linux/fs/resctrl/monitor.c
Qinyun Tan 594902c986 x86,fs/resctrl: Remove inappropriate references to cacheinfo in the resctrl subsystem
In the resctrl subsystem's Sub-NUMA Cluster (SNC) mode, the rdt_mon_domain
structure representing a NUMA node relies on the cacheinfo interface
(rdt_mon_domain::ci) to store L3 cache information (e.g., shared_cpu_map)
for monitoring. The L3 cache information of a SNC NUMA node determines
which domains are summed for the "top level" L3-scoped events.

rdt_mon_domain::ci is initialized using the first online CPU of a NUMA
node. When this CPU goes offline, its shared_cpu_map is cleared to contain
only the offline CPU itself. Subsequently, attempting to read counters
via smp_call_on_cpu(offline_cpu) fails (and error ignored), returning
zero values for "top-level events" without any error indication.

Replace the cacheinfo references in struct rdt_mon_domain and struct
rmid_read with the cacheinfo ID (a unique identifier for the L3 cache).

rdt_domain_hdr::cpu_mask contains the online CPUs associated with that
domain. When reading "top-level events", select a CPU from
rdt_domain_hdr::cpu_mask and utilize its L3 shared_cpu_map to determine
valid CPUs for reading RMID counter via the MSR interface.

Considering all CPUs associated with the L3 cache improves the chances
of picking a housekeeping CPU on which the counter reading work can be
queued, avoiding an unnecessary IPI.

Fixes: 328ea68874 ("x86/resctrl: Prepare for new Sub-NUMA Cluster (SNC) monitor files")
Signed-off-by: Qinyun Tan <qinyuntan@linux.alibaba.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Reinette Chatre <reinette.chatre@intel.com>
Tested-by: Tony Luck <tony.luck@intel.com>
Link: https://lore.kernel.org/20250530182053.37502-2-qinyuntan@linux.alibaba.com
2025-06-16 21:06:12 +02:00

931 lines
26 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Resource Director Technology(RDT)
* - Monitoring code
*
* Copyright (C) 2017 Intel Corporation
*
* Author:
* Vikas Shivappa <vikas.shivappa@intel.com>
*
* This replaces the cqm.c based on perf but we reuse a lot of
* code and datastructures originally from Peter Zijlstra and Matt Fleming.
*
* More information about RDT be found in the Intel (R) x86 Architecture
* Software Developer Manual June 2016, volume 3, section 17.17.
*/
#define pr_fmt(fmt) "resctrl: " fmt
#include <linux/cpu.h>
#include <linux/resctrl.h>
#include <linux/sizes.h>
#include <linux/slab.h>
#include "internal.h"
#define CREATE_TRACE_POINTS
#include "monitor_trace.h"
/**
* struct rmid_entry - dirty tracking for all RMID.
* @closid: The CLOSID for this entry.
* @rmid: The RMID for this entry.
* @busy: The number of domains with cached data using this RMID.
* @list: Member of the rmid_free_lru list when busy == 0.
*
* Depending on the architecture the correct monitor is accessed using
* both @closid and @rmid, or @rmid only.
*
* Take the rdtgroup_mutex when accessing.
*/
struct rmid_entry {
u32 closid;
u32 rmid;
int busy;
struct list_head list;
};
/*
* @rmid_free_lru - A least recently used list of free RMIDs
* These RMIDs are guaranteed to have an occupancy less than the
* threshold occupancy
*/
static LIST_HEAD(rmid_free_lru);
/*
* @closid_num_dirty_rmid The number of dirty RMID each CLOSID has.
* Only allocated when CONFIG_RESCTRL_RMID_DEPENDS_ON_CLOSID is defined.
* Indexed by CLOSID. Protected by rdtgroup_mutex.
*/
static u32 *closid_num_dirty_rmid;
/*
* @rmid_limbo_count - count of currently unused but (potentially)
* dirty RMIDs.
* This counts RMIDs that no one is currently using but that
* may have a occupancy value > resctrl_rmid_realloc_threshold. User can
* change the threshold occupancy value.
*/
static unsigned int rmid_limbo_count;
/*
* @rmid_entry - The entry in the limbo and free lists.
*/
static struct rmid_entry *rmid_ptrs;
/*
* This is the threshold cache occupancy in bytes at which we will consider an
* RMID available for re-allocation.
*/
unsigned int resctrl_rmid_realloc_threshold;
/*
* This is the maximum value for the reallocation threshold, in bytes.
*/
unsigned int resctrl_rmid_realloc_limit;
/*
* x86 and arm64 differ in their handling of monitoring.
* x86's RMID are independent numbers, there is only one source of traffic
* with an RMID value of '1'.
* arm64's PMG extends the PARTID/CLOSID space, there are multiple sources of
* traffic with a PMG value of '1', one for each CLOSID, meaning the RMID
* value is no longer unique.
* To account for this, resctrl uses an index. On x86 this is just the RMID,
* on arm64 it encodes the CLOSID and RMID. This gives a unique number.
*
* The domain's rmid_busy_llc and rmid_ptrs[] are sized by index. The arch code
* must accept an attempt to read every index.
*/
static inline struct rmid_entry *__rmid_entry(u32 idx)
{
struct rmid_entry *entry;
u32 closid, rmid;
entry = &rmid_ptrs[idx];
resctrl_arch_rmid_idx_decode(idx, &closid, &rmid);
WARN_ON_ONCE(entry->closid != closid);
WARN_ON_ONCE(entry->rmid != rmid);
return entry;
}
static void limbo_release_entry(struct rmid_entry *entry)
{
lockdep_assert_held(&rdtgroup_mutex);
rmid_limbo_count--;
list_add_tail(&entry->list, &rmid_free_lru);
if (IS_ENABLED(CONFIG_RESCTRL_RMID_DEPENDS_ON_CLOSID))
closid_num_dirty_rmid[entry->closid]--;
}
/*
* Check the RMIDs that are marked as busy for this domain. If the
* reported LLC occupancy is below the threshold clear the busy bit and
* decrement the count. If the busy count gets to zero on an RMID, we
* free the RMID
*/
void __check_limbo(struct rdt_mon_domain *d, bool force_free)
{
struct rdt_resource *r = resctrl_arch_get_resource(RDT_RESOURCE_L3);
u32 idx_limit = resctrl_arch_system_num_rmid_idx();
struct rmid_entry *entry;
u32 idx, cur_idx = 1;
void *arch_mon_ctx;
bool rmid_dirty;
u64 val = 0;
arch_mon_ctx = resctrl_arch_mon_ctx_alloc(r, QOS_L3_OCCUP_EVENT_ID);
if (IS_ERR(arch_mon_ctx)) {
pr_warn_ratelimited("Failed to allocate monitor context: %ld",
PTR_ERR(arch_mon_ctx));
return;
}
/*
* Skip RMID 0 and start from RMID 1 and check all the RMIDs that
* are marked as busy for occupancy < threshold. If the occupancy
* is less than the threshold decrement the busy counter of the
* RMID and move it to the free list when the counter reaches 0.
*/
for (;;) {
idx = find_next_bit(d->rmid_busy_llc, idx_limit, cur_idx);
if (idx >= idx_limit)
break;
entry = __rmid_entry(idx);
if (resctrl_arch_rmid_read(r, d, entry->closid, entry->rmid,
QOS_L3_OCCUP_EVENT_ID, &val,
arch_mon_ctx)) {
rmid_dirty = true;
} else {
rmid_dirty = (val >= resctrl_rmid_realloc_threshold);
/*
* x86's CLOSID and RMID are independent numbers, so the entry's
* CLOSID is an empty CLOSID (X86_RESCTRL_EMPTY_CLOSID). On Arm the
* RMID (PMG) extends the CLOSID (PARTID) space with bits that aren't
* used to select the configuration. It is thus necessary to track both
* CLOSID and RMID because there may be dependencies between them
* on some architectures.
*/
trace_mon_llc_occupancy_limbo(entry->closid, entry->rmid, d->hdr.id, val);
}
if (force_free || !rmid_dirty) {
clear_bit(idx, d->rmid_busy_llc);
if (!--entry->busy)
limbo_release_entry(entry);
}
cur_idx = idx + 1;
}
resctrl_arch_mon_ctx_free(r, QOS_L3_OCCUP_EVENT_ID, arch_mon_ctx);
}
bool has_busy_rmid(struct rdt_mon_domain *d)
{
u32 idx_limit = resctrl_arch_system_num_rmid_idx();
return find_first_bit(d->rmid_busy_llc, idx_limit) != idx_limit;
}
static struct rmid_entry *resctrl_find_free_rmid(u32 closid)
{
struct rmid_entry *itr;
u32 itr_idx, cmp_idx;
if (list_empty(&rmid_free_lru))
return rmid_limbo_count ? ERR_PTR(-EBUSY) : ERR_PTR(-ENOSPC);
list_for_each_entry(itr, &rmid_free_lru, list) {
/*
* Get the index of this free RMID, and the index it would need
* to be if it were used with this CLOSID.
* If the CLOSID is irrelevant on this architecture, the two
* index values are always the same on every entry and thus the
* very first entry will be returned.
*/
itr_idx = resctrl_arch_rmid_idx_encode(itr->closid, itr->rmid);
cmp_idx = resctrl_arch_rmid_idx_encode(closid, itr->rmid);
if (itr_idx == cmp_idx)
return itr;
}
return ERR_PTR(-ENOSPC);
}
/**
* resctrl_find_cleanest_closid() - Find a CLOSID where all the associated
* RMID are clean, or the CLOSID that has
* the most clean RMID.
*
* MPAM's equivalent of RMID are per-CLOSID, meaning a freshly allocated CLOSID
* may not be able to allocate clean RMID. To avoid this the allocator will
* choose the CLOSID with the most clean RMID.
*
* When the CLOSID and RMID are independent numbers, the first free CLOSID will
* be returned.
*/
int resctrl_find_cleanest_closid(void)
{
u32 cleanest_closid = ~0;
int i = 0;
lockdep_assert_held(&rdtgroup_mutex);
if (!IS_ENABLED(CONFIG_RESCTRL_RMID_DEPENDS_ON_CLOSID))
return -EIO;
for (i = 0; i < closids_supported(); i++) {
int num_dirty;
if (closid_allocated(i))
continue;
num_dirty = closid_num_dirty_rmid[i];
if (num_dirty == 0)
return i;
if (cleanest_closid == ~0)
cleanest_closid = i;
if (num_dirty < closid_num_dirty_rmid[cleanest_closid])
cleanest_closid = i;
}
if (cleanest_closid == ~0)
return -ENOSPC;
return cleanest_closid;
}
/*
* For MPAM the RMID value is not unique, and has to be considered with
* the CLOSID. The (CLOSID, RMID) pair is allocated on all domains, which
* allows all domains to be managed by a single free list.
* Each domain also has a rmid_busy_llc to reduce the work of the limbo handler.
*/
int alloc_rmid(u32 closid)
{
struct rmid_entry *entry;
lockdep_assert_held(&rdtgroup_mutex);
entry = resctrl_find_free_rmid(closid);
if (IS_ERR(entry))
return PTR_ERR(entry);
list_del(&entry->list);
return entry->rmid;
}
static void add_rmid_to_limbo(struct rmid_entry *entry)
{
struct rdt_resource *r = resctrl_arch_get_resource(RDT_RESOURCE_L3);
struct rdt_mon_domain *d;
u32 idx;
lockdep_assert_held(&rdtgroup_mutex);
/* Walking r->domains, ensure it can't race with cpuhp */
lockdep_assert_cpus_held();
idx = resctrl_arch_rmid_idx_encode(entry->closid, entry->rmid);
entry->busy = 0;
list_for_each_entry(d, &r->mon_domains, hdr.list) {
/*
* For the first limbo RMID in the domain,
* setup up the limbo worker.
*/
if (!has_busy_rmid(d))
cqm_setup_limbo_handler(d, CQM_LIMBOCHECK_INTERVAL,
RESCTRL_PICK_ANY_CPU);
set_bit(idx, d->rmid_busy_llc);
entry->busy++;
}
rmid_limbo_count++;
if (IS_ENABLED(CONFIG_RESCTRL_RMID_DEPENDS_ON_CLOSID))
closid_num_dirty_rmid[entry->closid]++;
}
void free_rmid(u32 closid, u32 rmid)
{
u32 idx = resctrl_arch_rmid_idx_encode(closid, rmid);
struct rmid_entry *entry;
lockdep_assert_held(&rdtgroup_mutex);
/*
* Do not allow the default rmid to be free'd. Comparing by index
* allows architectures that ignore the closid parameter to avoid an
* unnecessary check.
*/
if (!resctrl_arch_mon_capable() ||
idx == resctrl_arch_rmid_idx_encode(RESCTRL_RESERVED_CLOSID,
RESCTRL_RESERVED_RMID))
return;
entry = __rmid_entry(idx);
if (resctrl_arch_is_llc_occupancy_enabled())
add_rmid_to_limbo(entry);
else
list_add_tail(&entry->list, &rmid_free_lru);
}
static struct mbm_state *get_mbm_state(struct rdt_mon_domain *d, u32 closid,
u32 rmid, enum resctrl_event_id evtid)
{
u32 idx = resctrl_arch_rmid_idx_encode(closid, rmid);
switch (evtid) {
case QOS_L3_MBM_TOTAL_EVENT_ID:
return &d->mbm_total[idx];
case QOS_L3_MBM_LOCAL_EVENT_ID:
return &d->mbm_local[idx];
default:
return NULL;
}
}
static int __mon_event_count(u32 closid, u32 rmid, struct rmid_read *rr)
{
int cpu = smp_processor_id();
struct rdt_mon_domain *d;
struct cacheinfo *ci;
struct mbm_state *m;
int err, ret;
u64 tval = 0;
if (rr->first) {
resctrl_arch_reset_rmid(rr->r, rr->d, closid, rmid, rr->evtid);
m = get_mbm_state(rr->d, closid, rmid, rr->evtid);
if (m)
memset(m, 0, sizeof(struct mbm_state));
return 0;
}
if (rr->d) {
/* Reading a single domain, must be on a CPU in that domain. */
if (!cpumask_test_cpu(cpu, &rr->d->hdr.cpu_mask))
return -EINVAL;
rr->err = resctrl_arch_rmid_read(rr->r, rr->d, closid, rmid,
rr->evtid, &tval, rr->arch_mon_ctx);
if (rr->err)
return rr->err;
rr->val += tval;
return 0;
}
/* Summing domains that share a cache, must be on a CPU for that cache. */
ci = get_cpu_cacheinfo_level(cpu, RESCTRL_L3_CACHE);
if (!ci || ci->id != rr->ci_id)
return -EINVAL;
/*
* Legacy files must report the sum of an event across all
* domains that share the same L3 cache instance.
* Report success if a read from any domain succeeds, -EINVAL
* (translated to "Unavailable" for user space) if reading from
* all domains fail for any reason.
*/
ret = -EINVAL;
list_for_each_entry(d, &rr->r->mon_domains, hdr.list) {
if (d->ci_id != rr->ci_id)
continue;
err = resctrl_arch_rmid_read(rr->r, d, closid, rmid,
rr->evtid, &tval, rr->arch_mon_ctx);
if (!err) {
rr->val += tval;
ret = 0;
}
}
if (ret)
rr->err = ret;
return ret;
}
/*
* mbm_bw_count() - Update bw count from values previously read by
* __mon_event_count().
* @closid: The closid used to identify the cached mbm_state.
* @rmid: The rmid used to identify the cached mbm_state.
* @rr: The struct rmid_read populated by __mon_event_count().
*
* Supporting function to calculate the memory bandwidth
* and delta bandwidth in MBps. The chunks value previously read by
* __mon_event_count() is compared with the chunks value from the previous
* invocation. This must be called once per second to maintain values in MBps.
*/
static void mbm_bw_count(u32 closid, u32 rmid, struct rmid_read *rr)
{
u64 cur_bw, bytes, cur_bytes;
struct mbm_state *m;
m = get_mbm_state(rr->d, closid, rmid, rr->evtid);
if (WARN_ON_ONCE(!m))
return;
cur_bytes = rr->val;
bytes = cur_bytes - m->prev_bw_bytes;
m->prev_bw_bytes = cur_bytes;
cur_bw = bytes / SZ_1M;
m->prev_bw = cur_bw;
}
/*
* This is scheduled by mon_event_read() to read the CQM/MBM counters
* on a domain.
*/
void mon_event_count(void *info)
{
struct rdtgroup *rdtgrp, *entry;
struct rmid_read *rr = info;
struct list_head *head;
int ret;
rdtgrp = rr->rgrp;
ret = __mon_event_count(rdtgrp->closid, rdtgrp->mon.rmid, rr);
/*
* For Ctrl groups read data from child monitor groups and
* add them together. Count events which are read successfully.
* Discard the rmid_read's reporting errors.
*/
head = &rdtgrp->mon.crdtgrp_list;
if (rdtgrp->type == RDTCTRL_GROUP) {
list_for_each_entry(entry, head, mon.crdtgrp_list) {
if (__mon_event_count(entry->closid, entry->mon.rmid,
rr) == 0)
ret = 0;
}
}
/*
* __mon_event_count() calls for newly created monitor groups may
* report -EINVAL/Unavailable if the monitor hasn't seen any traffic.
* Discard error if any of the monitor event reads succeeded.
*/
if (ret == 0)
rr->err = 0;
}
static struct rdt_ctrl_domain *get_ctrl_domain_from_cpu(int cpu,
struct rdt_resource *r)
{
struct rdt_ctrl_domain *d;
lockdep_assert_cpus_held();
list_for_each_entry(d, &r->ctrl_domains, hdr.list) {
/* Find the domain that contains this CPU */
if (cpumask_test_cpu(cpu, &d->hdr.cpu_mask))
return d;
}
return NULL;
}
/*
* Feedback loop for MBA software controller (mba_sc)
*
* mba_sc is a feedback loop where we periodically read MBM counters and
* adjust the bandwidth percentage values via the IA32_MBA_THRTL_MSRs so
* that:
*
* current bandwidth(cur_bw) < user specified bandwidth(user_bw)
*
* This uses the MBM counters to measure the bandwidth and MBA throttle
* MSRs to control the bandwidth for a particular rdtgrp. It builds on the
* fact that resctrl rdtgroups have both monitoring and control.
*
* The frequency of the checks is 1s and we just tag along the MBM overflow
* timer. Having 1s interval makes the calculation of bandwidth simpler.
*
* Although MBA's goal is to restrict the bandwidth to a maximum, there may
* be a need to increase the bandwidth to avoid unnecessarily restricting
* the L2 <-> L3 traffic.
*
* Since MBA controls the L2 external bandwidth where as MBM measures the
* L3 external bandwidth the following sequence could lead to such a
* situation.
*
* Consider an rdtgroup which had high L3 <-> memory traffic in initial
* phases -> mba_sc kicks in and reduced bandwidth percentage values -> but
* after some time rdtgroup has mostly L2 <-> L3 traffic.
*
* In this case we may restrict the rdtgroup's L2 <-> L3 traffic as its
* throttle MSRs already have low percentage values. To avoid
* unnecessarily restricting such rdtgroups, we also increase the bandwidth.
*/
static void update_mba_bw(struct rdtgroup *rgrp, struct rdt_mon_domain *dom_mbm)
{
u32 closid, rmid, cur_msr_val, new_msr_val;
struct mbm_state *pmbm_data, *cmbm_data;
struct rdt_ctrl_domain *dom_mba;
enum resctrl_event_id evt_id;
struct rdt_resource *r_mba;
struct list_head *head;
struct rdtgroup *entry;
u32 cur_bw, user_bw;
r_mba = resctrl_arch_get_resource(RDT_RESOURCE_MBA);
evt_id = rgrp->mba_mbps_event;
closid = rgrp->closid;
rmid = rgrp->mon.rmid;
pmbm_data = get_mbm_state(dom_mbm, closid, rmid, evt_id);
if (WARN_ON_ONCE(!pmbm_data))
return;
dom_mba = get_ctrl_domain_from_cpu(smp_processor_id(), r_mba);
if (!dom_mba) {
pr_warn_once("Failure to get domain for MBA update\n");
return;
}
cur_bw = pmbm_data->prev_bw;
user_bw = dom_mba->mbps_val[closid];
/* MBA resource doesn't support CDP */
cur_msr_val = resctrl_arch_get_config(r_mba, dom_mba, closid, CDP_NONE);
/*
* For Ctrl groups read data from child monitor groups.
*/
head = &rgrp->mon.crdtgrp_list;
list_for_each_entry(entry, head, mon.crdtgrp_list) {
cmbm_data = get_mbm_state(dom_mbm, entry->closid, entry->mon.rmid, evt_id);
if (WARN_ON_ONCE(!cmbm_data))
return;
cur_bw += cmbm_data->prev_bw;
}
/*
* Scale up/down the bandwidth linearly for the ctrl group. The
* bandwidth step is the bandwidth granularity specified by the
* hardware.
* Always increase throttling if current bandwidth is above the
* target set by user.
* But avoid thrashing up and down on every poll by checking
* whether a decrease in throttling is likely to push the group
* back over target. E.g. if currently throttling to 30% of bandwidth
* on a system with 10% granularity steps, check whether moving to
* 40% would go past the limit by multiplying current bandwidth by
* "(30 + 10) / 30".
*/
if (cur_msr_val > r_mba->membw.min_bw && user_bw < cur_bw) {
new_msr_val = cur_msr_val - r_mba->membw.bw_gran;
} else if (cur_msr_val < MAX_MBA_BW &&
(user_bw > (cur_bw * (cur_msr_val + r_mba->membw.min_bw) / cur_msr_val))) {
new_msr_val = cur_msr_val + r_mba->membw.bw_gran;
} else {
return;
}
resctrl_arch_update_one(r_mba, dom_mba, closid, CDP_NONE, new_msr_val);
}
static void mbm_update_one_event(struct rdt_resource *r, struct rdt_mon_domain *d,
u32 closid, u32 rmid, enum resctrl_event_id evtid)
{
struct rmid_read rr = {0};
rr.r = r;
rr.d = d;
rr.evtid = evtid;
rr.arch_mon_ctx = resctrl_arch_mon_ctx_alloc(rr.r, rr.evtid);
if (IS_ERR(rr.arch_mon_ctx)) {
pr_warn_ratelimited("Failed to allocate monitor context: %ld",
PTR_ERR(rr.arch_mon_ctx));
return;
}
__mon_event_count(closid, rmid, &rr);
/*
* If the software controller is enabled, compute the
* bandwidth for this event id.
*/
if (is_mba_sc(NULL))
mbm_bw_count(closid, rmid, &rr);
resctrl_arch_mon_ctx_free(rr.r, rr.evtid, rr.arch_mon_ctx);
}
static void mbm_update(struct rdt_resource *r, struct rdt_mon_domain *d,
u32 closid, u32 rmid)
{
/*
* This is protected from concurrent reads from user as both
* the user and overflow handler hold the global mutex.
*/
if (resctrl_arch_is_mbm_total_enabled())
mbm_update_one_event(r, d, closid, rmid, QOS_L3_MBM_TOTAL_EVENT_ID);
if (resctrl_arch_is_mbm_local_enabled())
mbm_update_one_event(r, d, closid, rmid, QOS_L3_MBM_LOCAL_EVENT_ID);
}
/*
* Handler to scan the limbo list and move the RMIDs
* to free list whose occupancy < threshold_occupancy.
*/
void cqm_handle_limbo(struct work_struct *work)
{
unsigned long delay = msecs_to_jiffies(CQM_LIMBOCHECK_INTERVAL);
struct rdt_mon_domain *d;
cpus_read_lock();
mutex_lock(&rdtgroup_mutex);
d = container_of(work, struct rdt_mon_domain, cqm_limbo.work);
__check_limbo(d, false);
if (has_busy_rmid(d)) {
d->cqm_work_cpu = cpumask_any_housekeeping(&d->hdr.cpu_mask,
RESCTRL_PICK_ANY_CPU);
schedule_delayed_work_on(d->cqm_work_cpu, &d->cqm_limbo,
delay);
}
mutex_unlock(&rdtgroup_mutex);
cpus_read_unlock();
}
/**
* cqm_setup_limbo_handler() - Schedule the limbo handler to run for this
* domain.
* @dom: The domain the limbo handler should run for.
* @delay_ms: How far in the future the handler should run.
* @exclude_cpu: Which CPU the handler should not run on,
* RESCTRL_PICK_ANY_CPU to pick any CPU.
*/
void cqm_setup_limbo_handler(struct rdt_mon_domain *dom, unsigned long delay_ms,
int exclude_cpu)
{
unsigned long delay = msecs_to_jiffies(delay_ms);
int cpu;
cpu = cpumask_any_housekeeping(&dom->hdr.cpu_mask, exclude_cpu);
dom->cqm_work_cpu = cpu;
if (cpu < nr_cpu_ids)
schedule_delayed_work_on(cpu, &dom->cqm_limbo, delay);
}
void mbm_handle_overflow(struct work_struct *work)
{
unsigned long delay = msecs_to_jiffies(MBM_OVERFLOW_INTERVAL);
struct rdtgroup *prgrp, *crgrp;
struct rdt_mon_domain *d;
struct list_head *head;
struct rdt_resource *r;
cpus_read_lock();
mutex_lock(&rdtgroup_mutex);
/*
* If the filesystem has been unmounted this work no longer needs to
* run.
*/
if (!resctrl_mounted || !resctrl_arch_mon_capable())
goto out_unlock;
r = resctrl_arch_get_resource(RDT_RESOURCE_L3);
d = container_of(work, struct rdt_mon_domain, mbm_over.work);
list_for_each_entry(prgrp, &rdt_all_groups, rdtgroup_list) {
mbm_update(r, d, prgrp->closid, prgrp->mon.rmid);
head = &prgrp->mon.crdtgrp_list;
list_for_each_entry(crgrp, head, mon.crdtgrp_list)
mbm_update(r, d, crgrp->closid, crgrp->mon.rmid);
if (is_mba_sc(NULL))
update_mba_bw(prgrp, d);
}
/*
* Re-check for housekeeping CPUs. This allows the overflow handler to
* move off a nohz_full CPU quickly.
*/
d->mbm_work_cpu = cpumask_any_housekeeping(&d->hdr.cpu_mask,
RESCTRL_PICK_ANY_CPU);
schedule_delayed_work_on(d->mbm_work_cpu, &d->mbm_over, delay);
out_unlock:
mutex_unlock(&rdtgroup_mutex);
cpus_read_unlock();
}
/**
* mbm_setup_overflow_handler() - Schedule the overflow handler to run for this
* domain.
* @dom: The domain the overflow handler should run for.
* @delay_ms: How far in the future the handler should run.
* @exclude_cpu: Which CPU the handler should not run on,
* RESCTRL_PICK_ANY_CPU to pick any CPU.
*/
void mbm_setup_overflow_handler(struct rdt_mon_domain *dom, unsigned long delay_ms,
int exclude_cpu)
{
unsigned long delay = msecs_to_jiffies(delay_ms);
int cpu;
/*
* When a domain comes online there is no guarantee the filesystem is
* mounted. If not, there is no need to catch counter overflow.
*/
if (!resctrl_mounted || !resctrl_arch_mon_capable())
return;
cpu = cpumask_any_housekeeping(&dom->hdr.cpu_mask, exclude_cpu);
dom->mbm_work_cpu = cpu;
if (cpu < nr_cpu_ids)
schedule_delayed_work_on(cpu, &dom->mbm_over, delay);
}
static int dom_data_init(struct rdt_resource *r)
{
u32 idx_limit = resctrl_arch_system_num_rmid_idx();
u32 num_closid = resctrl_arch_get_num_closid(r);
struct rmid_entry *entry = NULL;
int err = 0, i;
u32 idx;
mutex_lock(&rdtgroup_mutex);
if (IS_ENABLED(CONFIG_RESCTRL_RMID_DEPENDS_ON_CLOSID)) {
u32 *tmp;
/*
* If the architecture hasn't provided a sanitised value here,
* this may result in larger arrays than necessary. Resctrl will
* use a smaller system wide value based on the resources in
* use.
*/
tmp = kcalloc(num_closid, sizeof(*tmp), GFP_KERNEL);
if (!tmp) {
err = -ENOMEM;
goto out_unlock;
}
closid_num_dirty_rmid = tmp;
}
rmid_ptrs = kcalloc(idx_limit, sizeof(struct rmid_entry), GFP_KERNEL);
if (!rmid_ptrs) {
if (IS_ENABLED(CONFIG_RESCTRL_RMID_DEPENDS_ON_CLOSID)) {
kfree(closid_num_dirty_rmid);
closid_num_dirty_rmid = NULL;
}
err = -ENOMEM;
goto out_unlock;
}
for (i = 0; i < idx_limit; i++) {
entry = &rmid_ptrs[i];
INIT_LIST_HEAD(&entry->list);
resctrl_arch_rmid_idx_decode(i, &entry->closid, &entry->rmid);
list_add_tail(&entry->list, &rmid_free_lru);
}
/*
* RESCTRL_RESERVED_CLOSID and RESCTRL_RESERVED_RMID are special and
* are always allocated. These are used for the rdtgroup_default
* control group, which will be setup later in resctrl_init().
*/
idx = resctrl_arch_rmid_idx_encode(RESCTRL_RESERVED_CLOSID,
RESCTRL_RESERVED_RMID);
entry = __rmid_entry(idx);
list_del(&entry->list);
out_unlock:
mutex_unlock(&rdtgroup_mutex);
return err;
}
static void dom_data_exit(struct rdt_resource *r)
{
mutex_lock(&rdtgroup_mutex);
if (!r->mon_capable)
goto out_unlock;
if (IS_ENABLED(CONFIG_RESCTRL_RMID_DEPENDS_ON_CLOSID)) {
kfree(closid_num_dirty_rmid);
closid_num_dirty_rmid = NULL;
}
kfree(rmid_ptrs);
rmid_ptrs = NULL;
out_unlock:
mutex_unlock(&rdtgroup_mutex);
}
static struct mon_evt llc_occupancy_event = {
.name = "llc_occupancy",
.evtid = QOS_L3_OCCUP_EVENT_ID,
};
static struct mon_evt mbm_total_event = {
.name = "mbm_total_bytes",
.evtid = QOS_L3_MBM_TOTAL_EVENT_ID,
};
static struct mon_evt mbm_local_event = {
.name = "mbm_local_bytes",
.evtid = QOS_L3_MBM_LOCAL_EVENT_ID,
};
/*
* Initialize the event list for the resource.
*
* Note that MBM events are also part of RDT_RESOURCE_L3 resource
* because as per the SDM the total and local memory bandwidth
* are enumerated as part of L3 monitoring.
*/
static void l3_mon_evt_init(struct rdt_resource *r)
{
INIT_LIST_HEAD(&r->evt_list);
if (resctrl_arch_is_llc_occupancy_enabled())
list_add_tail(&llc_occupancy_event.list, &r->evt_list);
if (resctrl_arch_is_mbm_total_enabled())
list_add_tail(&mbm_total_event.list, &r->evt_list);
if (resctrl_arch_is_mbm_local_enabled())
list_add_tail(&mbm_local_event.list, &r->evt_list);
}
/**
* resctrl_mon_resource_init() - Initialise global monitoring structures.
*
* Allocate and initialise global monitor resources that do not belong to a
* specific domain. i.e. the rmid_ptrs[] used for the limbo and free lists.
* Called once during boot after the struct rdt_resource's have been configured
* but before the filesystem is mounted.
* Resctrl's cpuhp callbacks may be called before this point to bring a domain
* online.
*
* Returns 0 for success, or -ENOMEM.
*/
int resctrl_mon_resource_init(void)
{
struct rdt_resource *r = resctrl_arch_get_resource(RDT_RESOURCE_L3);
int ret;
if (!r->mon_capable)
return 0;
ret = dom_data_init(r);
if (ret)
return ret;
l3_mon_evt_init(r);
if (resctrl_arch_is_evt_configurable(QOS_L3_MBM_TOTAL_EVENT_ID)) {
mbm_total_event.configurable = true;
resctrl_file_fflags_init("mbm_total_bytes_config",
RFTYPE_MON_INFO | RFTYPE_RES_CACHE);
}
if (resctrl_arch_is_evt_configurable(QOS_L3_MBM_LOCAL_EVENT_ID)) {
mbm_local_event.configurable = true;
resctrl_file_fflags_init("mbm_local_bytes_config",
RFTYPE_MON_INFO | RFTYPE_RES_CACHE);
}
if (resctrl_arch_is_mbm_local_enabled())
mba_mbps_default_event = QOS_L3_MBM_LOCAL_EVENT_ID;
else if (resctrl_arch_is_mbm_total_enabled())
mba_mbps_default_event = QOS_L3_MBM_TOTAL_EVENT_ID;
return 0;
}
void resctrl_mon_resource_exit(void)
{
struct rdt_resource *r = resctrl_arch_get_resource(RDT_RESOURCE_L3);
dom_data_exit(r);
}