES_RMAP);
xfs_rmap_hook_setup(&rr->rhook, xrep_rtrmapbt_live_update);
error = xfs_rmap_hook_add(rtg_group(sc->sr.rtg), &rr->rhook);
if (error)
goto out_iscan;
return 0;
out_iscan:
xchk_iscan_teardown(&rr->iscan);
xfbtree_destroy(&rr->rtrmap_btree);
out_bitmap:
xfsb_bitmap_destroy(&rr->old_rtrmapbt_blocks);
mutex_destroy(&rr->lock);
return error;
}
/* Tear down scan components. */
STATIC void
xrep_rtrmap_teardown(
struct xrep_rtrmap *rr)
{
struct xfs_scrub *sc = rr->sc;
xchk_iscan_abort(&rr->iscan);
xfs_rmap_hook_del(rtg_group(sc->sr.rtg), &rr->rhook);
xchk_iscan_teardown(&rr->iscan);
xfbtree_destroy(&rr->rtrmap_btree);
xfsb_bitmap_destroy(&rr->old_rtrmapbt_blocks);
mutex_destroy(&rr->lock);
}
/* Repair the realtime rmap btree. */
int
xrep_rtrmapbt(
struct xfs_scrub *sc)
{
struct xrep_rtrmap *rr = sc->buf;
int error;
/* Make sure any problems with the fork are fixed. */
error = xrep_metadata_inode_forks(sc);
if (error)
return error;
error = xrep_rtrmap_setup_scan(rr);
if (error)
return error;
/* Collect rmaps for realtime files. */
error = xrep_rtrmap_find_rmaps(rr);
if (error)
goto out_records;
xfs_trans_ijoin(sc->tp, sc->ip, 0);
/* Rebuild the rtrmap information. */
error = xrep_rtrmap_build_new_tree(rr);
if (error)
goto out_records;
/*
* Free all the extents that were allocated to the former rtrmapbt and
* aren't cross-linked with something else.
*/
error = xrep_reap_metadir_fsblocks(rr->sc, &rr->old_rtrmapbt_blocks);
if (error)
goto out_records;
out_records:
xrep_rtrmap_teardown(rr);
return error;
}