linux/drivers/thermal/qcom/qcom-spmi-temp-alarm.c
Anjelique Melendez 97d4d7742d thermal/drivers/qcom-spmi-temp-alarm: Add support for LITE PMIC peripherals
Add support for TEMP_ALARM LITE PMIC peripherals. This subtype
utilizes a pair of registers to configure a warning interrupt
threshold temperature and an automatic hardware shutdown
threshold temperature.

Co-developed-by: David Collins <david.collins@oss.qualcomm.com>
Signed-off-by: David Collins <david.collins@oss.qualcomm.com>
Signed-off-by: Anjelique Melendez <anjelique.melendez@oss.qualcomm.com>
Reviewed-by: Dmitry Baryshkov <dmitry.baryshkov@oss.qualcomm.com>
Link: https://lore.kernel.org/r/20250710224555.3047790-6-anjelique.melendez@oss.qualcomm.com
Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
2025-07-13 18:01:30 +02:00

906 lines
23 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (c) 2011-2015, 2017, 2020, The Linux Foundation. All rights reserved.
* Copyright (c) Qualcomm Technologies, Inc. and/or its subsidiaries.
*/
#include <linux/bitfield.h>
#include <linux/bitops.h>
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/iio/consumer.h>
#include <linux/interrupt.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/regmap.h>
#include <linux/thermal.h>
#include "../thermal_hwmon.h"
#define QPNP_TM_REG_DIG_MINOR 0x00
#define QPNP_TM_REG_DIG_MAJOR 0x01
#define QPNP_TM_REG_TYPE 0x04
#define QPNP_TM_REG_SUBTYPE 0x05
#define QPNP_TM_REG_STATUS 0x08
#define QPNP_TM_REG_IRQ_STATUS 0x10
#define QPNP_TM_REG_SHUTDOWN_CTRL1 0x40
#define QPNP_TM_REG_ALARM_CTRL 0x46
/* TEMP_DAC_STGx registers are only present for TEMP_GEN2 v2.0 */
#define QPNP_TM_REG_TEMP_DAC_STG1 0x47
#define QPNP_TM_REG_TEMP_DAC_STG2 0x48
#define QPNP_TM_REG_TEMP_DAC_STG3 0x49
#define QPNP_TM_REG_LITE_TEMP_CFG1 0x50
#define QPNP_TM_REG_LITE_TEMP_CFG2 0x51
#define QPNP_TM_TYPE 0x09
#define QPNP_TM_SUBTYPE_GEN1 0x08
#define QPNP_TM_SUBTYPE_GEN2 0x09
#define QPNP_TM_SUBTYPE_LITE 0xC0
#define STATUS_GEN1_STAGE_MASK GENMASK(1, 0)
#define STATUS_GEN2_STATE_MASK GENMASK(6, 4)
/* IRQ status only needed for TEMP_ALARM_LITE */
#define IRQ_STATUS_MASK BIT(0)
#define SHUTDOWN_CTRL1_OVERRIDE_STAGE2 BIT(6)
#define SHUTDOWN_CTRL1_THRESHOLD_MASK GENMASK(1, 0)
#define SHUTDOWN_CTRL1_RATE_25HZ BIT(3)
#define ALARM_CTRL_FORCE_ENABLE BIT(7)
#define LITE_TEMP_CFG_THRESHOLD_MASK GENMASK(3, 2)
#define THRESH_COUNT 4
#define STAGE_COUNT 3
enum overtemp_stage {
STAGE1 = 0,
STAGE2,
STAGE3,
};
/* Over-temperature trip point values in mC */
static const long temp_map_gen1[THRESH_COUNT][STAGE_COUNT] = {
{ 105000, 125000, 145000 },
{ 110000, 130000, 150000 },
{ 115000, 135000, 155000 },
{ 120000, 140000, 160000 },
};
static const long temp_map_gen2_v1[THRESH_COUNT][STAGE_COUNT] = {
{ 90000, 110000, 140000 },
{ 95000, 115000, 145000 },
{ 100000, 120000, 150000 },
{ 105000, 125000, 155000 },
};
#define TEMP_THRESH_STEP 5000 /* Threshold step: 5 C */
#define THRESH_MIN 0
#define THRESH_MAX 3
#define TEMP_STAGE_HYSTERESIS 2000
/*
* For TEMP_GEN2 v2.0, TEMP_DAC_STG1/2/3 registers are used to set the threshold
* for each stage independently.
* TEMP_DAC_STG* = 0 --> 80 C
* Each 8 step increase in TEMP_DAC_STG* value corresponds to 5 C (5000 mC).
*/
#define TEMP_DAC_MIN 80000
#define TEMP_DAC_SCALE_NUM 8
#define TEMP_DAC_SCALE_DEN 5000
#define TEMP_DAC_TEMP_TO_REG(temp) \
(((temp) - TEMP_DAC_MIN) * TEMP_DAC_SCALE_NUM / TEMP_DAC_SCALE_DEN)
#define TEMP_DAC_REG_TO_TEMP(reg) \
(TEMP_DAC_MIN + (reg) * TEMP_DAC_SCALE_DEN / TEMP_DAC_SCALE_NUM)
static const long temp_dac_max[STAGE_COUNT] = {
119375, 159375, 159375
};
/*
* TEMP_ALARM_LITE has two stages: warning and shutdown with independently
* configured threshold temperatures.
*/
static const long temp_lite_warning_map[THRESH_COUNT] = {
115000, 125000, 135000, 145000
};
static const long temp_lite_shutdown_map[THRESH_COUNT] = {
135000, 145000, 160000, 175000
};
/* Temperature in Milli Celsius reported during stage 0 if no ADC is present */
#define DEFAULT_TEMP 37000
struct qpnp_tm_chip;
struct spmi_temp_alarm_data {
const struct thermal_zone_device_ops *ops;
const long (*temp_map)[THRESH_COUNT][STAGE_COUNT];
int (*sync_thresholds)(struct qpnp_tm_chip *chip);
int (*get_temp_stage)(struct qpnp_tm_chip *chip);
int (*configure_trip_temps)(struct qpnp_tm_chip *chip);
};
struct qpnp_tm_chip {
struct regmap *map;
struct device *dev;
struct thermal_zone_device *tz_dev;
const struct spmi_temp_alarm_data *data;
unsigned int subtype;
long temp;
unsigned int stage;
unsigned int base;
unsigned int ntrips;
/* protects .thresh, .stage and chip registers */
struct mutex lock;
bool initialized;
bool require_stage2_shutdown;
long temp_thresh_map[STAGE_COUNT];
struct iio_channel *adc;
};
/* This array maps from GEN2 alarm state to GEN1 alarm stage */
static const unsigned int alarm_state_map[8] = {0, 1, 1, 2, 2, 3, 3, 3};
static int qpnp_tm_read(struct qpnp_tm_chip *chip, u16 addr, u8 *data)
{
unsigned int val;
int ret;
ret = regmap_read(chip->map, chip->base + addr, &val);
if (ret < 0)
return ret;
*data = val;
return 0;
}
static int qpnp_tm_write(struct qpnp_tm_chip *chip, u16 addr, u8 data)
{
return regmap_write(chip->map, chip->base + addr, data);
}
/**
* qpnp_tm_decode_temp() - return temperature in mC corresponding to the
* specified over-temperature stage
* @chip: Pointer to the qpnp_tm chip
* @stage: Over-temperature stage
*
* Return: temperature in mC
*/
static long qpnp_tm_decode_temp(struct qpnp_tm_chip *chip, unsigned int stage)
{
if (stage == 0 || stage > STAGE_COUNT)
return 0;
return chip->temp_thresh_map[stage - 1];
}
/**
* qpnp_tm_gen1_get_temp_stage() - return over-temperature stage
* @chip: Pointer to the qpnp_tm chip
*
* Return: stage on success, or errno on failure.
*/
static int qpnp_tm_gen1_get_temp_stage(struct qpnp_tm_chip *chip)
{
int ret;
u8 reg;
ret = qpnp_tm_read(chip, QPNP_TM_REG_STATUS, &reg);
if (ret < 0)
return ret;
return FIELD_GET(STATUS_GEN1_STAGE_MASK, reg);
}
/**
* qpnp_tm_gen2_get_temp_stage() - return over-temperature stage
* @chip: Pointer to the qpnp_tm chip
*
* Return: stage on success, or errno on failure.
*/
static int qpnp_tm_gen2_get_temp_stage(struct qpnp_tm_chip *chip)
{
int ret;
u8 reg;
ret = qpnp_tm_read(chip, QPNP_TM_REG_STATUS, &reg);
if (ret < 0)
return ret;
ret = FIELD_GET(STATUS_GEN2_STATE_MASK, reg);
return alarm_state_map[ret];
}
/**
* qpnp_tm_lite_get_temp_stage() - return over-temperature stage
* @chip: Pointer to the qpnp_tm chip
*
* Return: alarm interrupt state on success, or errno on failure.
*/
static int qpnp_tm_lite_get_temp_stage(struct qpnp_tm_chip *chip)
{
u8 reg = 0;
int ret;
ret = qpnp_tm_read(chip, QPNP_TM_REG_IRQ_STATUS, &reg);
if (ret < 0)
return ret;
return FIELD_GET(IRQ_STATUS_MASK, reg);
}
/*
* This function updates the internal temp value based on the
* current thermal stage and threshold as well as the previous stage
*/
static int qpnp_tm_update_temp_no_adc(struct qpnp_tm_chip *chip)
{
unsigned int stage_new, stage_old;
int ret;
WARN_ON(!mutex_is_locked(&chip->lock));
ret = chip->data->get_temp_stage(chip);
if (ret < 0)
return ret;
stage_new = ret;
stage_old = chip->stage;
if (stage_new > stage_old) {
/* increasing stage, use lower bound */
chip->temp = qpnp_tm_decode_temp(chip, stage_new)
+ TEMP_STAGE_HYSTERESIS;
} else if (stage_new < stage_old) {
/* decreasing stage, use upper bound */
chip->temp = qpnp_tm_decode_temp(chip, stage_new + 1)
- TEMP_STAGE_HYSTERESIS;
}
chip->stage = stage_new;
return 0;
}
static int qpnp_tm_get_temp(struct thermal_zone_device *tz, int *temp)
{
struct qpnp_tm_chip *chip = thermal_zone_device_priv(tz);
int ret, mili_celsius;
if (!temp)
return -EINVAL;
if (!chip->initialized) {
*temp = DEFAULT_TEMP;
return 0;
}
if (!chip->adc) {
mutex_lock(&chip->lock);
ret = qpnp_tm_update_temp_no_adc(chip);
mutex_unlock(&chip->lock);
if (ret < 0)
return ret;
} else {
ret = iio_read_channel_processed(chip->adc, &mili_celsius);
if (ret < 0)
return ret;
chip->temp = mili_celsius;
}
*temp = chip->temp;
return 0;
}
static int qpnp_tm_update_critical_trip_temp(struct qpnp_tm_chip *chip,
int temp)
{
long stage2_threshold_min = (*chip->data->temp_map)[THRESH_MIN][STAGE2];
long stage2_threshold_max = (*chip->data->temp_map)[THRESH_MAX][STAGE2];
bool disable_stage2_shutdown = false;
u8 reg, threshold;
WARN_ON(!mutex_is_locked(&chip->lock));
/*
* Default: Stage 2 and Stage 3 shutdown enabled, thresholds at
* lowest threshold set, monitoring at 25Hz
*/
reg = SHUTDOWN_CTRL1_RATE_25HZ;
if (temp == THERMAL_TEMP_INVALID ||
temp < stage2_threshold_min) {
threshold = THRESH_MIN;
goto skip;
}
if (temp <= stage2_threshold_max) {
threshold = THRESH_MAX -
((stage2_threshold_max - temp) /
TEMP_THRESH_STEP);
disable_stage2_shutdown = true;
} else {
threshold = THRESH_MAX;
if (chip->adc)
disable_stage2_shutdown = true;
else
dev_warn(chip->dev,
"No ADC is configured and critical temperature %d mC is above the maximum stage 2 threshold of %ld mC! Configuring stage 2 shutdown at %ld mC.\n",
temp, stage2_threshold_max, stage2_threshold_max);
}
skip:
memcpy(chip->temp_thresh_map, chip->data->temp_map[threshold],
sizeof(chip->temp_thresh_map));
reg |= threshold;
if (disable_stage2_shutdown && !chip->require_stage2_shutdown)
reg |= SHUTDOWN_CTRL1_OVERRIDE_STAGE2;
return qpnp_tm_write(chip, QPNP_TM_REG_SHUTDOWN_CTRL1, reg);
}
static int qpnp_tm_set_trip_temp(struct thermal_zone_device *tz,
const struct thermal_trip *trip, int temp)
{
struct qpnp_tm_chip *chip = thermal_zone_device_priv(tz);
int ret;
if (trip->type != THERMAL_TRIP_CRITICAL)
return 0;
mutex_lock(&chip->lock);
ret = qpnp_tm_update_critical_trip_temp(chip, temp);
mutex_unlock(&chip->lock);
return ret;
}
static const struct thermal_zone_device_ops qpnp_tm_sensor_ops = {
.get_temp = qpnp_tm_get_temp,
.set_trip_temp = qpnp_tm_set_trip_temp,
};
static int qpnp_tm_gen2_rev2_set_temp_thresh(struct qpnp_tm_chip *chip, unsigned int trip, int temp)
{
int ret, temp_cfg;
u8 reg;
WARN_ON(!mutex_is_locked(&chip->lock));
if (trip >= STAGE_COUNT) {
dev_err(chip->dev, "invalid TEMP_DAC trip = %d\n", trip);
return -EINVAL;
} else if (temp < TEMP_DAC_MIN || temp > temp_dac_max[trip]) {
dev_err(chip->dev, "invalid TEMP_DAC temp = %d\n", temp);
return -EINVAL;
}
reg = TEMP_DAC_TEMP_TO_REG(temp);
temp_cfg = TEMP_DAC_REG_TO_TEMP(reg);
ret = qpnp_tm_write(chip, QPNP_TM_REG_TEMP_DAC_STG1 + trip, reg);
if (ret < 0) {
dev_err(chip->dev, "TEMP_DAC_STG write failed, ret=%d\n", ret);
return ret;
}
chip->temp_thresh_map[trip] = temp_cfg;
return 0;
}
static int qpnp_tm_gen2_rev2_set_trip_temp(struct thermal_zone_device *tz,
const struct thermal_trip *trip, int temp)
{
unsigned int trip_index = THERMAL_TRIP_PRIV_TO_INT(trip->priv);
struct qpnp_tm_chip *chip = thermal_zone_device_priv(tz);
int ret;
mutex_lock(&chip->lock);
ret = qpnp_tm_gen2_rev2_set_temp_thresh(chip, trip_index, temp);
mutex_unlock(&chip->lock);
return ret;
}
static const struct thermal_zone_device_ops qpnp_tm_gen2_rev2_sensor_ops = {
.get_temp = qpnp_tm_get_temp,
.set_trip_temp = qpnp_tm_gen2_rev2_set_trip_temp,
};
static int qpnp_tm_lite_set_temp_thresh(struct qpnp_tm_chip *chip, unsigned int trip, int temp)
{
int ret, temp_cfg, i;
const long *temp_map;
u8 reg, thresh;
u16 addr;
WARN_ON(!mutex_is_locked(&chip->lock));
if (trip >= STAGE_COUNT) {
dev_err(chip->dev, "invalid TEMP_LITE trip = %d\n", trip);
return -EINVAL;
}
switch (trip) {
case 0:
temp_map = temp_lite_warning_map;
addr = QPNP_TM_REG_LITE_TEMP_CFG1;
break;
case 1:
/*
* The second trip point is purely in software to facilitate
* a controlled shutdown after the warning threshold is crossed
* but before the automatic hardware shutdown threshold is
* crossed.
*/
return 0;
case 2:
temp_map = temp_lite_shutdown_map;
addr = QPNP_TM_REG_LITE_TEMP_CFG2;
break;
default:
return 0;
}
if (temp < temp_map[THRESH_MIN] || temp > temp_map[THRESH_MAX]) {
dev_err(chip->dev, "invalid TEMP_LITE temp = %d\n", temp);
return -EINVAL;
}
thresh = 0;
temp_cfg = temp_map[thresh];
for (i = THRESH_MAX; i >= THRESH_MIN; i--) {
if (temp >= temp_map[i]) {
thresh = i;
temp_cfg = temp_map[i];
break;
}
}
if (temp_cfg == chip->temp_thresh_map[trip])
return 0;
ret = qpnp_tm_read(chip, addr, &reg);
if (ret < 0) {
dev_err(chip->dev, "LITE_TEMP_CFG read failed, ret=%d\n", ret);
return ret;
}
reg &= ~LITE_TEMP_CFG_THRESHOLD_MASK;
reg |= FIELD_PREP(LITE_TEMP_CFG_THRESHOLD_MASK, thresh);
ret = qpnp_tm_write(chip, addr, reg);
if (ret < 0) {
dev_err(chip->dev, "LITE_TEMP_CFG write failed, ret=%d\n", ret);
return ret;
}
chip->temp_thresh_map[trip] = temp_cfg;
return 0;
}
static int qpnp_tm_lite_set_trip_temp(struct thermal_zone_device *tz,
const struct thermal_trip *trip, int temp)
{
unsigned int trip_index = THERMAL_TRIP_PRIV_TO_INT(trip->priv);
struct qpnp_tm_chip *chip = thermal_zone_device_priv(tz);
int ret;
mutex_lock(&chip->lock);
ret = qpnp_tm_lite_set_temp_thresh(chip, trip_index, temp);
mutex_unlock(&chip->lock);
return ret;
}
static const struct thermal_zone_device_ops qpnp_tm_lite_sensor_ops = {
.get_temp = qpnp_tm_get_temp,
.set_trip_temp = qpnp_tm_lite_set_trip_temp,
};
static irqreturn_t qpnp_tm_isr(int irq, void *data)
{
struct qpnp_tm_chip *chip = data;
thermal_zone_device_update(chip->tz_dev, THERMAL_EVENT_UNSPECIFIED);
return IRQ_HANDLED;
}
/* Read the hardware default stage threshold temperatures */
static int qpnp_tm_sync_thresholds(struct qpnp_tm_chip *chip)
{
u8 reg, threshold;
int ret;
ret = qpnp_tm_read(chip, QPNP_TM_REG_SHUTDOWN_CTRL1, &reg);
if (ret < 0)
return ret;
threshold = reg & SHUTDOWN_CTRL1_THRESHOLD_MASK;
memcpy(chip->temp_thresh_map, chip->data->temp_map[threshold],
sizeof(chip->temp_thresh_map));
return ret;
}
static int qpnp_tm_configure_trip_temp(struct qpnp_tm_chip *chip)
{
int crit_temp, ret;
ret = thermal_zone_get_crit_temp(chip->tz_dev, &crit_temp);
if (ret)
crit_temp = THERMAL_TEMP_INVALID;
mutex_lock(&chip->lock);
ret = qpnp_tm_update_critical_trip_temp(chip, crit_temp);
mutex_unlock(&chip->lock);
return ret;
}
/* Configure TEMP_DAC registers based on DT thermal_zone trips */
static int qpnp_tm_gen2_rev2_configure_trip_temps_cb(struct thermal_trip *trip, void *data)
{
struct qpnp_tm_chip *chip = data;
int ret;
mutex_lock(&chip->lock);
trip->priv = THERMAL_INT_TO_TRIP_PRIV(chip->ntrips);
ret = qpnp_tm_gen2_rev2_set_temp_thresh(chip, chip->ntrips, trip->temperature);
chip->ntrips++;
mutex_unlock(&chip->lock);
return ret;
}
static int qpnp_tm_gen2_rev2_configure_trip_temps(struct qpnp_tm_chip *chip)
{
int ret, i;
ret = thermal_zone_for_each_trip(chip->tz_dev,
qpnp_tm_gen2_rev2_configure_trip_temps_cb, chip);
if (ret < 0)
return ret;
/* Verify that trips are strictly increasing. */
for (i = 1; i < STAGE_COUNT; i++) {
if (chip->temp_thresh_map[i] <= chip->temp_thresh_map[i - 1]) {
dev_err(chip->dev, "Threshold %d=%ld <= threshold %d=%ld\n",
i, chip->temp_thresh_map[i], i - 1,
chip->temp_thresh_map[i - 1]);
return -EINVAL;
}
}
return 0;
}
/* Read the hardware default TEMP_DAC stage threshold temperatures */
static int qpnp_tm_gen2_rev2_sync_thresholds(struct qpnp_tm_chip *chip)
{
int ret, i;
u8 reg = 0;
for (i = 0; i < STAGE_COUNT; i++) {
ret = qpnp_tm_read(chip, QPNP_TM_REG_TEMP_DAC_STG1 + i, &reg);
if (ret < 0)
return ret;
chip->temp_thresh_map[i] = TEMP_DAC_REG_TO_TEMP(reg);
}
return 0;
}
/* Configure TEMP_LITE registers based on DT thermal_zone trips */
static int qpnp_tm_lite_configure_trip_temps_cb(struct thermal_trip *trip, void *data)
{
struct qpnp_tm_chip *chip = data;
int ret;
mutex_lock(&chip->lock);
trip->priv = THERMAL_INT_TO_TRIP_PRIV(chip->ntrips);
ret = qpnp_tm_lite_set_temp_thresh(chip, chip->ntrips, trip->temperature);
chip->ntrips++;
mutex_unlock(&chip->lock);
return ret;
}
static int qpnp_tm_lite_configure_trip_temps(struct qpnp_tm_chip *chip)
{
int ret;
ret = thermal_zone_for_each_trip(chip->tz_dev, qpnp_tm_lite_configure_trip_temps_cb, chip);
if (ret < 0)
return ret;
/* Verify that trips are strictly increasing. */
if (chip->temp_thresh_map[2] <= chip->temp_thresh_map[0]) {
dev_err(chip->dev, "Threshold 2=%ld <= threshold 0=%ld\n",
chip->temp_thresh_map[2], chip->temp_thresh_map[0]);
return -EINVAL;
}
return 0;
}
/* Read the hardware default TEMP_LITE stage threshold temperatures */
static int qpnp_tm_lite_sync_thresholds(struct qpnp_tm_chip *chip)
{
int ret, thresh;
u8 reg = 0;
/*
* Store the warning trip temp in temp_thresh_map[0] and the shutdown trip
* temp in temp_thresh_map[2]. The second trip point is purely in software
* to facilitate a controlled shutdown after the warning threshold is
* crossed but before the automatic hardware shutdown threshold is
* crossed. Thus, there is no register to read for the second trip
* point.
*/
ret = qpnp_tm_read(chip, QPNP_TM_REG_LITE_TEMP_CFG1, &reg);
if (ret < 0)
return ret;
thresh = FIELD_GET(LITE_TEMP_CFG_THRESHOLD_MASK, reg);
chip->temp_thresh_map[0] = temp_lite_warning_map[thresh];
ret = qpnp_tm_read(chip, QPNP_TM_REG_LITE_TEMP_CFG2, &reg);
if (ret < 0)
return ret;
thresh = FIELD_GET(LITE_TEMP_CFG_THRESHOLD_MASK, reg);
chip->temp_thresh_map[2] = temp_lite_shutdown_map[thresh];
return 0;
}
static const struct spmi_temp_alarm_data spmi_temp_alarm_data = {
.ops = &qpnp_tm_sensor_ops,
.temp_map = &temp_map_gen1,
.sync_thresholds = qpnp_tm_sync_thresholds,
.configure_trip_temps = qpnp_tm_configure_trip_temp,
.get_temp_stage = qpnp_tm_gen1_get_temp_stage,
};
static const struct spmi_temp_alarm_data spmi_temp_alarm_gen2_data = {
.ops = &qpnp_tm_sensor_ops,
.temp_map = &temp_map_gen1,
.sync_thresholds = qpnp_tm_sync_thresholds,
.configure_trip_temps = qpnp_tm_configure_trip_temp,
.get_temp_stage = qpnp_tm_gen2_get_temp_stage,
};
static const struct spmi_temp_alarm_data spmi_temp_alarm_gen2_rev1_data = {
.ops = &qpnp_tm_sensor_ops,
.temp_map = &temp_map_gen2_v1,
.sync_thresholds = qpnp_tm_sync_thresholds,
.configure_trip_temps = qpnp_tm_configure_trip_temp,
.get_temp_stage = qpnp_tm_gen2_get_temp_stage,
};
static const struct spmi_temp_alarm_data spmi_temp_alarm_gen2_rev2_data = {
.ops = &qpnp_tm_gen2_rev2_sensor_ops,
.sync_thresholds = qpnp_tm_gen2_rev2_sync_thresholds,
.configure_trip_temps = qpnp_tm_gen2_rev2_configure_trip_temps,
.get_temp_stage = qpnp_tm_gen2_get_temp_stage,
};
static const struct spmi_temp_alarm_data spmi_temp_alarm_lite_data = {
.ops = &qpnp_tm_lite_sensor_ops,
.sync_thresholds = qpnp_tm_lite_sync_thresholds,
.configure_trip_temps = qpnp_tm_lite_configure_trip_temps,
.get_temp_stage = qpnp_tm_lite_get_temp_stage,
};
/*
* This function initializes the internal temp value based on only the
* current thermal stage and threshold.
*/
static int qpnp_tm_threshold_init(struct qpnp_tm_chip *chip)
{
int ret;
ret = chip->data->sync_thresholds(chip);
if (ret < 0)
return ret;
ret = chip->data->get_temp_stage(chip);
if (ret < 0)
return ret;
chip->stage = ret;
chip->temp = DEFAULT_TEMP;
if (chip->stage)
chip->temp = qpnp_tm_decode_temp(chip, chip->stage);
return ret;
}
/* This function initializes threshold control and disables shutdown override. */
static int qpnp_tm_init(struct qpnp_tm_chip *chip)
{
int ret;
u8 reg;
ret = chip->data->configure_trip_temps(chip);
if (ret < 0)
return ret;
/* Enable the thermal alarm PMIC module in always-on mode. */
reg = ALARM_CTRL_FORCE_ENABLE;
ret = qpnp_tm_write(chip, QPNP_TM_REG_ALARM_CTRL, reg);
chip->initialized = true;
return ret;
}
static int qpnp_tm_probe(struct platform_device *pdev)
{
struct qpnp_tm_chip *chip;
struct device_node *node;
u8 type, subtype, dig_major, dig_minor;
u32 res, dig_revision;
int ret, irq;
node = pdev->dev.of_node;
chip = devm_kzalloc(&pdev->dev, sizeof(*chip), GFP_KERNEL);
if (!chip)
return -ENOMEM;
chip->dev = &pdev->dev;
mutex_init(&chip->lock);
chip->map = dev_get_regmap(pdev->dev.parent, NULL);
if (!chip->map)
return -ENXIO;
ret = of_property_read_u32(node, "reg", &res);
if (ret < 0)
return ret;
irq = platform_get_irq(pdev, 0);
if (irq < 0)
return irq;
/* ADC based measurements are optional */
chip->adc = devm_iio_channel_get(&pdev->dev, "thermal");
if (IS_ERR(chip->adc)) {
ret = PTR_ERR(chip->adc);
chip->adc = NULL;
if (ret == -EPROBE_DEFER)
return ret;
}
chip->base = res;
ret = qpnp_tm_read(chip, QPNP_TM_REG_TYPE, &type);
if (ret < 0)
return dev_err_probe(&pdev->dev, ret,
"could not read type\n");
ret = qpnp_tm_read(chip, QPNP_TM_REG_SUBTYPE, &subtype);
if (ret < 0)
return dev_err_probe(&pdev->dev, ret,
"could not read subtype\n");
ret = qpnp_tm_read(chip, QPNP_TM_REG_DIG_MAJOR, &dig_major);
if (ret < 0)
return dev_err_probe(&pdev->dev, ret,
"could not read dig_major\n");
ret = qpnp_tm_read(chip, QPNP_TM_REG_DIG_MINOR, &dig_minor);
if (ret < 0)
return dev_err_probe(&pdev->dev, ret,
"could not read dig_minor\n");
if (type != QPNP_TM_TYPE || (subtype != QPNP_TM_SUBTYPE_GEN1
&& subtype != QPNP_TM_SUBTYPE_GEN2
&& subtype != QPNP_TM_SUBTYPE_LITE)) {
dev_err(&pdev->dev, "invalid type 0x%02x or subtype 0x%02x\n",
type, subtype);
return -ENODEV;
}
chip->subtype = subtype;
if (subtype == QPNP_TM_SUBTYPE_GEN1)
chip->data = &spmi_temp_alarm_data;
else if (subtype == QPNP_TM_SUBTYPE_GEN2 && dig_major == 0)
chip->data = &spmi_temp_alarm_gen2_data;
else if (subtype == QPNP_TM_SUBTYPE_GEN2 && dig_major == 1)
chip->data = &spmi_temp_alarm_gen2_rev1_data;
else if (subtype == QPNP_TM_SUBTYPE_GEN2 && dig_major >= 2)
chip->data = &spmi_temp_alarm_gen2_rev2_data;
else if (subtype == QPNP_TM_SUBTYPE_LITE)
chip->data = &spmi_temp_alarm_lite_data;
else
return -ENODEV;
if (chip->subtype == QPNP_TM_SUBTYPE_GEN2) {
dig_revision = (dig_major << 8) | dig_minor;
/*
* Check if stage 2 automatic partial shutdown must remain
* enabled to avoid potential repeated faults upon reaching
* over-temperature stage 3.
*/
switch (dig_revision) {
case 0x0001:
case 0x0002:
case 0x0100:
case 0x0101:
chip->require_stage2_shutdown = true;
break;
}
}
ret = qpnp_tm_threshold_init(chip);
if (ret < 0)
return dev_err_probe(&pdev->dev, ret, "threshold init failed\n");
/*
* Register the sensor before initializing the hardware to be able to
* read the trip points. get_temp() returns the default temperature
* before the hardware initialization is completed.
*/
chip->tz_dev = devm_thermal_of_zone_register(
&pdev->dev, 0, chip, chip->data->ops);
if (IS_ERR(chip->tz_dev))
return dev_err_probe(&pdev->dev, PTR_ERR(chip->tz_dev),
"failed to register sensor\n");
ret = qpnp_tm_init(chip);
if (ret < 0)
return dev_err_probe(&pdev->dev, ret, "init failed\n");
devm_thermal_add_hwmon_sysfs(&pdev->dev, chip->tz_dev);
ret = devm_request_threaded_irq(&pdev->dev, irq, NULL, qpnp_tm_isr,
IRQF_ONESHOT, node->name, chip);
if (ret < 0)
return ret;
thermal_zone_device_update(chip->tz_dev, THERMAL_EVENT_UNSPECIFIED);
return 0;
}
static const struct of_device_id qpnp_tm_match_table[] = {
{ .compatible = "qcom,spmi-temp-alarm" },
{ }
};
MODULE_DEVICE_TABLE(of, qpnp_tm_match_table);
static struct platform_driver qpnp_tm_driver = {
.driver = {
.name = "spmi-temp-alarm",
.of_match_table = qpnp_tm_match_table,
},
.probe = qpnp_tm_probe,
};
module_platform_driver(qpnp_tm_driver);
MODULE_ALIAS("platform:spmi-temp-alarm");
MODULE_DESCRIPTION("QPNP PMIC Temperature Alarm driver");
MODULE_LICENSE("GPL v2");