mirror of
git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
synced 2025-08-05 16:54:27 +00:00

Fix various spelling errors in comments. Signed-off-by: Yi Zhang <yi.zhang@redhat.com> Reviewed-by: Chaitanya Kulkarni <kch@nvidia.com> Signed-off-by: Christoph Hellwig <hch@lst.de>
801 lines
19 KiB
C
801 lines
19 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Copyright (c) 2020 Hannes Reinecke, SUSE Linux
|
|
*/
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/crc32.h>
|
|
#include <linux/base64.h>
|
|
#include <linux/prandom.h>
|
|
#include <linux/scatterlist.h>
|
|
#include <linux/unaligned.h>
|
|
#include <crypto/hash.h>
|
|
#include <crypto/dh.h>
|
|
#include <crypto/hkdf.h>
|
|
#include <linux/nvme.h>
|
|
#include <linux/nvme-auth.h>
|
|
|
|
#define HKDF_MAX_HASHLEN 64
|
|
|
|
static u32 nvme_dhchap_seqnum;
|
|
static DEFINE_MUTEX(nvme_dhchap_mutex);
|
|
|
|
u32 nvme_auth_get_seqnum(void)
|
|
{
|
|
u32 seqnum;
|
|
|
|
mutex_lock(&nvme_dhchap_mutex);
|
|
if (!nvme_dhchap_seqnum)
|
|
nvme_dhchap_seqnum = get_random_u32();
|
|
else {
|
|
nvme_dhchap_seqnum++;
|
|
if (!nvme_dhchap_seqnum)
|
|
nvme_dhchap_seqnum++;
|
|
}
|
|
seqnum = nvme_dhchap_seqnum;
|
|
mutex_unlock(&nvme_dhchap_mutex);
|
|
return seqnum;
|
|
}
|
|
EXPORT_SYMBOL_GPL(nvme_auth_get_seqnum);
|
|
|
|
static struct nvme_auth_dhgroup_map {
|
|
const char name[16];
|
|
const char kpp[16];
|
|
} dhgroup_map[] = {
|
|
[NVME_AUTH_DHGROUP_NULL] = {
|
|
.name = "null", .kpp = "null" },
|
|
[NVME_AUTH_DHGROUP_2048] = {
|
|
.name = "ffdhe2048", .kpp = "ffdhe2048(dh)" },
|
|
[NVME_AUTH_DHGROUP_3072] = {
|
|
.name = "ffdhe3072", .kpp = "ffdhe3072(dh)" },
|
|
[NVME_AUTH_DHGROUP_4096] = {
|
|
.name = "ffdhe4096", .kpp = "ffdhe4096(dh)" },
|
|
[NVME_AUTH_DHGROUP_6144] = {
|
|
.name = "ffdhe6144", .kpp = "ffdhe6144(dh)" },
|
|
[NVME_AUTH_DHGROUP_8192] = {
|
|
.name = "ffdhe8192", .kpp = "ffdhe8192(dh)" },
|
|
};
|
|
|
|
const char *nvme_auth_dhgroup_name(u8 dhgroup_id)
|
|
{
|
|
if (dhgroup_id >= ARRAY_SIZE(dhgroup_map))
|
|
return NULL;
|
|
return dhgroup_map[dhgroup_id].name;
|
|
}
|
|
EXPORT_SYMBOL_GPL(nvme_auth_dhgroup_name);
|
|
|
|
const char *nvme_auth_dhgroup_kpp(u8 dhgroup_id)
|
|
{
|
|
if (dhgroup_id >= ARRAY_SIZE(dhgroup_map))
|
|
return NULL;
|
|
return dhgroup_map[dhgroup_id].kpp;
|
|
}
|
|
EXPORT_SYMBOL_GPL(nvme_auth_dhgroup_kpp);
|
|
|
|
u8 nvme_auth_dhgroup_id(const char *dhgroup_name)
|
|
{
|
|
int i;
|
|
|
|
if (!dhgroup_name || !strlen(dhgroup_name))
|
|
return NVME_AUTH_DHGROUP_INVALID;
|
|
for (i = 0; i < ARRAY_SIZE(dhgroup_map); i++) {
|
|
if (!strlen(dhgroup_map[i].name))
|
|
continue;
|
|
if (!strncmp(dhgroup_map[i].name, dhgroup_name,
|
|
strlen(dhgroup_map[i].name)))
|
|
return i;
|
|
}
|
|
return NVME_AUTH_DHGROUP_INVALID;
|
|
}
|
|
EXPORT_SYMBOL_GPL(nvme_auth_dhgroup_id);
|
|
|
|
static struct nvme_dhchap_hash_map {
|
|
int len;
|
|
const char hmac[15];
|
|
const char digest[8];
|
|
} hash_map[] = {
|
|
[NVME_AUTH_HASH_SHA256] = {
|
|
.len = 32,
|
|
.hmac = "hmac(sha256)",
|
|
.digest = "sha256",
|
|
},
|
|
[NVME_AUTH_HASH_SHA384] = {
|
|
.len = 48,
|
|
.hmac = "hmac(sha384)",
|
|
.digest = "sha384",
|
|
},
|
|
[NVME_AUTH_HASH_SHA512] = {
|
|
.len = 64,
|
|
.hmac = "hmac(sha512)",
|
|
.digest = "sha512",
|
|
},
|
|
};
|
|
|
|
const char *nvme_auth_hmac_name(u8 hmac_id)
|
|
{
|
|
if (hmac_id >= ARRAY_SIZE(hash_map))
|
|
return NULL;
|
|
return hash_map[hmac_id].hmac;
|
|
}
|
|
EXPORT_SYMBOL_GPL(nvme_auth_hmac_name);
|
|
|
|
const char *nvme_auth_digest_name(u8 hmac_id)
|
|
{
|
|
if (hmac_id >= ARRAY_SIZE(hash_map))
|
|
return NULL;
|
|
return hash_map[hmac_id].digest;
|
|
}
|
|
EXPORT_SYMBOL_GPL(nvme_auth_digest_name);
|
|
|
|
u8 nvme_auth_hmac_id(const char *hmac_name)
|
|
{
|
|
int i;
|
|
|
|
if (!hmac_name || !strlen(hmac_name))
|
|
return NVME_AUTH_HASH_INVALID;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(hash_map); i++) {
|
|
if (!strlen(hash_map[i].hmac))
|
|
continue;
|
|
if (!strncmp(hash_map[i].hmac, hmac_name,
|
|
strlen(hash_map[i].hmac)))
|
|
return i;
|
|
}
|
|
return NVME_AUTH_HASH_INVALID;
|
|
}
|
|
EXPORT_SYMBOL_GPL(nvme_auth_hmac_id);
|
|
|
|
size_t nvme_auth_hmac_hash_len(u8 hmac_id)
|
|
{
|
|
if (hmac_id >= ARRAY_SIZE(hash_map))
|
|
return 0;
|
|
return hash_map[hmac_id].len;
|
|
}
|
|
EXPORT_SYMBOL_GPL(nvme_auth_hmac_hash_len);
|
|
|
|
u32 nvme_auth_key_struct_size(u32 key_len)
|
|
{
|
|
struct nvme_dhchap_key key;
|
|
|
|
return struct_size(&key, key, key_len);
|
|
}
|
|
EXPORT_SYMBOL_GPL(nvme_auth_key_struct_size);
|
|
|
|
struct nvme_dhchap_key *nvme_auth_extract_key(unsigned char *secret,
|
|
u8 key_hash)
|
|
{
|
|
struct nvme_dhchap_key *key;
|
|
unsigned char *p;
|
|
u32 crc;
|
|
int ret, key_len;
|
|
size_t allocated_len = strlen(secret);
|
|
|
|
/* Secret might be affixed with a ':' */
|
|
p = strrchr(secret, ':');
|
|
if (p)
|
|
allocated_len = p - secret;
|
|
key = nvme_auth_alloc_key(allocated_len, 0);
|
|
if (!key)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
key_len = base64_decode(secret, allocated_len, key->key);
|
|
if (key_len < 0) {
|
|
pr_debug("base64 key decoding error %d\n",
|
|
key_len);
|
|
ret = key_len;
|
|
goto out_free_secret;
|
|
}
|
|
|
|
if (key_len != 36 && key_len != 52 &&
|
|
key_len != 68) {
|
|
pr_err("Invalid key len %d\n", key_len);
|
|
ret = -EINVAL;
|
|
goto out_free_secret;
|
|
}
|
|
|
|
/* The last four bytes is the CRC in little-endian format */
|
|
key_len -= 4;
|
|
/*
|
|
* The linux implementation doesn't do pre- and post-increments,
|
|
* so we have to do it manually.
|
|
*/
|
|
crc = ~crc32(~0, key->key, key_len);
|
|
|
|
if (get_unaligned_le32(key->key + key_len) != crc) {
|
|
pr_err("key crc mismatch (key %08x, crc %08x)\n",
|
|
get_unaligned_le32(key->key + key_len), crc);
|
|
ret = -EKEYREJECTED;
|
|
goto out_free_secret;
|
|
}
|
|
key->len = key_len;
|
|
key->hash = key_hash;
|
|
return key;
|
|
out_free_secret:
|
|
nvme_auth_free_key(key);
|
|
return ERR_PTR(ret);
|
|
}
|
|
EXPORT_SYMBOL_GPL(nvme_auth_extract_key);
|
|
|
|
struct nvme_dhchap_key *nvme_auth_alloc_key(u32 len, u8 hash)
|
|
{
|
|
u32 num_bytes = nvme_auth_key_struct_size(len);
|
|
struct nvme_dhchap_key *key = kzalloc(num_bytes, GFP_KERNEL);
|
|
|
|
if (key) {
|
|
key->len = len;
|
|
key->hash = hash;
|
|
}
|
|
return key;
|
|
}
|
|
EXPORT_SYMBOL_GPL(nvme_auth_alloc_key);
|
|
|
|
void nvme_auth_free_key(struct nvme_dhchap_key *key)
|
|
{
|
|
if (!key)
|
|
return;
|
|
kfree_sensitive(key);
|
|
}
|
|
EXPORT_SYMBOL_GPL(nvme_auth_free_key);
|
|
|
|
struct nvme_dhchap_key *nvme_auth_transform_key(
|
|
struct nvme_dhchap_key *key, char *nqn)
|
|
{
|
|
const char *hmac_name;
|
|
struct crypto_shash *key_tfm;
|
|
SHASH_DESC_ON_STACK(shash, key_tfm);
|
|
struct nvme_dhchap_key *transformed_key;
|
|
int ret, key_len;
|
|
|
|
if (!key) {
|
|
pr_warn("No key specified\n");
|
|
return ERR_PTR(-ENOKEY);
|
|
}
|
|
if (key->hash == 0) {
|
|
key_len = nvme_auth_key_struct_size(key->len);
|
|
transformed_key = kmemdup(key, key_len, GFP_KERNEL);
|
|
if (!transformed_key)
|
|
return ERR_PTR(-ENOMEM);
|
|
return transformed_key;
|
|
}
|
|
hmac_name = nvme_auth_hmac_name(key->hash);
|
|
if (!hmac_name) {
|
|
pr_warn("Invalid key hash id %d\n", key->hash);
|
|
return ERR_PTR(-EINVAL);
|
|
}
|
|
|
|
key_tfm = crypto_alloc_shash(hmac_name, 0, 0);
|
|
if (IS_ERR(key_tfm))
|
|
return ERR_CAST(key_tfm);
|
|
|
|
key_len = crypto_shash_digestsize(key_tfm);
|
|
transformed_key = nvme_auth_alloc_key(key_len, key->hash);
|
|
if (!transformed_key) {
|
|
ret = -ENOMEM;
|
|
goto out_free_key;
|
|
}
|
|
|
|
shash->tfm = key_tfm;
|
|
ret = crypto_shash_setkey(key_tfm, key->key, key->len);
|
|
if (ret < 0)
|
|
goto out_free_transformed_key;
|
|
ret = crypto_shash_init(shash);
|
|
if (ret < 0)
|
|
goto out_free_transformed_key;
|
|
ret = crypto_shash_update(shash, nqn, strlen(nqn));
|
|
if (ret < 0)
|
|
goto out_free_transformed_key;
|
|
ret = crypto_shash_update(shash, "NVMe-over-Fabrics", 17);
|
|
if (ret < 0)
|
|
goto out_free_transformed_key;
|
|
ret = crypto_shash_final(shash, transformed_key->key);
|
|
if (ret < 0)
|
|
goto out_free_transformed_key;
|
|
|
|
crypto_free_shash(key_tfm);
|
|
|
|
return transformed_key;
|
|
|
|
out_free_transformed_key:
|
|
nvme_auth_free_key(transformed_key);
|
|
out_free_key:
|
|
crypto_free_shash(key_tfm);
|
|
|
|
return ERR_PTR(ret);
|
|
}
|
|
EXPORT_SYMBOL_GPL(nvme_auth_transform_key);
|
|
|
|
static int nvme_auth_hash_skey(int hmac_id, u8 *skey, size_t skey_len, u8 *hkey)
|
|
{
|
|
const char *digest_name;
|
|
struct crypto_shash *tfm;
|
|
int ret;
|
|
|
|
digest_name = nvme_auth_digest_name(hmac_id);
|
|
if (!digest_name) {
|
|
pr_debug("%s: failed to get digest for %d\n", __func__,
|
|
hmac_id);
|
|
return -EINVAL;
|
|
}
|
|
tfm = crypto_alloc_shash(digest_name, 0, 0);
|
|
if (IS_ERR(tfm))
|
|
return -ENOMEM;
|
|
|
|
ret = crypto_shash_tfm_digest(tfm, skey, skey_len, hkey);
|
|
if (ret < 0)
|
|
pr_debug("%s: Failed to hash digest len %zu\n", __func__,
|
|
skey_len);
|
|
|
|
crypto_free_shash(tfm);
|
|
return ret;
|
|
}
|
|
|
|
int nvme_auth_augmented_challenge(u8 hmac_id, u8 *skey, size_t skey_len,
|
|
u8 *challenge, u8 *aug, size_t hlen)
|
|
{
|
|
struct crypto_shash *tfm;
|
|
u8 *hashed_key;
|
|
const char *hmac_name;
|
|
int ret;
|
|
|
|
hashed_key = kmalloc(hlen, GFP_KERNEL);
|
|
if (!hashed_key)
|
|
return -ENOMEM;
|
|
|
|
ret = nvme_auth_hash_skey(hmac_id, skey,
|
|
skey_len, hashed_key);
|
|
if (ret < 0)
|
|
goto out_free_key;
|
|
|
|
hmac_name = nvme_auth_hmac_name(hmac_id);
|
|
if (!hmac_name) {
|
|
pr_warn("%s: invalid hash algorithm %d\n",
|
|
__func__, hmac_id);
|
|
ret = -EINVAL;
|
|
goto out_free_key;
|
|
}
|
|
|
|
tfm = crypto_alloc_shash(hmac_name, 0, 0);
|
|
if (IS_ERR(tfm)) {
|
|
ret = PTR_ERR(tfm);
|
|
goto out_free_key;
|
|
}
|
|
|
|
ret = crypto_shash_setkey(tfm, hashed_key, hlen);
|
|
if (ret)
|
|
goto out_free_hash;
|
|
|
|
ret = crypto_shash_tfm_digest(tfm, challenge, hlen, aug);
|
|
out_free_hash:
|
|
crypto_free_shash(tfm);
|
|
out_free_key:
|
|
kfree_sensitive(hashed_key);
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(nvme_auth_augmented_challenge);
|
|
|
|
int nvme_auth_gen_privkey(struct crypto_kpp *dh_tfm, u8 dh_gid)
|
|
{
|
|
int ret;
|
|
|
|
ret = crypto_kpp_set_secret(dh_tfm, NULL, 0);
|
|
if (ret)
|
|
pr_debug("failed to set private key, error %d\n", ret);
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(nvme_auth_gen_privkey);
|
|
|
|
int nvme_auth_gen_pubkey(struct crypto_kpp *dh_tfm,
|
|
u8 *host_key, size_t host_key_len)
|
|
{
|
|
struct kpp_request *req;
|
|
struct crypto_wait wait;
|
|
struct scatterlist dst;
|
|
int ret;
|
|
|
|
req = kpp_request_alloc(dh_tfm, GFP_KERNEL);
|
|
if (!req)
|
|
return -ENOMEM;
|
|
|
|
crypto_init_wait(&wait);
|
|
kpp_request_set_input(req, NULL, 0);
|
|
sg_init_one(&dst, host_key, host_key_len);
|
|
kpp_request_set_output(req, &dst, host_key_len);
|
|
kpp_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
|
|
crypto_req_done, &wait);
|
|
|
|
ret = crypto_wait_req(crypto_kpp_generate_public_key(req), &wait);
|
|
kpp_request_free(req);
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(nvme_auth_gen_pubkey);
|
|
|
|
int nvme_auth_gen_shared_secret(struct crypto_kpp *dh_tfm,
|
|
u8 *ctrl_key, size_t ctrl_key_len,
|
|
u8 *sess_key, size_t sess_key_len)
|
|
{
|
|
struct kpp_request *req;
|
|
struct crypto_wait wait;
|
|
struct scatterlist src, dst;
|
|
int ret;
|
|
|
|
req = kpp_request_alloc(dh_tfm, GFP_KERNEL);
|
|
if (!req)
|
|
return -ENOMEM;
|
|
|
|
crypto_init_wait(&wait);
|
|
sg_init_one(&src, ctrl_key, ctrl_key_len);
|
|
kpp_request_set_input(req, &src, ctrl_key_len);
|
|
sg_init_one(&dst, sess_key, sess_key_len);
|
|
kpp_request_set_output(req, &dst, sess_key_len);
|
|
kpp_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
|
|
crypto_req_done, &wait);
|
|
|
|
ret = crypto_wait_req(crypto_kpp_compute_shared_secret(req), &wait);
|
|
|
|
kpp_request_free(req);
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(nvme_auth_gen_shared_secret);
|
|
|
|
int nvme_auth_generate_key(u8 *secret, struct nvme_dhchap_key **ret_key)
|
|
{
|
|
struct nvme_dhchap_key *key;
|
|
u8 key_hash;
|
|
|
|
if (!secret) {
|
|
*ret_key = NULL;
|
|
return 0;
|
|
}
|
|
|
|
if (sscanf(secret, "DHHC-1:%hhd:%*s:", &key_hash) != 1)
|
|
return -EINVAL;
|
|
|
|
/* Pass in the secret without the 'DHHC-1:XX:' prefix */
|
|
key = nvme_auth_extract_key(secret + 10, key_hash);
|
|
if (IS_ERR(key)) {
|
|
*ret_key = NULL;
|
|
return PTR_ERR(key);
|
|
}
|
|
|
|
*ret_key = key;
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(nvme_auth_generate_key);
|
|
|
|
/**
|
|
* nvme_auth_generate_psk - Generate a PSK for TLS
|
|
* @hmac_id: Hash function identifier
|
|
* @skey: Session key
|
|
* @skey_len: Length of @skey
|
|
* @c1: Value of challenge C1
|
|
* @c2: Value of challenge C2
|
|
* @hash_len: Hash length of the hash algorithm
|
|
* @ret_psk: Pointer to the resulting generated PSK
|
|
* @ret_len: length of @ret_psk
|
|
*
|
|
* Generate a PSK for TLS as specified in NVMe base specification, section
|
|
* 8.13.5.9: Generated PSK for TLS
|
|
*
|
|
* The generated PSK for TLS shall be computed applying the HMAC function
|
|
* using the hash function H( ) selected by the HashID parameter in the
|
|
* DH-HMAC-CHAP_Challenge message with the session key KS as key to the
|
|
* concatenation of the two challenges C1 and C2 (i.e., generated
|
|
* PSK = HMAC(KS, C1 || C2)).
|
|
*
|
|
* Returns 0 on success with a valid generated PSK pointer in @ret_psk and
|
|
* the length of @ret_psk in @ret_len, or a negative error number otherwise.
|
|
*/
|
|
int nvme_auth_generate_psk(u8 hmac_id, u8 *skey, size_t skey_len,
|
|
u8 *c1, u8 *c2, size_t hash_len, u8 **ret_psk, size_t *ret_len)
|
|
{
|
|
struct crypto_shash *tfm;
|
|
SHASH_DESC_ON_STACK(shash, tfm);
|
|
u8 *psk;
|
|
const char *hmac_name;
|
|
int ret, psk_len;
|
|
|
|
if (!c1 || !c2)
|
|
return -EINVAL;
|
|
|
|
hmac_name = nvme_auth_hmac_name(hmac_id);
|
|
if (!hmac_name) {
|
|
pr_warn("%s: invalid hash algorithm %d\n",
|
|
__func__, hmac_id);
|
|
return -EINVAL;
|
|
}
|
|
|
|
tfm = crypto_alloc_shash(hmac_name, 0, 0);
|
|
if (IS_ERR(tfm))
|
|
return PTR_ERR(tfm);
|
|
|
|
psk_len = crypto_shash_digestsize(tfm);
|
|
psk = kzalloc(psk_len, GFP_KERNEL);
|
|
if (!psk) {
|
|
ret = -ENOMEM;
|
|
goto out_free_tfm;
|
|
}
|
|
|
|
shash->tfm = tfm;
|
|
ret = crypto_shash_setkey(tfm, skey, skey_len);
|
|
if (ret)
|
|
goto out_free_psk;
|
|
|
|
ret = crypto_shash_init(shash);
|
|
if (ret)
|
|
goto out_free_psk;
|
|
|
|
ret = crypto_shash_update(shash, c1, hash_len);
|
|
if (ret)
|
|
goto out_free_psk;
|
|
|
|
ret = crypto_shash_update(shash, c2, hash_len);
|
|
if (ret)
|
|
goto out_free_psk;
|
|
|
|
ret = crypto_shash_final(shash, psk);
|
|
if (!ret) {
|
|
*ret_psk = psk;
|
|
*ret_len = psk_len;
|
|
}
|
|
|
|
out_free_psk:
|
|
if (ret)
|
|
kfree_sensitive(psk);
|
|
out_free_tfm:
|
|
crypto_free_shash(tfm);
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(nvme_auth_generate_psk);
|
|
|
|
/**
|
|
* nvme_auth_generate_digest - Generate TLS PSK digest
|
|
* @hmac_id: Hash function identifier
|
|
* @psk: Generated input PSK
|
|
* @psk_len: Length of @psk
|
|
* @subsysnqn: NQN of the subsystem
|
|
* @hostnqn: NQN of the host
|
|
* @ret_digest: Pointer to the returned digest
|
|
*
|
|
* Generate a TLS PSK digest as specified in TP8018 Section 3.6.1.3:
|
|
* TLS PSK and PSK identity Derivation
|
|
*
|
|
* The PSK digest shall be computed by encoding in Base64 (refer to RFC
|
|
* 4648) the result of the application of the HMAC function using the hash
|
|
* function specified in item 4 above (ie the hash function of the cipher
|
|
* suite associated with the PSK identity) with the PSK as HMAC key to the
|
|
* concatenation of:
|
|
* - the NQN of the host (i.e., NQNh) not including the null terminator;
|
|
* - a space character;
|
|
* - the NQN of the NVM subsystem (i.e., NQNc) not including the null
|
|
* terminator;
|
|
* - a space character; and
|
|
* - the seventeen ASCII characters "NVMe-over-Fabrics"
|
|
* (i.e., <PSK digest> = Base64(HMAC(PSK, NQNh || " " || NQNc || " " ||
|
|
* "NVMe-over-Fabrics"))).
|
|
* The length of the PSK digest depends on the hash function used to compute
|
|
* it as follows:
|
|
* - If the SHA-256 hash function is used, the resulting PSK digest is 44
|
|
* characters long; or
|
|
* - If the SHA-384 hash function is used, the resulting PSK digest is 64
|
|
* characters long.
|
|
*
|
|
* Returns 0 on success with a valid digest pointer in @ret_digest, or a
|
|
* negative error number on failure.
|
|
*/
|
|
int nvme_auth_generate_digest(u8 hmac_id, u8 *psk, size_t psk_len,
|
|
char *subsysnqn, char *hostnqn, u8 **ret_digest)
|
|
{
|
|
struct crypto_shash *tfm;
|
|
SHASH_DESC_ON_STACK(shash, tfm);
|
|
u8 *digest, *enc;
|
|
const char *hmac_name;
|
|
size_t digest_len, hmac_len;
|
|
int ret;
|
|
|
|
if (WARN_ON(!subsysnqn || !hostnqn))
|
|
return -EINVAL;
|
|
|
|
hmac_name = nvme_auth_hmac_name(hmac_id);
|
|
if (!hmac_name) {
|
|
pr_warn("%s: invalid hash algorithm %d\n",
|
|
__func__, hmac_id);
|
|
return -EINVAL;
|
|
}
|
|
|
|
switch (nvme_auth_hmac_hash_len(hmac_id)) {
|
|
case 32:
|
|
hmac_len = 44;
|
|
break;
|
|
case 48:
|
|
hmac_len = 64;
|
|
break;
|
|
default:
|
|
pr_warn("%s: invalid hash algorithm '%s'\n",
|
|
__func__, hmac_name);
|
|
return -EINVAL;
|
|
}
|
|
|
|
enc = kzalloc(hmac_len + 1, GFP_KERNEL);
|
|
if (!enc)
|
|
return -ENOMEM;
|
|
|
|
tfm = crypto_alloc_shash(hmac_name, 0, 0);
|
|
if (IS_ERR(tfm)) {
|
|
ret = PTR_ERR(tfm);
|
|
goto out_free_enc;
|
|
}
|
|
|
|
digest_len = crypto_shash_digestsize(tfm);
|
|
digest = kzalloc(digest_len, GFP_KERNEL);
|
|
if (!digest) {
|
|
ret = -ENOMEM;
|
|
goto out_free_tfm;
|
|
}
|
|
|
|
shash->tfm = tfm;
|
|
ret = crypto_shash_setkey(tfm, psk, psk_len);
|
|
if (ret)
|
|
goto out_free_digest;
|
|
|
|
ret = crypto_shash_init(shash);
|
|
if (ret)
|
|
goto out_free_digest;
|
|
|
|
ret = crypto_shash_update(shash, hostnqn, strlen(hostnqn));
|
|
if (ret)
|
|
goto out_free_digest;
|
|
|
|
ret = crypto_shash_update(shash, " ", 1);
|
|
if (ret)
|
|
goto out_free_digest;
|
|
|
|
ret = crypto_shash_update(shash, subsysnqn, strlen(subsysnqn));
|
|
if (ret)
|
|
goto out_free_digest;
|
|
|
|
ret = crypto_shash_update(shash, " NVMe-over-Fabrics", 18);
|
|
if (ret)
|
|
goto out_free_digest;
|
|
|
|
ret = crypto_shash_final(shash, digest);
|
|
if (ret)
|
|
goto out_free_digest;
|
|
|
|
ret = base64_encode(digest, digest_len, enc);
|
|
if (ret < hmac_len) {
|
|
ret = -ENOKEY;
|
|
goto out_free_digest;
|
|
}
|
|
*ret_digest = enc;
|
|
ret = 0;
|
|
|
|
out_free_digest:
|
|
kfree_sensitive(digest);
|
|
out_free_tfm:
|
|
crypto_free_shash(tfm);
|
|
out_free_enc:
|
|
if (ret)
|
|
kfree_sensitive(enc);
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(nvme_auth_generate_digest);
|
|
|
|
/**
|
|
* nvme_auth_derive_tls_psk - Derive TLS PSK
|
|
* @hmac_id: Hash function identifier
|
|
* @psk: generated input PSK
|
|
* @psk_len: size of @psk
|
|
* @psk_digest: TLS PSK digest
|
|
* @ret_psk: Pointer to the resulting TLS PSK
|
|
*
|
|
* Derive a TLS PSK as specified in TP8018 Section 3.6.1.3:
|
|
* TLS PSK and PSK identity Derivation
|
|
*
|
|
* The TLS PSK shall be derived as follows from an input PSK
|
|
* (i.e., either a retained PSK or a generated PSK) and a PSK
|
|
* identity using the HKDF-Extract and HKDF-Expand-Label operations
|
|
* (refer to RFC 5869 and RFC 8446) where the hash function is the
|
|
* one specified by the hash specifier of the PSK identity:
|
|
* 1. PRK = HKDF-Extract(0, Input PSK); and
|
|
* 2. TLS PSK = HKDF-Expand-Label(PRK, "nvme-tls-psk", PskIdentityContext, L),
|
|
* where PskIdentityContext is the hash identifier indicated in
|
|
* the PSK identity concatenated to a space character and to the
|
|
* Base64 PSK digest (i.e., "<hash> <PSK digest>") and L is the
|
|
* output size in bytes of the hash function (i.e., 32 for SHA-256
|
|
* and 48 for SHA-384).
|
|
*
|
|
* Returns 0 on success with a valid psk pointer in @ret_psk or a negative
|
|
* error number otherwise.
|
|
*/
|
|
int nvme_auth_derive_tls_psk(int hmac_id, u8 *psk, size_t psk_len,
|
|
u8 *psk_digest, u8 **ret_psk)
|
|
{
|
|
struct crypto_shash *hmac_tfm;
|
|
const char *hmac_name;
|
|
const char *psk_prefix = "tls13 nvme-tls-psk";
|
|
static const char default_salt[HKDF_MAX_HASHLEN];
|
|
size_t info_len, prk_len;
|
|
char *info;
|
|
unsigned char *prk, *tls_key;
|
|
int ret;
|
|
|
|
hmac_name = nvme_auth_hmac_name(hmac_id);
|
|
if (!hmac_name) {
|
|
pr_warn("%s: invalid hash algorithm %d\n",
|
|
__func__, hmac_id);
|
|
return -EINVAL;
|
|
}
|
|
if (hmac_id == NVME_AUTH_HASH_SHA512) {
|
|
pr_warn("%s: unsupported hash algorithm %s\n",
|
|
__func__, hmac_name);
|
|
return -EINVAL;
|
|
}
|
|
|
|
hmac_tfm = crypto_alloc_shash(hmac_name, 0, 0);
|
|
if (IS_ERR(hmac_tfm))
|
|
return PTR_ERR(hmac_tfm);
|
|
|
|
prk_len = crypto_shash_digestsize(hmac_tfm);
|
|
prk = kzalloc(prk_len, GFP_KERNEL);
|
|
if (!prk) {
|
|
ret = -ENOMEM;
|
|
goto out_free_shash;
|
|
}
|
|
|
|
if (WARN_ON(prk_len > HKDF_MAX_HASHLEN)) {
|
|
ret = -EINVAL;
|
|
goto out_free_prk;
|
|
}
|
|
ret = hkdf_extract(hmac_tfm, psk, psk_len,
|
|
default_salt, prk_len, prk);
|
|
if (ret)
|
|
goto out_free_prk;
|
|
|
|
ret = crypto_shash_setkey(hmac_tfm, prk, prk_len);
|
|
if (ret)
|
|
goto out_free_prk;
|
|
|
|
/*
|
|
* 2 additional bytes for the length field from HDKF-Expand-Label,
|
|
* 2 additional bytes for the HMAC ID, and one byte for the space
|
|
* separator.
|
|
*/
|
|
info_len = strlen(psk_digest) + strlen(psk_prefix) + 5;
|
|
info = kzalloc(info_len + 1, GFP_KERNEL);
|
|
if (!info) {
|
|
ret = -ENOMEM;
|
|
goto out_free_prk;
|
|
}
|
|
|
|
put_unaligned_be16(psk_len, info);
|
|
memcpy(info + 2, psk_prefix, strlen(psk_prefix));
|
|
sprintf(info + 2 + strlen(psk_prefix), "%02d %s", hmac_id, psk_digest);
|
|
|
|
tls_key = kzalloc(psk_len, GFP_KERNEL);
|
|
if (!tls_key) {
|
|
ret = -ENOMEM;
|
|
goto out_free_info;
|
|
}
|
|
ret = hkdf_expand(hmac_tfm, info, info_len, tls_key, psk_len);
|
|
if (ret) {
|
|
kfree(tls_key);
|
|
goto out_free_info;
|
|
}
|
|
*ret_psk = tls_key;
|
|
|
|
out_free_info:
|
|
kfree(info);
|
|
out_free_prk:
|
|
kfree(prk);
|
|
out_free_shash:
|
|
crypto_free_shash(hmac_tfm);
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(nvme_auth_derive_tls_psk);
|
|
|
|
MODULE_DESCRIPTION("NVMe Authentication framework");
|
|
MODULE_LICENSE("GPL v2");
|