linux/drivers/pwm/pwm-rzg2l-gpt.c
Uwe Kleine-König e373991eb9 pwm: rzg2l-gpt: Accept requests for too high period length
The period setting is shared for each pair of PWM channels. So if the
twin channel is in use, the period must not be changed. According to the
usual practise to pick the next smaller possible period, accept a
request for a period that is bigger than the unchangable value.

Signed-off-by: Uwe Kleine-König <u.kleine-koenig@baylibre.com>
Tested-by: Biju Das <biju.das.jz@bp.renesas.com>
Link: https://lore.kernel.org/r/20250423095715.2952692-2-u.kleine-koenig@baylibre.com
Signed-off-by: Uwe Kleine-König <ukleinek@kernel.org>
2025-04-30 09:01:03 +02:00

447 lines
13 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Renesas RZ/G2L General PWM Timer (GPT) driver
*
* Copyright (C) 2025 Renesas Electronics Corporation
*
* Hardware manual for this IP can be found here
* https://www.renesas.com/eu/en/document/mah/rzg2l-group-rzg2lc-group-users-manual-hardware-0?language=en
*
* Limitations:
* - Counter must be stopped before modifying Mode and Prescaler.
* - When PWM is disabled, the output is driven to inactive.
* - While the hardware supports both polarities, the driver (for now)
* only handles normal polarity.
* - General PWM Timer (GPT) has 8 HW channels for PWM operations and
* each HW channel have 2 IOs.
* - Each IO is modelled as an independent PWM channel.
* - When both channels are used, disabling the channel on one stops the
* other.
* - When both channels are used, the period of both IOs in the HW channel
* must be same (for now).
*/
#include <linux/bitfield.h>
#include <linux/clk.h>
#include <linux/io.h>
#include <linux/limits.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/pwm.h>
#include <linux/reset.h>
#include <linux/time.h>
#include <linux/units.h>
#define RZG2L_GET_CH(hwpwm) ((hwpwm) / 2)
#define RZG2L_GET_CH_OFFS(ch) (0x100 * (ch))
#define RZG2L_GTCR(ch) (0x2c + RZG2L_GET_CH_OFFS(ch))
#define RZG2L_GTUDDTYC(ch) (0x30 + RZG2L_GET_CH_OFFS(ch))
#define RZG2L_GTIOR(ch) (0x34 + RZG2L_GET_CH_OFFS(ch))
#define RZG2L_GTBER(ch) (0x40 + RZG2L_GET_CH_OFFS(ch))
#define RZG2L_GTCNT(ch) (0x48 + RZG2L_GET_CH_OFFS(ch))
#define RZG2L_GTCCR(ch, sub_ch) (0x4c + RZG2L_GET_CH_OFFS(ch) + 4 * (sub_ch))
#define RZG2L_GTPR(ch) (0x64 + RZG2L_GET_CH_OFFS(ch))
#define RZG2L_GTCR_CST BIT(0)
#define RZG2L_GTCR_MD GENMASK(18, 16)
#define RZG2L_GTCR_TPCS GENMASK(26, 24)
#define RZG2L_GTCR_MD_SAW_WAVE_PWM_MODE FIELD_PREP(RZG2L_GTCR_MD, 0)
#define RZG2L_GTUDDTYC_UP BIT(0)
#define RZG2L_GTUDDTYC_UDF BIT(1)
#define RZG2L_GTUDDTYC_UP_COUNTING (RZG2L_GTUDDTYC_UP | RZG2L_GTUDDTYC_UDF)
#define RZG2L_GTIOR_GTIOA GENMASK(4, 0)
#define RZG2L_GTIOR_GTIOB GENMASK(20, 16)
#define RZG2L_GTIOR_GTIOx(sub_ch) ((sub_ch) ? RZG2L_GTIOR_GTIOB : RZG2L_GTIOR_GTIOA)
#define RZG2L_GTIOR_OAE BIT(8)
#define RZG2L_GTIOR_OBE BIT(24)
#define RZG2L_GTIOR_OxE(sub_ch) ((sub_ch) ? RZG2L_GTIOR_OBE : RZG2L_GTIOR_OAE)
#define RZG2L_INIT_OUT_HI_OUT_HI_END_TOGGLE 0x1b
#define RZG2L_GTIOR_GTIOA_OUT_HI_END_TOGGLE_CMP_MATCH \
(RZG2L_INIT_OUT_HI_OUT_HI_END_TOGGLE | RZG2L_GTIOR_OAE)
#define RZG2L_GTIOR_GTIOB_OUT_HI_END_TOGGLE_CMP_MATCH \
(FIELD_PREP(RZG2L_GTIOR_GTIOB, RZG2L_INIT_OUT_HI_OUT_HI_END_TOGGLE) | RZG2L_GTIOR_OBE)
#define RZG2L_GTIOR_GTIOx_OUT_HI_END_TOGGLE_CMP_MATCH(sub_ch) \
((sub_ch) ? RZG2L_GTIOR_GTIOB_OUT_HI_END_TOGGLE_CMP_MATCH : \
RZG2L_GTIOR_GTIOA_OUT_HI_END_TOGGLE_CMP_MATCH)
#define RZG2L_MAX_HW_CHANNELS 8
#define RZG2L_CHANNELS_PER_IO 2
#define RZG2L_MAX_PWM_CHANNELS (RZG2L_MAX_HW_CHANNELS * RZG2L_CHANNELS_PER_IO)
#define RZG2L_MAX_SCALE_FACTOR 1024
#define RZG2L_MAX_TICKS ((u64)U32_MAX * RZG2L_MAX_SCALE_FACTOR)
struct rzg2l_gpt_chip {
void __iomem *mmio;
struct mutex lock; /* lock to protect shared channel resources */
unsigned long rate_khz;
u32 period_ticks[RZG2L_MAX_HW_CHANNELS];
u32 channel_request_count[RZG2L_MAX_HW_CHANNELS];
u32 channel_enable_count[RZG2L_MAX_HW_CHANNELS];
};
static inline struct rzg2l_gpt_chip *to_rzg2l_gpt_chip(struct pwm_chip *chip)
{
return pwmchip_get_drvdata(chip);
}
static inline unsigned int rzg2l_gpt_subchannel(unsigned int hwpwm)
{
return hwpwm & 0x1;
}
static void rzg2l_gpt_write(struct rzg2l_gpt_chip *rzg2l_gpt, u32 reg, u32 data)
{
writel(data, rzg2l_gpt->mmio + reg);
}
static u32 rzg2l_gpt_read(struct rzg2l_gpt_chip *rzg2l_gpt, u32 reg)
{
return readl(rzg2l_gpt->mmio + reg);
}
static void rzg2l_gpt_modify(struct rzg2l_gpt_chip *rzg2l_gpt, u32 reg, u32 clr,
u32 set)
{
rzg2l_gpt_write(rzg2l_gpt, reg,
(rzg2l_gpt_read(rzg2l_gpt, reg) & ~clr) | set);
}
static u8 rzg2l_gpt_calculate_prescale(struct rzg2l_gpt_chip *rzg2l_gpt,
u64 period_ticks)
{
u32 prescaled_period_ticks;
u8 prescale;
prescaled_period_ticks = period_ticks >> 32;
if (prescaled_period_ticks >= 256)
prescale = 5;
else
prescale = (fls(prescaled_period_ticks) + 1) / 2;
return prescale;
}
static int rzg2l_gpt_request(struct pwm_chip *chip, struct pwm_device *pwm)
{
struct rzg2l_gpt_chip *rzg2l_gpt = to_rzg2l_gpt_chip(chip);
u32 ch = RZG2L_GET_CH(pwm->hwpwm);
guard(mutex)(&rzg2l_gpt->lock);
rzg2l_gpt->channel_request_count[ch]++;
return 0;
}
static void rzg2l_gpt_free(struct pwm_chip *chip, struct pwm_device *pwm)
{
struct rzg2l_gpt_chip *rzg2l_gpt = to_rzg2l_gpt_chip(chip);
u32 ch = RZG2L_GET_CH(pwm->hwpwm);
guard(mutex)(&rzg2l_gpt->lock);
rzg2l_gpt->channel_request_count[ch]--;
}
static bool rzg2l_gpt_is_ch_enabled(struct rzg2l_gpt_chip *rzg2l_gpt, u8 hwpwm)
{
u8 ch = RZG2L_GET_CH(hwpwm);
u32 val;
val = rzg2l_gpt_read(rzg2l_gpt, RZG2L_GTCR(ch));
if (!(val & RZG2L_GTCR_CST))
return false;
val = rzg2l_gpt_read(rzg2l_gpt, RZG2L_GTIOR(ch));
return val & RZG2L_GTIOR_OxE(rzg2l_gpt_subchannel(hwpwm));
}
/* Caller holds the lock while calling rzg2l_gpt_enable() */
static void rzg2l_gpt_enable(struct rzg2l_gpt_chip *rzg2l_gpt,
struct pwm_device *pwm)
{
u8 sub_ch = rzg2l_gpt_subchannel(pwm->hwpwm);
u32 val = RZG2L_GTIOR_GTIOx(sub_ch) | RZG2L_GTIOR_OxE(sub_ch);
u8 ch = RZG2L_GET_CH(pwm->hwpwm);
/* Enable pin output */
rzg2l_gpt_modify(rzg2l_gpt, RZG2L_GTIOR(ch), val,
RZG2L_GTIOR_GTIOx_OUT_HI_END_TOGGLE_CMP_MATCH(sub_ch));
if (!rzg2l_gpt->channel_enable_count[ch])
rzg2l_gpt_modify(rzg2l_gpt, RZG2L_GTCR(ch), 0, RZG2L_GTCR_CST);
rzg2l_gpt->channel_enable_count[ch]++;
}
/* Caller holds the lock while calling rzg2l_gpt_disable() */
static void rzg2l_gpt_disable(struct rzg2l_gpt_chip *rzg2l_gpt,
struct pwm_device *pwm)
{
u8 sub_ch = rzg2l_gpt_subchannel(pwm->hwpwm);
u8 ch = RZG2L_GET_CH(pwm->hwpwm);
/* Stop count, Output low on GTIOCx pin when counting stops */
rzg2l_gpt->channel_enable_count[ch]--;
if (!rzg2l_gpt->channel_enable_count[ch])
rzg2l_gpt_modify(rzg2l_gpt, RZG2L_GTCR(ch), RZG2L_GTCR_CST, 0);
/* Disable pin output */
rzg2l_gpt_modify(rzg2l_gpt, RZG2L_GTIOR(ch), RZG2L_GTIOR_OxE(sub_ch), 0);
}
static u64 rzg2l_gpt_calculate_period_or_duty(struct rzg2l_gpt_chip *rzg2l_gpt,
u32 val, u8 prescale)
{
u64 tmp;
/*
* The calculation doesn't overflow an u64 because prescale ≤ 5 and so
* tmp = val << (2 * prescale) * USEC_PER_SEC
* < 2^32 * 2^10 * 10^6
* < 2^32 * 2^10 * 2^20
* = 2^62
*/
tmp = (u64)val << (2 * prescale);
tmp *= USEC_PER_SEC;
return DIV64_U64_ROUND_UP(tmp, rzg2l_gpt->rate_khz);
}
static int rzg2l_gpt_get_state(struct pwm_chip *chip, struct pwm_device *pwm,
struct pwm_state *state)
{
struct rzg2l_gpt_chip *rzg2l_gpt = to_rzg2l_gpt_chip(chip);
state->enabled = rzg2l_gpt_is_ch_enabled(rzg2l_gpt, pwm->hwpwm);
if (state->enabled) {
u32 sub_ch = rzg2l_gpt_subchannel(pwm->hwpwm);
u32 ch = RZG2L_GET_CH(pwm->hwpwm);
u8 prescale;
u32 val;
val = rzg2l_gpt_read(rzg2l_gpt, RZG2L_GTCR(ch));
prescale = FIELD_GET(RZG2L_GTCR_TPCS, val);
val = rzg2l_gpt_read(rzg2l_gpt, RZG2L_GTPR(ch));
state->period = rzg2l_gpt_calculate_period_or_duty(rzg2l_gpt, val, prescale);
val = rzg2l_gpt_read(rzg2l_gpt, RZG2L_GTCCR(ch, sub_ch));
state->duty_cycle = rzg2l_gpt_calculate_period_or_duty(rzg2l_gpt, val, prescale);
if (state->duty_cycle > state->period)
state->duty_cycle = state->period;
}
state->polarity = PWM_POLARITY_NORMAL;
return 0;
}
static u32 rzg2l_gpt_calculate_pv_or_dc(u64 period_or_duty_cycle, u8 prescale)
{
return min_t(u64, DIV_ROUND_DOWN_ULL(period_or_duty_cycle, 1 << (2 * prescale)),
U32_MAX);
}
/* Caller holds the lock while calling rzg2l_gpt_config() */
static int rzg2l_gpt_config(struct pwm_chip *chip, struct pwm_device *pwm,
const struct pwm_state *state)
{
struct rzg2l_gpt_chip *rzg2l_gpt = to_rzg2l_gpt_chip(chip);
u8 sub_ch = rzg2l_gpt_subchannel(pwm->hwpwm);
u8 ch = RZG2L_GET_CH(pwm->hwpwm);
u64 period_ticks, duty_ticks;
unsigned long pv, dc;
u8 prescale;
/* Limit period/duty cycle to max value supported by the HW */
period_ticks = mul_u64_u64_div_u64(state->period, rzg2l_gpt->rate_khz, USEC_PER_SEC);
if (period_ticks > RZG2L_MAX_TICKS)
period_ticks = RZG2L_MAX_TICKS;
/*
* GPT counter is shared by the two IOs of a single channel, so
* prescale and period can NOT be modified when there are multiple IOs
* in use with different settings.
*/
if (rzg2l_gpt->channel_request_count[ch] > 1) {
if (period_ticks < rzg2l_gpt->period_ticks[ch])
return -EBUSY;
else
period_ticks = rzg2l_gpt->period_ticks[ch];
}
prescale = rzg2l_gpt_calculate_prescale(rzg2l_gpt, period_ticks);
pv = rzg2l_gpt_calculate_pv_or_dc(period_ticks, prescale);
duty_ticks = mul_u64_u64_div_u64(state->duty_cycle, rzg2l_gpt->rate_khz, USEC_PER_SEC);
if (duty_ticks > period_ticks)
duty_ticks = period_ticks;
dc = rzg2l_gpt_calculate_pv_or_dc(duty_ticks, prescale);
/*
* GPT counter is shared by multiple channels, we cache the period ticks
* from the first enabled channel and use the same value for both
* channels.
*/
rzg2l_gpt->period_ticks[ch] = period_ticks;
/*
* Counter must be stopped before modifying mode, prescaler, timer
* counter and buffer enable registers. These registers are shared
* between both channels. So allow updating these registers only for the
* first enabled channel.
*/
if (rzg2l_gpt->channel_enable_count[ch] <= 1) {
rzg2l_gpt_modify(rzg2l_gpt, RZG2L_GTCR(ch), RZG2L_GTCR_CST, 0);
/* GPT set operating mode (saw-wave up-counting) */
rzg2l_gpt_modify(rzg2l_gpt, RZG2L_GTCR(ch), RZG2L_GTCR_MD,
RZG2L_GTCR_MD_SAW_WAVE_PWM_MODE);
/* Set count direction */
rzg2l_gpt_write(rzg2l_gpt, RZG2L_GTUDDTYC(ch), RZG2L_GTUDDTYC_UP_COUNTING);
/* Select count clock */
rzg2l_gpt_modify(rzg2l_gpt, RZG2L_GTCR(ch), RZG2L_GTCR_TPCS,
FIELD_PREP(RZG2L_GTCR_TPCS, prescale));
/* Set period */
rzg2l_gpt_write(rzg2l_gpt, RZG2L_GTPR(ch), pv);
}
/* Set duty cycle */
rzg2l_gpt_write(rzg2l_gpt, RZG2L_GTCCR(ch, sub_ch), dc);
if (rzg2l_gpt->channel_enable_count[ch] <= 1) {
/* Set initial value for counter */
rzg2l_gpt_write(rzg2l_gpt, RZG2L_GTCNT(ch), 0);
/* Set no buffer operation */
rzg2l_gpt_write(rzg2l_gpt, RZG2L_GTBER(ch), 0);
/* Restart the counter after updating the registers */
rzg2l_gpt_modify(rzg2l_gpt, RZG2L_GTCR(ch),
RZG2L_GTCR_CST, RZG2L_GTCR_CST);
}
return 0;
}
static int rzg2l_gpt_apply(struct pwm_chip *chip, struct pwm_device *pwm,
const struct pwm_state *state)
{
struct rzg2l_gpt_chip *rzg2l_gpt = to_rzg2l_gpt_chip(chip);
bool enabled = pwm->state.enabled;
int ret;
if (state->polarity != PWM_POLARITY_NORMAL)
return -EINVAL;
guard(mutex)(&rzg2l_gpt->lock);
if (!state->enabled) {
if (enabled)
rzg2l_gpt_disable(rzg2l_gpt, pwm);
return 0;
}
ret = rzg2l_gpt_config(chip, pwm, state);
if (!ret && !enabled)
rzg2l_gpt_enable(rzg2l_gpt, pwm);
return ret;
}
static const struct pwm_ops rzg2l_gpt_ops = {
.request = rzg2l_gpt_request,
.free = rzg2l_gpt_free,
.get_state = rzg2l_gpt_get_state,
.apply = rzg2l_gpt_apply,
};
static int rzg2l_gpt_probe(struct platform_device *pdev)
{
struct rzg2l_gpt_chip *rzg2l_gpt;
struct device *dev = &pdev->dev;
struct reset_control *rstc;
struct pwm_chip *chip;
unsigned long rate;
struct clk *clk;
int ret;
chip = devm_pwmchip_alloc(dev, RZG2L_MAX_PWM_CHANNELS, sizeof(*rzg2l_gpt));
if (IS_ERR(chip))
return PTR_ERR(chip);
rzg2l_gpt = to_rzg2l_gpt_chip(chip);
rzg2l_gpt->mmio = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(rzg2l_gpt->mmio))
return PTR_ERR(rzg2l_gpt->mmio);
rstc = devm_reset_control_get_exclusive_deasserted(dev, NULL);
if (IS_ERR(rstc))
return dev_err_probe(dev, PTR_ERR(rstc), "Cannot deassert reset control\n");
clk = devm_clk_get_enabled(dev, NULL);
if (IS_ERR(clk))
return dev_err_probe(dev, PTR_ERR(clk), "Cannot get clock\n");
ret = devm_clk_rate_exclusive_get(dev, clk);
if (ret)
return ret;
rate = clk_get_rate(clk);
if (!rate)
return dev_err_probe(dev, -EINVAL, "The gpt clk rate is 0");
/*
* Refuse clk rates > 1 GHz to prevent overflow later for computing
* period and duty cycle.
*/
if (rate > NSEC_PER_SEC)
return dev_err_probe(dev, -EINVAL, "The gpt clk rate is > 1GHz");
/*
* Rate is in MHz and is always integer for peripheral clk
* 2^32 * 2^10 (prescalar) * 10^6 (rate_khz) < 2^64
* So make sure rate is multiple of 1000.
*/
rzg2l_gpt->rate_khz = rate / KILO;
if (rzg2l_gpt->rate_khz * KILO != rate)
return dev_err_probe(dev, -EINVAL, "Rate is not multiple of 1000");
mutex_init(&rzg2l_gpt->lock);
chip->ops = &rzg2l_gpt_ops;
ret = devm_pwmchip_add(dev, chip);
if (ret)
return dev_err_probe(dev, ret, "Failed to add PWM chip\n");
return 0;
}
static const struct of_device_id rzg2l_gpt_of_table[] = {
{ .compatible = "renesas,rzg2l-gpt", },
{ /* Sentinel */ }
};
MODULE_DEVICE_TABLE(of, rzg2l_gpt_of_table);
static struct platform_driver rzg2l_gpt_driver = {
.driver = {
.name = "pwm-rzg2l-gpt",
.of_match_table = rzg2l_gpt_of_table,
},
.probe = rzg2l_gpt_probe,
};
module_platform_driver(rzg2l_gpt_driver);
MODULE_AUTHOR("Biju Das <biju.das.jz@bp.renesas.com>");
MODULE_DESCRIPTION("Renesas RZ/G2L General PWM Timer (GPT) Driver");
MODULE_LICENSE("GPL");