linux/drivers/nvme/common/auth.c
Yi Zhang 44e479d720 nvme: spelling fixes
Fix various spelling errors in comments.

Signed-off-by: Yi Zhang <yi.zhang@redhat.com>
Reviewed-by: Chaitanya Kulkarni <kch@nvidia.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
2025-06-04 10:23:28 +02:00

801 lines
19 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (c) 2020 Hannes Reinecke, SUSE Linux
*/
#include <linux/module.h>
#include <linux/crc32.h>
#include <linux/base64.h>
#include <linux/prandom.h>
#include <linux/scatterlist.h>
#include <linux/unaligned.h>
#include <crypto/hash.h>
#include <crypto/dh.h>
#include <crypto/hkdf.h>
#include <linux/nvme.h>
#include <linux/nvme-auth.h>
#define HKDF_MAX_HASHLEN 64
static u32 nvme_dhchap_seqnum;
static DEFINE_MUTEX(nvme_dhchap_mutex);
u32 nvme_auth_get_seqnum(void)
{
u32 seqnum;
mutex_lock(&nvme_dhchap_mutex);
if (!nvme_dhchap_seqnum)
nvme_dhchap_seqnum = get_random_u32();
else {
nvme_dhchap_seqnum++;
if (!nvme_dhchap_seqnum)
nvme_dhchap_seqnum++;
}
seqnum = nvme_dhchap_seqnum;
mutex_unlock(&nvme_dhchap_mutex);
return seqnum;
}
EXPORT_SYMBOL_GPL(nvme_auth_get_seqnum);
static struct nvme_auth_dhgroup_map {
const char name[16];
const char kpp[16];
} dhgroup_map[] = {
[NVME_AUTH_DHGROUP_NULL] = {
.name = "null", .kpp = "null" },
[NVME_AUTH_DHGROUP_2048] = {
.name = "ffdhe2048", .kpp = "ffdhe2048(dh)" },
[NVME_AUTH_DHGROUP_3072] = {
.name = "ffdhe3072", .kpp = "ffdhe3072(dh)" },
[NVME_AUTH_DHGROUP_4096] = {
.name = "ffdhe4096", .kpp = "ffdhe4096(dh)" },
[NVME_AUTH_DHGROUP_6144] = {
.name = "ffdhe6144", .kpp = "ffdhe6144(dh)" },
[NVME_AUTH_DHGROUP_8192] = {
.name = "ffdhe8192", .kpp = "ffdhe8192(dh)" },
};
const char *nvme_auth_dhgroup_name(u8 dhgroup_id)
{
if (dhgroup_id >= ARRAY_SIZE(dhgroup_map))
return NULL;
return dhgroup_map[dhgroup_id].name;
}
EXPORT_SYMBOL_GPL(nvme_auth_dhgroup_name);
const char *nvme_auth_dhgroup_kpp(u8 dhgroup_id)
{
if (dhgroup_id >= ARRAY_SIZE(dhgroup_map))
return NULL;
return dhgroup_map[dhgroup_id].kpp;
}
EXPORT_SYMBOL_GPL(nvme_auth_dhgroup_kpp);
u8 nvme_auth_dhgroup_id(const char *dhgroup_name)
{
int i;
if (!dhgroup_name || !strlen(dhgroup_name))
return NVME_AUTH_DHGROUP_INVALID;
for (i = 0; i < ARRAY_SIZE(dhgroup_map); i++) {
if (!strlen(dhgroup_map[i].name))
continue;
if (!strncmp(dhgroup_map[i].name, dhgroup_name,
strlen(dhgroup_map[i].name)))
return i;
}
return NVME_AUTH_DHGROUP_INVALID;
}
EXPORT_SYMBOL_GPL(nvme_auth_dhgroup_id);
static struct nvme_dhchap_hash_map {
int len;
const char hmac[15];
const char digest[8];
} hash_map[] = {
[NVME_AUTH_HASH_SHA256] = {
.len = 32,
.hmac = "hmac(sha256)",
.digest = "sha256",
},
[NVME_AUTH_HASH_SHA384] = {
.len = 48,
.hmac = "hmac(sha384)",
.digest = "sha384",
},
[NVME_AUTH_HASH_SHA512] = {
.len = 64,
.hmac = "hmac(sha512)",
.digest = "sha512",
},
};
const char *nvme_auth_hmac_name(u8 hmac_id)
{
if (hmac_id >= ARRAY_SIZE(hash_map))
return NULL;
return hash_map[hmac_id].hmac;
}
EXPORT_SYMBOL_GPL(nvme_auth_hmac_name);
const char *nvme_auth_digest_name(u8 hmac_id)
{
if (hmac_id >= ARRAY_SIZE(hash_map))
return NULL;
return hash_map[hmac_id].digest;
}
EXPORT_SYMBOL_GPL(nvme_auth_digest_name);
u8 nvme_auth_hmac_id(const char *hmac_name)
{
int i;
if (!hmac_name || !strlen(hmac_name))
return NVME_AUTH_HASH_INVALID;
for (i = 0; i < ARRAY_SIZE(hash_map); i++) {
if (!strlen(hash_map[i].hmac))
continue;
if (!strncmp(hash_map[i].hmac, hmac_name,
strlen(hash_map[i].hmac)))
return i;
}
return NVME_AUTH_HASH_INVALID;
}
EXPORT_SYMBOL_GPL(nvme_auth_hmac_id);
size_t nvme_auth_hmac_hash_len(u8 hmac_id)
{
if (hmac_id >= ARRAY_SIZE(hash_map))
return 0;
return hash_map[hmac_id].len;
}
EXPORT_SYMBOL_GPL(nvme_auth_hmac_hash_len);
u32 nvme_auth_key_struct_size(u32 key_len)
{
struct nvme_dhchap_key key;
return struct_size(&key, key, key_len);
}
EXPORT_SYMBOL_GPL(nvme_auth_key_struct_size);
struct nvme_dhchap_key *nvme_auth_extract_key(unsigned char *secret,
u8 key_hash)
{
struct nvme_dhchap_key *key;
unsigned char *p;
u32 crc;
int ret, key_len;
size_t allocated_len = strlen(secret);
/* Secret might be affixed with a ':' */
p = strrchr(secret, ':');
if (p)
allocated_len = p - secret;
key = nvme_auth_alloc_key(allocated_len, 0);
if (!key)
return ERR_PTR(-ENOMEM);
key_len = base64_decode(secret, allocated_len, key->key);
if (key_len < 0) {
pr_debug("base64 key decoding error %d\n",
key_len);
ret = key_len;
goto out_free_secret;
}
if (key_len != 36 && key_len != 52 &&
key_len != 68) {
pr_err("Invalid key len %d\n", key_len);
ret = -EINVAL;
goto out_free_secret;
}
/* The last four bytes is the CRC in little-endian format */
key_len -= 4;
/*
* The linux implementation doesn't do pre- and post-increments,
* so we have to do it manually.
*/
crc = ~crc32(~0, key->key, key_len);
if (get_unaligned_le32(key->key + key_len) != crc) {
pr_err("key crc mismatch (key %08x, crc %08x)\n",
get_unaligned_le32(key->key + key_len), crc);
ret = -EKEYREJECTED;
goto out_free_secret;
}
key->len = key_len;
key->hash = key_hash;
return key;
out_free_secret:
nvme_auth_free_key(key);
return ERR_PTR(ret);
}
EXPORT_SYMBOL_GPL(nvme_auth_extract_key);
struct nvme_dhchap_key *nvme_auth_alloc_key(u32 len, u8 hash)
{
u32 num_bytes = nvme_auth_key_struct_size(len);
struct nvme_dhchap_key *key = kzalloc(num_bytes, GFP_KERNEL);
if (key) {
key->len = len;
key->hash = hash;
}
return key;
}
EXPORT_SYMBOL_GPL(nvme_auth_alloc_key);
void nvme_auth_free_key(struct nvme_dhchap_key *key)
{
if (!key)
return;
kfree_sensitive(key);
}
EXPORT_SYMBOL_GPL(nvme_auth_free_key);
struct nvme_dhchap_key *nvme_auth_transform_key(
struct nvme_dhchap_key *key, char *nqn)
{
const char *hmac_name;
struct crypto_shash *key_tfm;
SHASH_DESC_ON_STACK(shash, key_tfm);
struct nvme_dhchap_key *transformed_key;
int ret, key_len;
if (!key) {
pr_warn("No key specified\n");
return ERR_PTR(-ENOKEY);
}
if (key->hash == 0) {
key_len = nvme_auth_key_struct_size(key->len);
transformed_key = kmemdup(key, key_len, GFP_KERNEL);
if (!transformed_key)
return ERR_PTR(-ENOMEM);
return transformed_key;
}
hmac_name = nvme_auth_hmac_name(key->hash);
if (!hmac_name) {
pr_warn("Invalid key hash id %d\n", key->hash);
return ERR_PTR(-EINVAL);
}
key_tfm = crypto_alloc_shash(hmac_name, 0, 0);
if (IS_ERR(key_tfm))
return ERR_CAST(key_tfm);
key_len = crypto_shash_digestsize(key_tfm);
transformed_key = nvme_auth_alloc_key(key_len, key->hash);
if (!transformed_key) {
ret = -ENOMEM;
goto out_free_key;
}
shash->tfm = key_tfm;
ret = crypto_shash_setkey(key_tfm, key->key, key->len);
if (ret < 0)
goto out_free_transformed_key;
ret = crypto_shash_init(shash);
if (ret < 0)
goto out_free_transformed_key;
ret = crypto_shash_update(shash, nqn, strlen(nqn));
if (ret < 0)
goto out_free_transformed_key;
ret = crypto_shash_update(shash, "NVMe-over-Fabrics", 17);
if (ret < 0)
goto out_free_transformed_key;
ret = crypto_shash_final(shash, transformed_key->key);
if (ret < 0)
goto out_free_transformed_key;
crypto_free_shash(key_tfm);
return transformed_key;
out_free_transformed_key:
nvme_auth_free_key(transformed_key);
out_free_key:
crypto_free_shash(key_tfm);
return ERR_PTR(ret);
}
EXPORT_SYMBOL_GPL(nvme_auth_transform_key);
static int nvme_auth_hash_skey(int hmac_id, u8 *skey, size_t skey_len, u8 *hkey)
{
const char *digest_name;
struct crypto_shash *tfm;
int ret;
digest_name = nvme_auth_digest_name(hmac_id);
if (!digest_name) {
pr_debug("%s: failed to get digest for %d\n", __func__,
hmac_id);
return -EINVAL;
}
tfm = crypto_alloc_shash(digest_name, 0, 0);
if (IS_ERR(tfm))
return -ENOMEM;
ret = crypto_shash_tfm_digest(tfm, skey, skey_len, hkey);
if (ret < 0)
pr_debug("%s: Failed to hash digest len %zu\n", __func__,
skey_len);
crypto_free_shash(tfm);
return ret;
}
int nvme_auth_augmented_challenge(u8 hmac_id, u8 *skey, size_t skey_len,
u8 *challenge, u8 *aug, size_t hlen)
{
struct crypto_shash *tfm;
u8 *hashed_key;
const char *hmac_name;
int ret;
hashed_key = kmalloc(hlen, GFP_KERNEL);
if (!hashed_key)
return -ENOMEM;
ret = nvme_auth_hash_skey(hmac_id, skey,
skey_len, hashed_key);
if (ret < 0)
goto out_free_key;
hmac_name = nvme_auth_hmac_name(hmac_id);
if (!hmac_name) {
pr_warn("%s: invalid hash algorithm %d\n",
__func__, hmac_id);
ret = -EINVAL;
goto out_free_key;
}
tfm = crypto_alloc_shash(hmac_name, 0, 0);
if (IS_ERR(tfm)) {
ret = PTR_ERR(tfm);
goto out_free_key;
}
ret = crypto_shash_setkey(tfm, hashed_key, hlen);
if (ret)
goto out_free_hash;
ret = crypto_shash_tfm_digest(tfm, challenge, hlen, aug);
out_free_hash:
crypto_free_shash(tfm);
out_free_key:
kfree_sensitive(hashed_key);
return ret;
}
EXPORT_SYMBOL_GPL(nvme_auth_augmented_challenge);
int nvme_auth_gen_privkey(struct crypto_kpp *dh_tfm, u8 dh_gid)
{
int ret;
ret = crypto_kpp_set_secret(dh_tfm, NULL, 0);
if (ret)
pr_debug("failed to set private key, error %d\n", ret);
return ret;
}
EXPORT_SYMBOL_GPL(nvme_auth_gen_privkey);
int nvme_auth_gen_pubkey(struct crypto_kpp *dh_tfm,
u8 *host_key, size_t host_key_len)
{
struct kpp_request *req;
struct crypto_wait wait;
struct scatterlist dst;
int ret;
req = kpp_request_alloc(dh_tfm, GFP_KERNEL);
if (!req)
return -ENOMEM;
crypto_init_wait(&wait);
kpp_request_set_input(req, NULL, 0);
sg_init_one(&dst, host_key, host_key_len);
kpp_request_set_output(req, &dst, host_key_len);
kpp_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
crypto_req_done, &wait);
ret = crypto_wait_req(crypto_kpp_generate_public_key(req), &wait);
kpp_request_free(req);
return ret;
}
EXPORT_SYMBOL_GPL(nvme_auth_gen_pubkey);
int nvme_auth_gen_shared_secret(struct crypto_kpp *dh_tfm,
u8 *ctrl_key, size_t ctrl_key_len,
u8 *sess_key, size_t sess_key_len)
{
struct kpp_request *req;
struct crypto_wait wait;
struct scatterlist src, dst;
int ret;
req = kpp_request_alloc(dh_tfm, GFP_KERNEL);
if (!req)
return -ENOMEM;
crypto_init_wait(&wait);
sg_init_one(&src, ctrl_key, ctrl_key_len);
kpp_request_set_input(req, &src, ctrl_key_len);
sg_init_one(&dst, sess_key, sess_key_len);
kpp_request_set_output(req, &dst, sess_key_len);
kpp_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
crypto_req_done, &wait);
ret = crypto_wait_req(crypto_kpp_compute_shared_secret(req), &wait);
kpp_request_free(req);
return ret;
}
EXPORT_SYMBOL_GPL(nvme_auth_gen_shared_secret);
int nvme_auth_generate_key(u8 *secret, struct nvme_dhchap_key **ret_key)
{
struct nvme_dhchap_key *key;
u8 key_hash;
if (!secret) {
*ret_key = NULL;
return 0;
}
if (sscanf(secret, "DHHC-1:%hhd:%*s:", &key_hash) != 1)
return -EINVAL;
/* Pass in the secret without the 'DHHC-1:XX:' prefix */
key = nvme_auth_extract_key(secret + 10, key_hash);
if (IS_ERR(key)) {
*ret_key = NULL;
return PTR_ERR(key);
}
*ret_key = key;
return 0;
}
EXPORT_SYMBOL_GPL(nvme_auth_generate_key);
/**
* nvme_auth_generate_psk - Generate a PSK for TLS
* @hmac_id: Hash function identifier
* @skey: Session key
* @skey_len: Length of @skey
* @c1: Value of challenge C1
* @c2: Value of challenge C2
* @hash_len: Hash length of the hash algorithm
* @ret_psk: Pointer to the resulting generated PSK
* @ret_len: length of @ret_psk
*
* Generate a PSK for TLS as specified in NVMe base specification, section
* 8.13.5.9: Generated PSK for TLS
*
* The generated PSK for TLS shall be computed applying the HMAC function
* using the hash function H( ) selected by the HashID parameter in the
* DH-HMAC-CHAP_Challenge message with the session key KS as key to the
* concatenation of the two challenges C1 and C2 (i.e., generated
* PSK = HMAC(KS, C1 || C2)).
*
* Returns 0 on success with a valid generated PSK pointer in @ret_psk and
* the length of @ret_psk in @ret_len, or a negative error number otherwise.
*/
int nvme_auth_generate_psk(u8 hmac_id, u8 *skey, size_t skey_len,
u8 *c1, u8 *c2, size_t hash_len, u8 **ret_psk, size_t *ret_len)
{
struct crypto_shash *tfm;
SHASH_DESC_ON_STACK(shash, tfm);
u8 *psk;
const char *hmac_name;
int ret, psk_len;
if (!c1 || !c2)
return -EINVAL;
hmac_name = nvme_auth_hmac_name(hmac_id);
if (!hmac_name) {
pr_warn("%s: invalid hash algorithm %d\n",
__func__, hmac_id);
return -EINVAL;
}
tfm = crypto_alloc_shash(hmac_name, 0, 0);
if (IS_ERR(tfm))
return PTR_ERR(tfm);
psk_len = crypto_shash_digestsize(tfm);
psk = kzalloc(psk_len, GFP_KERNEL);
if (!psk) {
ret = -ENOMEM;
goto out_free_tfm;
}
shash->tfm = tfm;
ret = crypto_shash_setkey(tfm, skey, skey_len);
if (ret)
goto out_free_psk;
ret = crypto_shash_init(shash);
if (ret)
goto out_free_psk;
ret = crypto_shash_update(shash, c1, hash_len);
if (ret)
goto out_free_psk;
ret = crypto_shash_update(shash, c2, hash_len);
if (ret)
goto out_free_psk;
ret = crypto_shash_final(shash, psk);
if (!ret) {
*ret_psk = psk;
*ret_len = psk_len;
}
out_free_psk:
if (ret)
kfree_sensitive(psk);
out_free_tfm:
crypto_free_shash(tfm);
return ret;
}
EXPORT_SYMBOL_GPL(nvme_auth_generate_psk);
/**
* nvme_auth_generate_digest - Generate TLS PSK digest
* @hmac_id: Hash function identifier
* @psk: Generated input PSK
* @psk_len: Length of @psk
* @subsysnqn: NQN of the subsystem
* @hostnqn: NQN of the host
* @ret_digest: Pointer to the returned digest
*
* Generate a TLS PSK digest as specified in TP8018 Section 3.6.1.3:
* TLS PSK and PSK identity Derivation
*
* The PSK digest shall be computed by encoding in Base64 (refer to RFC
* 4648) the result of the application of the HMAC function using the hash
* function specified in item 4 above (ie the hash function of the cipher
* suite associated with the PSK identity) with the PSK as HMAC key to the
* concatenation of:
* - the NQN of the host (i.e., NQNh) not including the null terminator;
* - a space character;
* - the NQN of the NVM subsystem (i.e., NQNc) not including the null
* terminator;
* - a space character; and
* - the seventeen ASCII characters "NVMe-over-Fabrics"
* (i.e., <PSK digest> = Base64(HMAC(PSK, NQNh || " " || NQNc || " " ||
* "NVMe-over-Fabrics"))).
* The length of the PSK digest depends on the hash function used to compute
* it as follows:
* - If the SHA-256 hash function is used, the resulting PSK digest is 44
* characters long; or
* - If the SHA-384 hash function is used, the resulting PSK digest is 64
* characters long.
*
* Returns 0 on success with a valid digest pointer in @ret_digest, or a
* negative error number on failure.
*/
int nvme_auth_generate_digest(u8 hmac_id, u8 *psk, size_t psk_len,
char *subsysnqn, char *hostnqn, u8 **ret_digest)
{
struct crypto_shash *tfm;
SHASH_DESC_ON_STACK(shash, tfm);
u8 *digest, *enc;
const char *hmac_name;
size_t digest_len, hmac_len;
int ret;
if (WARN_ON(!subsysnqn || !hostnqn))
return -EINVAL;
hmac_name = nvme_auth_hmac_name(hmac_id);
if (!hmac_name) {
pr_warn("%s: invalid hash algorithm %d\n",
__func__, hmac_id);
return -EINVAL;
}
switch (nvme_auth_hmac_hash_len(hmac_id)) {
case 32:
hmac_len = 44;
break;
case 48:
hmac_len = 64;
break;
default:
pr_warn("%s: invalid hash algorithm '%s'\n",
__func__, hmac_name);
return -EINVAL;
}
enc = kzalloc(hmac_len + 1, GFP_KERNEL);
if (!enc)
return -ENOMEM;
tfm = crypto_alloc_shash(hmac_name, 0, 0);
if (IS_ERR(tfm)) {
ret = PTR_ERR(tfm);
goto out_free_enc;
}
digest_len = crypto_shash_digestsize(tfm);
digest = kzalloc(digest_len, GFP_KERNEL);
if (!digest) {
ret = -ENOMEM;
goto out_free_tfm;
}
shash->tfm = tfm;
ret = crypto_shash_setkey(tfm, psk, psk_len);
if (ret)
goto out_free_digest;
ret = crypto_shash_init(shash);
if (ret)
goto out_free_digest;
ret = crypto_shash_update(shash, hostnqn, strlen(hostnqn));
if (ret)
goto out_free_digest;
ret = crypto_shash_update(shash, " ", 1);
if (ret)
goto out_free_digest;
ret = crypto_shash_update(shash, subsysnqn, strlen(subsysnqn));
if (ret)
goto out_free_digest;
ret = crypto_shash_update(shash, " NVMe-over-Fabrics", 18);
if (ret)
goto out_free_digest;
ret = crypto_shash_final(shash, digest);
if (ret)
goto out_free_digest;
ret = base64_encode(digest, digest_len, enc);
if (ret < hmac_len) {
ret = -ENOKEY;
goto out_free_digest;
}
*ret_digest = enc;
ret = 0;
out_free_digest:
kfree_sensitive(digest);
out_free_tfm:
crypto_free_shash(tfm);
out_free_enc:
if (ret)
kfree_sensitive(enc);
return ret;
}
EXPORT_SYMBOL_GPL(nvme_auth_generate_digest);
/**
* nvme_auth_derive_tls_psk - Derive TLS PSK
* @hmac_id: Hash function identifier
* @psk: generated input PSK
* @psk_len: size of @psk
* @psk_digest: TLS PSK digest
* @ret_psk: Pointer to the resulting TLS PSK
*
* Derive a TLS PSK as specified in TP8018 Section 3.6.1.3:
* TLS PSK and PSK identity Derivation
*
* The TLS PSK shall be derived as follows from an input PSK
* (i.e., either a retained PSK or a generated PSK) and a PSK
* identity using the HKDF-Extract and HKDF-Expand-Label operations
* (refer to RFC 5869 and RFC 8446) where the hash function is the
* one specified by the hash specifier of the PSK identity:
* 1. PRK = HKDF-Extract(0, Input PSK); and
* 2. TLS PSK = HKDF-Expand-Label(PRK, "nvme-tls-psk", PskIdentityContext, L),
* where PskIdentityContext is the hash identifier indicated in
* the PSK identity concatenated to a space character and to the
* Base64 PSK digest (i.e., "<hash> <PSK digest>") and L is the
* output size in bytes of the hash function (i.e., 32 for SHA-256
* and 48 for SHA-384).
*
* Returns 0 on success with a valid psk pointer in @ret_psk or a negative
* error number otherwise.
*/
int nvme_auth_derive_tls_psk(int hmac_id, u8 *psk, size_t psk_len,
u8 *psk_digest, u8 **ret_psk)
{
struct crypto_shash *hmac_tfm;
const char *hmac_name;
const char *psk_prefix = "tls13 nvme-tls-psk";
static const char default_salt[HKDF_MAX_HASHLEN];
size_t info_len, prk_len;
char *info;
unsigned char *prk, *tls_key;
int ret;
hmac_name = nvme_auth_hmac_name(hmac_id);
if (!hmac_name) {
pr_warn("%s: invalid hash algorithm %d\n",
__func__, hmac_id);
return -EINVAL;
}
if (hmac_id == NVME_AUTH_HASH_SHA512) {
pr_warn("%s: unsupported hash algorithm %s\n",
__func__, hmac_name);
return -EINVAL;
}
hmac_tfm = crypto_alloc_shash(hmac_name, 0, 0);
if (IS_ERR(hmac_tfm))
return PTR_ERR(hmac_tfm);
prk_len = crypto_shash_digestsize(hmac_tfm);
prk = kzalloc(prk_len, GFP_KERNEL);
if (!prk) {
ret = -ENOMEM;
goto out_free_shash;
}
if (WARN_ON(prk_len > HKDF_MAX_HASHLEN)) {
ret = -EINVAL;
goto out_free_prk;
}
ret = hkdf_extract(hmac_tfm, psk, psk_len,
default_salt, prk_len, prk);
if (ret)
goto out_free_prk;
ret = crypto_shash_setkey(hmac_tfm, prk, prk_len);
if (ret)
goto out_free_prk;
/*
* 2 additional bytes for the length field from HDKF-Expand-Label,
* 2 additional bytes for the HMAC ID, and one byte for the space
* separator.
*/
info_len = strlen(psk_digest) + strlen(psk_prefix) + 5;
info = kzalloc(info_len + 1, GFP_KERNEL);
if (!info) {
ret = -ENOMEM;
goto out_free_prk;
}
put_unaligned_be16(psk_len, info);
memcpy(info + 2, psk_prefix, strlen(psk_prefix));
sprintf(info + 2 + strlen(psk_prefix), "%02d %s", hmac_id, psk_digest);
tls_key = kzalloc(psk_len, GFP_KERNEL);
if (!tls_key) {
ret = -ENOMEM;
goto out_free_info;
}
ret = hkdf_expand(hmac_tfm, info, info_len, tls_key, psk_len);
if (ret) {
kfree(tls_key);
goto out_free_info;
}
*ret_psk = tls_key;
out_free_info:
kfree(info);
out_free_prk:
kfree(prk);
out_free_shash:
crypto_free_shash(hmac_tfm);
return ret;
}
EXPORT_SYMBOL_GPL(nvme_auth_derive_tls_psk);
MODULE_DESCRIPTION("NVMe Authentication framework");
MODULE_LICENSE("GPL v2");