linux/drivers/pwm/pwm-mc33xs2410.c
Dimitri Fedrau 28517c8b62 pwm: mc33xs2410: add hwmon support
Support for hwmon is provided by a separate driver residing in hwmon
subsystem which is implemented as auxiliary device. Add handling of this
device.

Signed-off-by: Dimitri Fedrau <dimitri.fedrau@liebherr.com>
Link: https://lore.kernel.org/r/20250723-mc33xs2410-hwmon-v5-1-f62aab71cd59@liebherr.com
Signed-off-by: Uwe Kleine-König <ukleinek@kernel.org>
2025-07-24 09:20:39 +02:00

407 lines
11 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2024 Liebherr-Electronics and Drives GmbH
*
* Reference Manual : https://www.nxp.com/docs/en/data-sheet/MC33XS2410.pdf
*
* Limitations:
* - Supports frequencies between 0.5Hz and 2048Hz with following steps:
* - 0.5 Hz steps from 0.5 Hz to 32 Hz
* - 2 Hz steps from 2 Hz to 128 Hz
* - 8 Hz steps from 8 Hz to 512 Hz
* - 32 Hz steps from 32 Hz to 2048 Hz
* - Cannot generate a 0 % duty cycle.
* - Always produces low output if disabled.
* - Configuration isn't atomic. When changing polarity, duty cycle or period
* the data is taken immediately, counters not being affected, resulting in a
* behavior of the output pin that is neither the old nor the new state,
* rather something in between.
*/
#define DEFAULT_SYMBOL_NAMESPACE "PWM_MC33XS2410"
#include <linux/auxiliary_bus.h>
#include <linux/bitfield.h>
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/math64.h>
#include <linux/mc33xs2410.h>
#include <linux/minmax.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/pwm.h>
#include <linux/spi/spi.h>
#define MC33XS2410_GLB_CTRL 0x00
#define MC33XS2410_GLB_CTRL_MODE GENMASK(7, 6)
#define MC33XS2410_GLB_CTRL_MODE_NORMAL FIELD_PREP(MC33XS2410_GLB_CTRL_MODE, 1)
#define MC33XS2410_PWM_CTRL1 0x05
/* chan in { 1 ... 4 } */
#define MC33XS2410_PWM_CTRL1_POL_INV(chan) BIT((chan) + 1)
#define MC33XS2410_PWM_CTRL3 0x07
/* chan in { 1 ... 4 } */
#define MC33XS2410_PWM_CTRL3_EN(chan) BIT(4 + (chan) - 1)
/* chan in { 1 ... 4 } */
#define MC33XS2410_PWM_FREQ(chan) (0x08 + (chan) - 1)
#define MC33XS2410_PWM_FREQ_STEP GENMASK(7, 6)
#define MC33XS2410_PWM_FREQ_COUNT GENMASK(5, 0)
/* chan in { 1 ... 4 } */
#define MC33XS2410_PWM_DC(chan) (0x0c + (chan) - 1)
#define MC33XS2410_WDT 0x14
#define MC33XS2410_PWM_MIN_PERIOD 488282
/* step in { 0 ... 3 } */
#define MC33XS2410_PWM_MAX_PERIOD(step) (2000000000 >> (2 * (step)))
#define MC33XS2410_FRAME_IN_ADDR GENMASK(15, 8)
#define MC33XS2410_FRAME_IN_DATA GENMASK(7, 0)
#define MC33XS2410_FRAME_IN_ADDR_WR BIT(7)
#define MC33XS2410_FRAME_IN_DATA_RD BIT(7)
#define MC33XS2410_FRAME_OUT_DATA GENMASK(13, 0)
#define MC33XS2410_MAX_TRANSFERS 5
static int mc33xs2410_write_regs(struct spi_device *spi, u8 *reg, u8 *val,
unsigned int len)
{
u16 tx[MC33XS2410_MAX_TRANSFERS];
int i;
if (len > MC33XS2410_MAX_TRANSFERS)
return -EINVAL;
for (i = 0; i < len; i++)
tx[i] = FIELD_PREP(MC33XS2410_FRAME_IN_DATA, val[i]) |
FIELD_PREP(MC33XS2410_FRAME_IN_ADDR,
MC33XS2410_FRAME_IN_ADDR_WR | reg[i]);
return spi_write(spi, tx, len * 2);
}
static int mc33xs2410_read_regs(struct spi_device *spi, u8 *reg, u8 flag,
u16 *val, unsigned int len)
{
u16 tx[MC33XS2410_MAX_TRANSFERS];
u16 rx[MC33XS2410_MAX_TRANSFERS];
struct spi_transfer t = {
.tx_buf = tx,
.rx_buf = rx,
};
int i, ret;
len++;
if (len > MC33XS2410_MAX_TRANSFERS)
return -EINVAL;
t.len = len * 2;
for (i = 0; i < len - 1; i++)
tx[i] = FIELD_PREP(MC33XS2410_FRAME_IN_DATA, flag) |
FIELD_PREP(MC33XS2410_FRAME_IN_ADDR, reg[i]);
ret = spi_sync_transfer(spi, &t, 1);
if (ret < 0)
return ret;
for (i = 1; i < len; i++)
val[i - 1] = FIELD_GET(MC33XS2410_FRAME_OUT_DATA, rx[i]);
return 0;
}
static int mc33xs2410_write_reg(struct spi_device *spi, u8 reg, u8 val)
{
return mc33xs2410_write_regs(spi, &reg, &val, 1);
}
static int mc33xs2410_read_reg(struct spi_device *spi, u8 reg, u16 *val, u8 flag)
{
return mc33xs2410_read_regs(spi, &reg, flag, val, 1);
}
int mc33xs2410_read_reg_ctrl(struct spi_device *spi, u8 reg, u16 *val)
{
return mc33xs2410_read_reg(spi, reg, val, MC33XS2410_FRAME_IN_DATA_RD);
}
EXPORT_SYMBOL_GPL(mc33xs2410_read_reg_ctrl);
int mc33xs2410_read_reg_diag(struct spi_device *spi, u8 reg, u16 *val)
{
return mc33xs2410_read_reg(spi, reg, val, 0);
}
EXPORT_SYMBOL_GPL(mc33xs2410_read_reg_diag);
int mc33xs2410_modify_reg(struct spi_device *spi, u8 reg, u8 mask, u8 val)
{
u16 tmp;
int ret;
ret = mc33xs2410_read_reg_ctrl(spi, reg, &tmp);
if (ret < 0)
return ret;
tmp &= ~mask;
tmp |= val & mask;
return mc33xs2410_write_reg(spi, reg, tmp);
}
EXPORT_SYMBOL_GPL(mc33xs2410_modify_reg);
static u8 mc33xs2410_pwm_get_freq(u64 period)
{
u8 step, count;
/*
* Check which step [0 .. 3] is appropriate for the given period. The
* period ranges for the different step values overlap. Prefer big step
* values as these allow more finegrained period and duty cycle
* selection.
*/
switch (period) {
case MC33XS2410_PWM_MIN_PERIOD ... MC33XS2410_PWM_MAX_PERIOD(3):
step = 3;
break;
case MC33XS2410_PWM_MAX_PERIOD(3) + 1 ... MC33XS2410_PWM_MAX_PERIOD(2):
step = 2;
break;
case MC33XS2410_PWM_MAX_PERIOD(2) + 1 ... MC33XS2410_PWM_MAX_PERIOD(1):
step = 1;
break;
case MC33XS2410_PWM_MAX_PERIOD(1) + 1 ... MC33XS2410_PWM_MAX_PERIOD(0):
step = 0;
break;
}
/*
* Round up here because a higher count results in a higher frequency
* and so a smaller period.
*/
count = DIV_ROUND_UP((u32)MC33XS2410_PWM_MAX_PERIOD(step), (u32)period);
return FIELD_PREP(MC33XS2410_PWM_FREQ_STEP, step) |
FIELD_PREP(MC33XS2410_PWM_FREQ_COUNT, count - 1);
}
static u64 mc33xs2410_pwm_get_period(u8 reg)
{
u32 doubled_freq, code, doubled_steps;
/*
* steps:
* - 0 = 0.5Hz
* - 1 = 2Hz
* - 2 = 8Hz
* - 3 = 32Hz
* frequency = (code + 1) x steps.
*
* To avoid losing precision in case steps value is zero, scale the
* steps value for now by two and keep it in mind when calculating the
* period that the frequency had been doubled.
*/
doubled_steps = 1 << (FIELD_GET(MC33XS2410_PWM_FREQ_STEP, reg) * 2);
code = FIELD_GET(MC33XS2410_PWM_FREQ_COUNT, reg);
doubled_freq = (code + 1) * doubled_steps;
/* Convert frequency to period, considering the doubled frequency. */
return DIV_ROUND_UP(2 * NSEC_PER_SEC, doubled_freq);
}
/*
* The hardware cannot generate a 0% relative duty cycle for normal and inversed
* polarity. For normal polarity, the channel must be disabled, the device then
* emits a constant low signal.
* For inverted polarity, the channel must be enabled, the polarity must be set
* to normal and the relative duty cylce must be set to 100%. The device then
* emits a constant high signal.
*/
static int mc33xs2410_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm,
const struct pwm_state *state)
{
struct spi_device *spi = pwmchip_get_drvdata(chip);
u8 reg[4] = {
MC33XS2410_PWM_FREQ(pwm->hwpwm + 1),
MC33XS2410_PWM_DC(pwm->hwpwm + 1),
MC33XS2410_PWM_CTRL1,
MC33XS2410_PWM_CTRL3
};
u64 period, duty_cycle;
int ret, rel_dc;
u16 rd_val[2];
u8 wr_val[4];
u8 mask;
period = min(state->period, MC33XS2410_PWM_MAX_PERIOD(0));
if (period < MC33XS2410_PWM_MIN_PERIOD)
return -EINVAL;
ret = mc33xs2410_read_regs(spi, &reg[2], MC33XS2410_FRAME_IN_DATA_RD, rd_val, 2);
if (ret < 0)
return ret;
/* Frequency */
wr_val[0] = mc33xs2410_pwm_get_freq(period);
/* Continue calculations with the possibly truncated period */
period = mc33xs2410_pwm_get_period(wr_val[0]);
/* Duty cycle */
duty_cycle = min(period, state->duty_cycle);
rel_dc = div64_u64(duty_cycle * 256, period) - 1;
if (rel_dc >= 0)
wr_val[1] = rel_dc;
else if (state->polarity == PWM_POLARITY_NORMAL)
wr_val[1] = 0;
else
wr_val[1] = 255;
/* Polarity */
mask = MC33XS2410_PWM_CTRL1_POL_INV(pwm->hwpwm + 1);
if (state->polarity == PWM_POLARITY_INVERSED && rel_dc >= 0)
wr_val[2] = rd_val[0] | mask;
else
wr_val[2] = rd_val[0] & ~mask;
/* Enable */
mask = MC33XS2410_PWM_CTRL3_EN(pwm->hwpwm + 1);
if (state->enabled &&
!(state->polarity == PWM_POLARITY_NORMAL && rel_dc < 0))
wr_val[3] = rd_val[1] | mask;
else
wr_val[3] = rd_val[1] & ~mask;
return mc33xs2410_write_regs(spi, reg, wr_val, 4);
}
static int mc33xs2410_pwm_get_state(struct pwm_chip *chip,
struct pwm_device *pwm,
struct pwm_state *state)
{
struct spi_device *spi = pwmchip_get_drvdata(chip);
u8 reg[4] = {
MC33XS2410_PWM_FREQ(pwm->hwpwm + 1),
MC33XS2410_PWM_DC(pwm->hwpwm + 1),
MC33XS2410_PWM_CTRL1,
MC33XS2410_PWM_CTRL3,
};
u16 val[4];
int ret;
ret = mc33xs2410_read_regs(spi, reg, MC33XS2410_FRAME_IN_DATA_RD, val,
ARRAY_SIZE(reg));
if (ret < 0)
return ret;
state->period = mc33xs2410_pwm_get_period(val[0]);
state->polarity = (val[2] & MC33XS2410_PWM_CTRL1_POL_INV(pwm->hwpwm + 1)) ?
PWM_POLARITY_INVERSED : PWM_POLARITY_NORMAL;
state->enabled = !!(val[3] & MC33XS2410_PWM_CTRL3_EN(pwm->hwpwm + 1));
state->duty_cycle = DIV_ROUND_UP_ULL((val[1] + 1) * state->period, 256);
return 0;
}
static const struct pwm_ops mc33xs2410_pwm_ops = {
.apply = mc33xs2410_pwm_apply,
.get_state = mc33xs2410_pwm_get_state,
};
static int mc33xs2410_reset(struct device *dev)
{
struct gpio_desc *reset_gpio;
reset_gpio = devm_gpiod_get_optional(dev, "reset", GPIOD_OUT_LOW);
if (IS_ERR_OR_NULL(reset_gpio))
return PTR_ERR_OR_ZERO(reset_gpio);
/* Wake-up time */
fsleep(10000);
return 0;
}
static int mc33xs2410_probe(struct spi_device *spi)
{
struct device *dev = &spi->dev;
struct auxiliary_device *adev;
struct pwm_chip *chip;
int ret;
chip = devm_pwmchip_alloc(dev, 4, 0);
if (IS_ERR(chip))
return PTR_ERR(chip);
spi->bits_per_word = 16;
spi->mode |= SPI_CS_WORD;
ret = spi_setup(spi);
if (ret < 0)
return ret;
pwmchip_set_drvdata(chip, spi);
chip->ops = &mc33xs2410_pwm_ops;
/*
* Deasserts the reset of the device. Shouldn't change the output signal
* if the device was setup prior to probing.
*/
ret = mc33xs2410_reset(dev);
if (ret)
return ret;
/*
* Disable watchdog and keep in mind that the watchdog won't trigger a
* reset of the machine when running into an timeout, instead the
* control over the outputs is handed over to the INx input logic
* signals of the device. Disabling it here just deactivates this
* feature until a proper solution is found.
*/
ret = mc33xs2410_write_reg(spi, MC33XS2410_WDT, 0x0);
if (ret < 0)
return dev_err_probe(dev, ret, "Failed to disable watchdog\n");
/* Transition to normal mode */
ret = mc33xs2410_modify_reg(spi, MC33XS2410_GLB_CTRL,
MC33XS2410_GLB_CTRL_MODE,
MC33XS2410_GLB_CTRL_MODE_NORMAL);
if (ret < 0)
return dev_err_probe(dev, ret,
"Failed to transition to normal mode\n");
ret = devm_pwmchip_add(dev, chip);
if (ret < 0)
return dev_err_probe(dev, ret, "Failed to add pwm chip\n");
adev = devm_auxiliary_device_create(dev, "hwmon", NULL);
if (!adev)
return dev_err_probe(dev, -ENODEV, "Failed to register hwmon device\n");
return 0;
}
static const struct spi_device_id mc33xs2410_spi_id[] = {
{ "mc33xs2410" },
{ }
};
MODULE_DEVICE_TABLE(spi, mc33xs2410_spi_id);
static const struct of_device_id mc33xs2410_of_match[] = {
{ .compatible = "nxp,mc33xs2410" },
{ }
};
MODULE_DEVICE_TABLE(of, mc33xs2410_of_match);
static struct spi_driver mc33xs2410_driver = {
.driver = {
.name = "mc33xs2410-pwm",
.of_match_table = mc33xs2410_of_match,
},
.probe = mc33xs2410_probe,
.id_table = mc33xs2410_spi_id,
};
module_spi_driver(mc33xs2410_driver);
MODULE_DESCRIPTION("NXP MC33XS2410 high-side switch driver");
MODULE_AUTHOR("Dimitri Fedrau <dimitri.fedrau@liebherr.com>");
MODULE_LICENSE("GPL");