linux/fs/resctrl/internal.h
Qinyun Tan 594902c986 x86,fs/resctrl: Remove inappropriate references to cacheinfo in the resctrl subsystem
In the resctrl subsystem's Sub-NUMA Cluster (SNC) mode, the rdt_mon_domain
structure representing a NUMA node relies on the cacheinfo interface
(rdt_mon_domain::ci) to store L3 cache information (e.g., shared_cpu_map)
for monitoring. The L3 cache information of a SNC NUMA node determines
which domains are summed for the "top level" L3-scoped events.

rdt_mon_domain::ci is initialized using the first online CPU of a NUMA
node. When this CPU goes offline, its shared_cpu_map is cleared to contain
only the offline CPU itself. Subsequently, attempting to read counters
via smp_call_on_cpu(offline_cpu) fails (and error ignored), returning
zero values for "top-level events" without any error indication.

Replace the cacheinfo references in struct rdt_mon_domain and struct
rmid_read with the cacheinfo ID (a unique identifier for the L3 cache).

rdt_domain_hdr::cpu_mask contains the online CPUs associated with that
domain. When reading "top-level events", select a CPU from
rdt_domain_hdr::cpu_mask and utilize its L3 shared_cpu_map to determine
valid CPUs for reading RMID counter via the MSR interface.

Considering all CPUs associated with the L3 cache improves the chances
of picking a housekeeping CPU on which the counter reading work can be
queued, avoiding an unnecessary IPI.

Fixes: 328ea68874 ("x86/resctrl: Prepare for new Sub-NUMA Cluster (SNC) monitor files")
Signed-off-by: Qinyun Tan <qinyuntan@linux.alibaba.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Reinette Chatre <reinette.chatre@intel.com>
Tested-by: Tony Luck <tony.luck@intel.com>
Link: https://lore.kernel.org/20250530182053.37502-2-qinyuntan@linux.alibaba.com
2025-06-16 21:06:12 +02:00

426 lines
12 KiB
C

/* SPDX-License-Identifier: GPL-2.0 */
#ifndef _FS_RESCTRL_INTERNAL_H
#define _FS_RESCTRL_INTERNAL_H
#include <linux/resctrl.h>
#include <linux/kernfs.h>
#include <linux/fs_context.h>
#include <linux/tick.h>
#define CQM_LIMBOCHECK_INTERVAL 1000
/**
* cpumask_any_housekeeping() - Choose any CPU in @mask, preferring those that
* aren't marked nohz_full
* @mask: The mask to pick a CPU from.
* @exclude_cpu:The CPU to avoid picking.
*
* Returns a CPU from @mask, but not @exclude_cpu. If there are housekeeping
* CPUs that don't use nohz_full, these are preferred. Pass
* RESCTRL_PICK_ANY_CPU to avoid excluding any CPUs.
*
* When a CPU is excluded, returns >= nr_cpu_ids if no CPUs are available.
*/
static inline unsigned int
cpumask_any_housekeeping(const struct cpumask *mask, int exclude_cpu)
{
unsigned int cpu;
/* Try to find a CPU that isn't nohz_full to use in preference */
if (tick_nohz_full_enabled()) {
cpu = cpumask_any_andnot_but(mask, tick_nohz_full_mask, exclude_cpu);
if (cpu < nr_cpu_ids)
return cpu;
}
return cpumask_any_but(mask, exclude_cpu);
}
struct rdt_fs_context {
struct kernfs_fs_context kfc;
bool enable_cdpl2;
bool enable_cdpl3;
bool enable_mba_mbps;
bool enable_debug;
};
static inline struct rdt_fs_context *rdt_fc2context(struct fs_context *fc)
{
struct kernfs_fs_context *kfc = fc->fs_private;
return container_of(kfc, struct rdt_fs_context, kfc);
}
/**
* struct mon_evt - Entry in the event list of a resource
* @evtid: event id
* @name: name of the event
* @configurable: true if the event is configurable
* @list: entry in &rdt_resource->evt_list
*/
struct mon_evt {
enum resctrl_event_id evtid;
char *name;
bool configurable;
struct list_head list;
};
/**
* struct mon_data - Monitoring details for each event file.
* @list: Member of the global @mon_data_kn_priv_list list.
* @rid: Resource id associated with the event file.
* @evtid: Event id associated with the event file.
* @sum: Set when event must be summed across multiple
* domains.
* @domid: When @sum is zero this is the domain to which
* the event file belongs. When @sum is one this
* is the id of the L3 cache that all domains to be
* summed share.
*
* Pointed to by the kernfs kn->priv field of monitoring event files.
* Readers and writers must hold rdtgroup_mutex.
*/
struct mon_data {
struct list_head list;
enum resctrl_res_level rid;
enum resctrl_event_id evtid;
int domid;
bool sum;
};
/**
* struct rmid_read - Data passed across smp_call*() to read event count.
* @rgrp: Resource group for which the counter is being read. If it is a parent
* resource group then its event count is summed with the count from all
* its child resource groups.
* @r: Resource describing the properties of the event being read.
* @d: Domain that the counter should be read from. If NULL then sum all
* domains in @r sharing L3 @ci.id
* @evtid: Which monitor event to read.
* @first: Initialize MBM counter when true.
* @ci_id: Cacheinfo id for L3. Only set when @d is NULL. Used when summing domains.
* @err: Error encountered when reading counter.
* @val: Returned value of event counter. If @rgrp is a parent resource group,
* @val includes the sum of event counts from its child resource groups.
* If @d is NULL, @val includes the sum of all domains in @r sharing @ci.id,
* (summed across child resource groups if @rgrp is a parent resource group).
* @arch_mon_ctx: Hardware monitor allocated for this read request (MPAM only).
*/
struct rmid_read {
struct rdtgroup *rgrp;
struct rdt_resource *r;
struct rdt_mon_domain *d;
enum resctrl_event_id evtid;
bool first;
unsigned int ci_id;
int err;
u64 val;
void *arch_mon_ctx;
};
extern struct list_head resctrl_schema_all;
extern bool resctrl_mounted;
enum rdt_group_type {
RDTCTRL_GROUP = 0,
RDTMON_GROUP,
RDT_NUM_GROUP,
};
/**
* enum rdtgrp_mode - Mode of a RDT resource group
* @RDT_MODE_SHAREABLE: This resource group allows sharing of its allocations
* @RDT_MODE_EXCLUSIVE: No sharing of this resource group's allocations allowed
* @RDT_MODE_PSEUDO_LOCKSETUP: Resource group will be used for Pseudo-Locking
* @RDT_MODE_PSEUDO_LOCKED: No sharing of this resource group's allocations
* allowed AND the allocations are Cache Pseudo-Locked
* @RDT_NUM_MODES: Total number of modes
*
* The mode of a resource group enables control over the allowed overlap
* between allocations associated with different resource groups (classes
* of service). User is able to modify the mode of a resource group by
* writing to the "mode" resctrl file associated with the resource group.
*
* The "shareable", "exclusive", and "pseudo-locksetup" modes are set by
* writing the appropriate text to the "mode" file. A resource group enters
* "pseudo-locked" mode after the schemata is written while the resource
* group is in "pseudo-locksetup" mode.
*/
enum rdtgrp_mode {
RDT_MODE_SHAREABLE = 0,
RDT_MODE_EXCLUSIVE,
RDT_MODE_PSEUDO_LOCKSETUP,
RDT_MODE_PSEUDO_LOCKED,
/* Must be last */
RDT_NUM_MODES,
};
/**
* struct mongroup - store mon group's data in resctrl fs.
* @mon_data_kn: kernfs node for the mon_data directory
* @parent: parent rdtgrp
* @crdtgrp_list: child rdtgroup node list
* @rmid: rmid for this rdtgroup
*/
struct mongroup {
struct kernfs_node *mon_data_kn;
struct rdtgroup *parent;
struct list_head crdtgrp_list;
u32 rmid;
};
/**
* struct rdtgroup - store rdtgroup's data in resctrl file system.
* @kn: kernfs node
* @rdtgroup_list: linked list for all rdtgroups
* @closid: closid for this rdtgroup
* @cpu_mask: CPUs assigned to this rdtgroup
* @flags: status bits
* @waitcount: how many cpus expect to find this
* group when they acquire rdtgroup_mutex
* @type: indicates type of this rdtgroup - either
* monitor only or ctrl_mon group
* @mon: mongroup related data
* @mode: mode of resource group
* @mba_mbps_event: input monitoring event id when mba_sc is enabled
* @plr: pseudo-locked region
*/
struct rdtgroup {
struct kernfs_node *kn;
struct list_head rdtgroup_list;
u32 closid;
struct cpumask cpu_mask;
int flags;
atomic_t waitcount;
enum rdt_group_type type;
struct mongroup mon;
enum rdtgrp_mode mode;
enum resctrl_event_id mba_mbps_event;
struct pseudo_lock_region *plr;
};
/* rdtgroup.flags */
#define RDT_DELETED 1
/* rftype.flags */
#define RFTYPE_FLAGS_CPUS_LIST 1
/*
* Define the file type flags for base and info directories.
*/
#define RFTYPE_INFO BIT(0)
#define RFTYPE_BASE BIT(1)
#define RFTYPE_CTRL BIT(4)
#define RFTYPE_MON BIT(5)
#define RFTYPE_TOP BIT(6)
#define RFTYPE_RES_CACHE BIT(8)
#define RFTYPE_RES_MB BIT(9)
#define RFTYPE_DEBUG BIT(10)
#define RFTYPE_CTRL_INFO (RFTYPE_INFO | RFTYPE_CTRL)
#define RFTYPE_MON_INFO (RFTYPE_INFO | RFTYPE_MON)
#define RFTYPE_TOP_INFO (RFTYPE_INFO | RFTYPE_TOP)
#define RFTYPE_CTRL_BASE (RFTYPE_BASE | RFTYPE_CTRL)
#define RFTYPE_MON_BASE (RFTYPE_BASE | RFTYPE_MON)
/* List of all resource groups */
extern struct list_head rdt_all_groups;
extern int max_name_width;
/**
* struct rftype - describe each file in the resctrl file system
* @name: File name
* @mode: Access mode
* @kf_ops: File operations
* @flags: File specific RFTYPE_FLAGS_* flags
* @fflags: File specific RFTYPE_* flags
* @seq_show: Show content of the file
* @write: Write to the file
*/
struct rftype {
char *name;
umode_t mode;
const struct kernfs_ops *kf_ops;
unsigned long flags;
unsigned long fflags;
int (*seq_show)(struct kernfs_open_file *of,
struct seq_file *sf, void *v);
/*
* write() is the generic write callback which maps directly to
* kernfs write operation and overrides all other operations.
* Maximum write size is determined by ->max_write_len.
*/
ssize_t (*write)(struct kernfs_open_file *of,
char *buf, size_t nbytes, loff_t off);
};
/**
* struct mbm_state - status for each MBM counter in each domain
* @prev_bw_bytes: Previous bytes value read for bandwidth calculation
* @prev_bw: The most recent bandwidth in MBps
*/
struct mbm_state {
u64 prev_bw_bytes;
u32 prev_bw;
};
extern struct mutex rdtgroup_mutex;
static inline const char *rdt_kn_name(const struct kernfs_node *kn)
{
return rcu_dereference_check(kn->name, lockdep_is_held(&rdtgroup_mutex));
}
extern struct rdtgroup rdtgroup_default;
extern struct dentry *debugfs_resctrl;
extern enum resctrl_event_id mba_mbps_default_event;
void rdt_last_cmd_clear(void);
void rdt_last_cmd_puts(const char *s);
__printf(1, 2)
void rdt_last_cmd_printf(const char *fmt, ...);
struct rdtgroup *rdtgroup_kn_lock_live(struct kernfs_node *kn);
void rdtgroup_kn_unlock(struct kernfs_node *kn);
int rdtgroup_kn_mode_restrict(struct rdtgroup *r, const char *name);
int rdtgroup_kn_mode_restore(struct rdtgroup *r, const char *name,
umode_t mask);
ssize_t rdtgroup_schemata_write(struct kernfs_open_file *of,
char *buf, size_t nbytes, loff_t off);
int rdtgroup_schemata_show(struct kernfs_open_file *of,
struct seq_file *s, void *v);
ssize_t rdtgroup_mba_mbps_event_write(struct kernfs_open_file *of,
char *buf, size_t nbytes, loff_t off);
int rdtgroup_mba_mbps_event_show(struct kernfs_open_file *of,
struct seq_file *s, void *v);
bool rdtgroup_cbm_overlaps(struct resctrl_schema *s, struct rdt_ctrl_domain *d,
unsigned long cbm, int closid, bool exclusive);
unsigned int rdtgroup_cbm_to_size(struct rdt_resource *r, struct rdt_ctrl_domain *d,
unsigned long cbm);
enum rdtgrp_mode rdtgroup_mode_by_closid(int closid);
int rdtgroup_tasks_assigned(struct rdtgroup *r);
int closids_supported(void);
void closid_free(int closid);
int alloc_rmid(u32 closid);
void free_rmid(u32 closid, u32 rmid);
void resctrl_mon_resource_exit(void);
void mon_event_count(void *info);
int rdtgroup_mondata_show(struct seq_file *m, void *arg);
void mon_event_read(struct rmid_read *rr, struct rdt_resource *r,
struct rdt_mon_domain *d, struct rdtgroup *rdtgrp,
cpumask_t *cpumask, int evtid, int first);
int resctrl_mon_resource_init(void);
void mbm_setup_overflow_handler(struct rdt_mon_domain *dom,
unsigned long delay_ms,
int exclude_cpu);
void mbm_handle_overflow(struct work_struct *work);
bool is_mba_sc(struct rdt_resource *r);
void cqm_setup_limbo_handler(struct rdt_mon_domain *dom, unsigned long delay_ms,
int exclude_cpu);
void cqm_handle_limbo(struct work_struct *work);
bool has_busy_rmid(struct rdt_mon_domain *d);
void __check_limbo(struct rdt_mon_domain *d, bool force_free);
void resctrl_file_fflags_init(const char *config, unsigned long fflags);
void rdt_staged_configs_clear(void);
bool closid_allocated(unsigned int closid);
int resctrl_find_cleanest_closid(void);
#ifdef CONFIG_RESCTRL_FS_PSEUDO_LOCK
int rdtgroup_locksetup_enter(struct rdtgroup *rdtgrp);
int rdtgroup_locksetup_exit(struct rdtgroup *rdtgrp);
bool rdtgroup_cbm_overlaps_pseudo_locked(struct rdt_ctrl_domain *d, unsigned long cbm);
bool rdtgroup_pseudo_locked_in_hierarchy(struct rdt_ctrl_domain *d);
int rdt_pseudo_lock_init(void);
void rdt_pseudo_lock_release(void);
int rdtgroup_pseudo_lock_create(struct rdtgroup *rdtgrp);
void rdtgroup_pseudo_lock_remove(struct rdtgroup *rdtgrp);
#else
static inline int rdtgroup_locksetup_enter(struct rdtgroup *rdtgrp)
{
return -EOPNOTSUPP;
}
static inline int rdtgroup_locksetup_exit(struct rdtgroup *rdtgrp)
{
return -EOPNOTSUPP;
}
static inline bool rdtgroup_cbm_overlaps_pseudo_locked(struct rdt_ctrl_domain *d, unsigned long cbm)
{
return false;
}
static inline bool rdtgroup_pseudo_locked_in_hierarchy(struct rdt_ctrl_domain *d)
{
return false;
}
static inline int rdt_pseudo_lock_init(void) { return 0; }
static inline void rdt_pseudo_lock_release(void) { }
static inline int rdtgroup_pseudo_lock_create(struct rdtgroup *rdtgrp)
{
return -EOPNOTSUPP;
}
static inline void rdtgroup_pseudo_lock_remove(struct rdtgroup *rdtgrp) { }
#endif /* CONFIG_RESCTRL_FS_PSEUDO_LOCK */
#endif /* _FS_RESCTRL_INTERNAL_H */