linux/drivers/net/wireless/realtek/rtw89/sar.c
Fedor Pchelkin dad7aafa52 wifi: rtw89: sar: do not assert wiphy lock held until probing is done
rtw89_sar_set_src() may be called at driver early init phase when
applying SAR configuration via ACPI. wiphy lock is not held there.

Since the assertion was initially added for rtw89_apply_sar_common() call
path and may be helpful for other places in future changes, keep it but
move it under RTW89_FLAG_PROBE_DONE test.

Found by Linux Verification Center (linuxtesting.org).

Fixes: 88ca3107d2 ("wifi: rtw89: sar: add skeleton for SAR configuration via ACPI")
Signed-off-by: Fedor Pchelkin <pchelkin@ispras.ru>
Signed-off-by: Ping-Ke Shih <pkshih@realtek.com>
Link: https://patch.msgid.link/20250604161339.119954-2-pchelkin@ispras.ru
2025-06-10 09:42:35 +08:00

892 lines
23 KiB
C

// SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
/* Copyright(c) 2019-2020 Realtek Corporation
*/
#include "acpi.h"
#include "debug.h"
#include "phy.h"
#include "reg.h"
#include "sar.h"
#include "util.h"
#define RTW89_TAS_FACTOR 2 /* unit: 0.25 dBm */
#define RTW89_TAS_SAR_GAP (1 << RTW89_TAS_FACTOR)
#define RTW89_TAS_DPR_GAP (1 << RTW89_TAS_FACTOR)
#define RTW89_TAS_DELTA (2 << RTW89_TAS_FACTOR)
#define RTW89_TAS_TX_RATIO_THRESHOLD 70
#define RTW89_TAS_DFLT_TX_RATIO 80
#define RTW89_TAS_DPR_ON_OFFSET (RTW89_TAS_DELTA + RTW89_TAS_SAR_GAP)
#define RTW89_TAS_DPR_OFF_OFFSET (4 << RTW89_TAS_FACTOR)
static enum rtw89_sar_subband rtw89_sar_get_subband(struct rtw89_dev *rtwdev,
u32 center_freq)
{
switch (center_freq) {
default:
rtw89_debug(rtwdev, RTW89_DBG_SAR,
"center freq: %u to SAR subband is unhandled\n",
center_freq);
fallthrough;
case 2412 ... 2484:
return RTW89_SAR_2GHZ_SUBBAND;
case 5180 ... 5320:
return RTW89_SAR_5GHZ_SUBBAND_1_2;
case 5500 ... 5720:
return RTW89_SAR_5GHZ_SUBBAND_2_E;
case 5745 ... 5885:
return RTW89_SAR_5GHZ_SUBBAND_3_4;
case 5955 ... 6155:
return RTW89_SAR_6GHZ_SUBBAND_5_L;
case 6175 ... 6415:
return RTW89_SAR_6GHZ_SUBBAND_5_H;
case 6435 ... 6515:
return RTW89_SAR_6GHZ_SUBBAND_6;
case 6535 ... 6695:
return RTW89_SAR_6GHZ_SUBBAND_7_L;
case 6715 ... 6855:
return RTW89_SAR_6GHZ_SUBBAND_7_H;
/* freq 6875 (ch 185, 20MHz) spans RTW89_SAR_6GHZ_SUBBAND_7_H
* and RTW89_SAR_6GHZ_SUBBAND_8, so directly describe it with
* struct rtw89_6ghz_span.
*/
case 6895 ... 7115:
return RTW89_SAR_6GHZ_SUBBAND_8;
}
}
static int rtw89_query_sar_config_common(struct rtw89_dev *rtwdev,
const struct rtw89_sar_parm *sar_parm,
s32 *cfg)
{
struct rtw89_sar_cfg_common *rtwsar = &rtwdev->sar.cfg_common;
enum rtw89_sar_subband subband_l, subband_h;
u32 center_freq = sar_parm->center_freq;
const struct rtw89_6ghz_span *span;
span = rtw89_get_6ghz_span(rtwdev, center_freq);
if (span && RTW89_SAR_SPAN_VALID(span)) {
subband_l = span->sar_subband_low;
subband_h = span->sar_subband_high;
} else {
subband_l = rtw89_sar_get_subband(rtwdev, center_freq);
subband_h = subband_l;
}
rtw89_debug(rtwdev, RTW89_DBG_SAR,
"center_freq %u: SAR subband {%u, %u}\n",
center_freq, subband_l, subband_h);
if (!rtwsar->set[subband_l] && !rtwsar->set[subband_h])
return -ENODATA;
if (!rtwsar->set[subband_l])
*cfg = rtwsar->cfg[subband_h];
else if (!rtwsar->set[subband_h])
*cfg = rtwsar->cfg[subband_l];
else
*cfg = min(rtwsar->cfg[subband_l], rtwsar->cfg[subband_h]);
return 0;
}
static const struct rtw89_sar_entry_from_acpi *
rtw89_sar_cfg_acpi_get_ent(const struct rtw89_sar_cfg_acpi *rtwsar,
enum rtw89_rf_path path,
enum rtw89_regulation_type regd)
{
const struct rtw89_sar_indicator_from_acpi *ind = &rtwsar->indicator;
const struct rtw89_sar_table_from_acpi *tbl;
u8 sel;
sel = ind->tblsel[path];
tbl = &rtwsar->tables[sel];
return &tbl->entries[regd];
}
static
s32 rtw89_sar_cfg_acpi_get_min(const struct rtw89_sar_entry_from_acpi *ent,
enum rtw89_rf_path path,
enum rtw89_acpi_sar_subband subband_low,
enum rtw89_acpi_sar_subband subband_high)
{
return min(ent->v[subband_low][path], ent->v[subband_high][path]);
}
static int rtw89_query_sar_config_acpi(struct rtw89_dev *rtwdev,
const struct rtw89_sar_parm *sar_parm,
s32 *cfg)
{
const struct rtw89_chip_info *chip = rtwdev->chip;
const struct rtw89_sar_cfg_acpi *rtwsar = &rtwdev->sar.cfg_acpi;
const struct rtw89_sar_entry_from_acpi *ent_a, *ent_b;
enum rtw89_acpi_sar_subband subband_l, subband_h;
u32 center_freq = sar_parm->center_freq;
const struct rtw89_6ghz_span *span;
enum rtw89_regulation_type regd;
enum rtw89_band band;
s32 cfg_a, cfg_b;
span = rtw89_get_6ghz_span(rtwdev, center_freq);
if (span && RTW89_ACPI_SAR_SPAN_VALID(span)) {
subband_l = span->acpi_sar_subband_low;
subband_h = span->acpi_sar_subband_high;
} else {
subband_l = rtw89_acpi_sar_get_subband(rtwdev, center_freq);
subband_h = subband_l;
}
band = rtw89_acpi_sar_subband_to_band(rtwdev, subband_l);
regd = rtw89_regd_get(rtwdev, band);
ent_a = rtw89_sar_cfg_acpi_get_ent(rtwsar, RF_PATH_A, regd);
ent_b = rtw89_sar_cfg_acpi_get_ent(rtwsar, RF_PATH_B, regd);
cfg_a = rtw89_sar_cfg_acpi_get_min(ent_a, RF_PATH_A, subband_l, subband_h);
cfg_b = rtw89_sar_cfg_acpi_get_min(ent_b, RF_PATH_B, subband_l, subband_h);
if (chip->support_sar_by_ant) {
/* With declaration of support_sar_by_ant, relax the general
* SAR querying to return the maximum between paths. However,
* expect chip has dealt with the corresponding SAR settings
* by path. (To get SAR for a given path, chip can then query
* with force_path.)
*/
if (sar_parm->force_path) {
switch (sar_parm->path) {
default:
case RF_PATH_A:
*cfg = cfg_a;
break;
case RF_PATH_B:
*cfg = cfg_b;
break;
}
} else {
*cfg = max(cfg_a, cfg_b);
}
} else {
*cfg = min(cfg_a, cfg_b);
}
if (sar_parm->ntx == RTW89_2TX)
*cfg -= rtwsar->downgrade_2tx;
return 0;
}
static const
struct rtw89_sar_handler rtw89_sar_handlers[RTW89_SAR_SOURCE_NR] = {
[RTW89_SAR_SOURCE_COMMON] = {
.descr_sar_source = "RTW89_SAR_SOURCE_COMMON",
.txpwr_factor_sar = 2,
.query_sar_config = rtw89_query_sar_config_common,
},
[RTW89_SAR_SOURCE_ACPI] = {
.descr_sar_source = "RTW89_SAR_SOURCE_ACPI",
.txpwr_factor_sar = TXPWR_FACTOR_OF_RTW89_ACPI_SAR,
.query_sar_config = rtw89_query_sar_config_acpi,
},
};
#define rtw89_sar_set_src(_dev, _src, _cfg_name, _cfg_data) \
do { \
typeof(_src) _s = (_src); \
typeof(_dev) _d = (_dev); \
BUILD_BUG_ON(!rtw89_sar_handlers[_s].descr_sar_source); \
BUILD_BUG_ON(!rtw89_sar_handlers[_s].query_sar_config); \
if (test_bit(RTW89_FLAG_PROBE_DONE, _d->flags)) \
lockdep_assert_wiphy(_d->hw->wiphy); \
_d->sar._cfg_name = *(_cfg_data); \
_d->sar.src = _s; \
} while (0)
static s8 rtw89_txpwr_sar_to_mac(struct rtw89_dev *rtwdev, u8 fct, s32 cfg)
{
const u8 fct_mac = rtwdev->chip->txpwr_factor_mac;
s32 cfg_mac;
cfg_mac = fct > fct_mac ?
cfg >> (fct - fct_mac) : cfg << (fct_mac - fct);
return (s8)clamp_t(s32, cfg_mac,
RTW89_SAR_TXPWR_MAC_MIN,
RTW89_SAR_TXPWR_MAC_MAX);
}
static s32 rtw89_txpwr_tas_to_sar(const struct rtw89_sar_handler *sar_hdl,
s32 cfg)
{
const u8 fct = sar_hdl->txpwr_factor_sar;
if (fct > RTW89_TAS_FACTOR)
return cfg << (fct - RTW89_TAS_FACTOR);
else
return cfg >> (RTW89_TAS_FACTOR - fct);
}
static s32 rtw89_txpwr_sar_to_tas(const struct rtw89_sar_handler *sar_hdl,
s32 cfg)
{
const u8 fct = sar_hdl->txpwr_factor_sar;
if (fct > RTW89_TAS_FACTOR)
return cfg >> (fct - RTW89_TAS_FACTOR);
else
return cfg << (RTW89_TAS_FACTOR - fct);
}
static bool rtw89_tas_is_active(struct rtw89_dev *rtwdev)
{
struct rtw89_tas_info *tas = &rtwdev->tas;
struct rtw89_vif *rtwvif;
if (!tas->enable)
return false;
rtw89_for_each_rtwvif(rtwdev, rtwvif) {
if (ieee80211_vif_is_mld(rtwvif_to_vif(rtwvif)))
return false;
}
return true;
}
static const char *rtw89_tas_state_str(enum rtw89_tas_state state)
{
switch (state) {
case RTW89_TAS_STATE_DPR_OFF:
return "DPR OFF";
case RTW89_TAS_STATE_DPR_ON:
return "DPR ON";
case RTW89_TAS_STATE_STATIC_SAR:
return "STATIC SAR";
default:
return NULL;
}
}
s8 rtw89_query_sar(struct rtw89_dev *rtwdev, const struct rtw89_sar_parm *sar_parm)
{
const enum rtw89_sar_sources src = rtwdev->sar.src;
/* its members are protected by rtw89_sar_set_src() */
const struct rtw89_sar_handler *sar_hdl = &rtw89_sar_handlers[src];
struct rtw89_tas_info *tas = &rtwdev->tas;
s32 offset;
int ret;
s32 cfg;
u8 fct;
lockdep_assert_wiphy(rtwdev->hw->wiphy);
if (src == RTW89_SAR_SOURCE_NONE)
return RTW89_SAR_TXPWR_MAC_MAX;
ret = sar_hdl->query_sar_config(rtwdev, sar_parm, &cfg);
if (ret)
return RTW89_SAR_TXPWR_MAC_MAX;
if (rtw89_tas_is_active(rtwdev)) {
switch (tas->state) {
case RTW89_TAS_STATE_DPR_OFF:
offset = rtw89_txpwr_tas_to_sar(sar_hdl, RTW89_TAS_DPR_OFF_OFFSET);
cfg += offset;
break;
case RTW89_TAS_STATE_DPR_ON:
offset = rtw89_txpwr_tas_to_sar(sar_hdl, RTW89_TAS_DPR_ON_OFFSET);
cfg -= offset;
break;
case RTW89_TAS_STATE_STATIC_SAR:
default:
break;
}
}
fct = sar_hdl->txpwr_factor_sar;
return rtw89_txpwr_sar_to_mac(rtwdev, fct, cfg);
}
EXPORT_SYMBOL(rtw89_query_sar);
int rtw89_print_sar(struct rtw89_dev *rtwdev, char *buf, size_t bufsz,
const struct rtw89_sar_parm *sar_parm)
{
const enum rtw89_sar_sources src = rtwdev->sar.src;
/* its members are protected by rtw89_sar_set_src() */
const struct rtw89_sar_handler *sar_hdl = &rtw89_sar_handlers[src];
const u8 fct_mac = rtwdev->chip->txpwr_factor_mac;
char *p = buf, *end = buf + bufsz;
int ret;
s32 cfg;
u8 fct;
lockdep_assert_wiphy(rtwdev->hw->wiphy);
if (src == RTW89_SAR_SOURCE_NONE) {
p += scnprintf(p, end - p, "no SAR is applied\n");
goto out;
}
p += scnprintf(p, end - p, "source: %d (%s)\n", src,
sar_hdl->descr_sar_source);
ret = sar_hdl->query_sar_config(rtwdev, sar_parm, &cfg);
if (ret) {
p += scnprintf(p, end - p, "config: return code: %d\n", ret);
p += scnprintf(p, end - p,
"assign: max setting: %d (unit: 1/%lu dBm)\n",
RTW89_SAR_TXPWR_MAC_MAX, BIT(fct_mac));
goto out;
}
fct = sar_hdl->txpwr_factor_sar;
p += scnprintf(p, end - p, "config: %d (unit: 1/%lu dBm)\n", cfg,
BIT(fct));
p += scnprintf(p, end - p, "support different configs by antenna: %s\n",
str_yes_no(rtwdev->chip->support_sar_by_ant));
out:
return p - buf;
}
int rtw89_print_tas(struct rtw89_dev *rtwdev, char *buf, size_t bufsz)
{
struct rtw89_tas_info *tas = &rtwdev->tas;
char *p = buf, *end = buf + bufsz;
if (!rtw89_tas_is_active(rtwdev)) {
p += scnprintf(p, end - p, "no TAS is applied\n");
goto out;
}
p += scnprintf(p, end - p, "State: %s\n",
rtw89_tas_state_str(tas->state));
p += scnprintf(p, end - p, "Average time: %d\n",
tas->window_size * 2);
p += scnprintf(p, end - p, "SAR gap: %d dBm\n",
RTW89_TAS_SAR_GAP >> RTW89_TAS_FACTOR);
p += scnprintf(p, end - p, "DPR gap: %d dBm\n",
RTW89_TAS_DPR_GAP >> RTW89_TAS_FACTOR);
p += scnprintf(p, end - p, "DPR ON offset: %d dBm\n",
RTW89_TAS_DPR_ON_OFFSET >> RTW89_TAS_FACTOR);
p += scnprintf(p, end - p, "DPR OFF offset: %d dBm\n",
RTW89_TAS_DPR_OFF_OFFSET >> RTW89_TAS_FACTOR);
out:
return p - buf;
}
static int rtw89_apply_sar_common(struct rtw89_dev *rtwdev,
const struct rtw89_sar_cfg_common *sar)
{
/* let common SAR have the highest priority; always apply it */
rtw89_sar_set_src(rtwdev, RTW89_SAR_SOURCE_COMMON, cfg_common, sar);
rtw89_core_set_chip_txpwr(rtwdev);
rtw89_tas_reset(rtwdev, false);
return 0;
}
static const struct cfg80211_sar_freq_ranges rtw89_common_sar_freq_ranges[] = {
{ .start_freq = 2412, .end_freq = 2484, },
{ .start_freq = 5180, .end_freq = 5320, },
{ .start_freq = 5500, .end_freq = 5720, },
{ .start_freq = 5745, .end_freq = 5885, },
{ .start_freq = 5955, .end_freq = 6155, },
{ .start_freq = 6175, .end_freq = 6415, },
{ .start_freq = 6435, .end_freq = 6515, },
{ .start_freq = 6535, .end_freq = 6695, },
{ .start_freq = 6715, .end_freq = 6875, },
{ .start_freq = 6875, .end_freq = 7115, },
};
static_assert(RTW89_SAR_SUBBAND_NR ==
ARRAY_SIZE(rtw89_common_sar_freq_ranges));
const struct cfg80211_sar_capa rtw89_sar_capa = {
.type = NL80211_SAR_TYPE_POWER,
.num_freq_ranges = ARRAY_SIZE(rtw89_common_sar_freq_ranges),
.freq_ranges = rtw89_common_sar_freq_ranges,
};
int rtw89_ops_set_sar_specs(struct ieee80211_hw *hw,
const struct cfg80211_sar_specs *sar)
{
struct rtw89_dev *rtwdev = hw->priv;
struct rtw89_sar_cfg_common sar_common = {0};
u8 fct;
u32 freq_start;
u32 freq_end;
s32 power;
u32 i, idx;
lockdep_assert_wiphy(rtwdev->hw->wiphy);
if (sar->type != NL80211_SAR_TYPE_POWER)
return -EINVAL;
fct = rtw89_sar_handlers[RTW89_SAR_SOURCE_COMMON].txpwr_factor_sar;
for (i = 0; i < sar->num_sub_specs; i++) {
idx = sar->sub_specs[i].freq_range_index;
if (idx >= ARRAY_SIZE(rtw89_common_sar_freq_ranges))
return -EINVAL;
freq_start = rtw89_common_sar_freq_ranges[idx].start_freq;
freq_end = rtw89_common_sar_freq_ranges[idx].end_freq;
power = sar->sub_specs[i].power;
rtw89_debug(rtwdev, RTW89_DBG_SAR,
"On freq %u to %u, set SAR limit %d (unit: 1/%lu dBm)\n",
freq_start, freq_end, power, BIT(fct));
sar_common.set[idx] = true;
sar_common.cfg[idx] = power;
}
return rtw89_apply_sar_common(rtwdev, &sar_common);
}
static void rtw89_apply_sar_acpi(struct rtw89_dev *rtwdev,
const struct rtw89_sar_cfg_acpi *sar)
{
const struct rtw89_sar_table_from_acpi *tbl;
const struct rtw89_sar_entry_from_acpi *ent;
enum rtw89_sar_sources src;
unsigned int i, j, k;
src = rtwdev->sar.src;
if (src != RTW89_SAR_SOURCE_NONE) {
rtw89_warn(rtwdev, "SAR source: %d is in use", src);
return;
}
rtw89_debug(rtwdev, RTW89_DBG_SAR,
"SAR-ACPI downgrade 2TX: %u (unit: 1/%lu dBm)\n",
sar->downgrade_2tx, BIT(TXPWR_FACTOR_OF_RTW89_ACPI_SAR));
for (i = 0; i < sar->valid_num; i++) {
tbl = &sar->tables[i];
for (j = 0; j < RTW89_REGD_NUM; j++) {
ent = &tbl->entries[j];
rtw89_debug(rtwdev, RTW89_DBG_SAR,
"SAR-ACPI-[%u] REGD-%s (unit: 1/%lu dBm)\n",
i, rtw89_regd_get_string(j),
BIT(TXPWR_FACTOR_OF_RTW89_ACPI_SAR));
for (k = 0; k < NUM_OF_RTW89_ACPI_SAR_SUBBAND; k++)
rtw89_debug(rtwdev, RTW89_DBG_SAR,
"On subband %u, { %d, %d }\n", k,
ent->v[k][RF_PATH_A], ent->v[k][RF_PATH_B]);
}
}
rtw89_sar_set_src(rtwdev, RTW89_SAR_SOURCE_ACPI, cfg_acpi, sar);
/* SAR via ACPI is only configured in the early initial phase, so
* it does not seem necessary to reset txpwr related things here.
*/
}
static void rtw89_set_sar_from_acpi(struct rtw89_dev *rtwdev)
{
struct rtw89_sar_cfg_acpi *cfg;
int ret;
cfg = kzalloc(sizeof(*cfg), GFP_KERNEL);
if (!cfg)
return;
ret = rtw89_acpi_evaluate_sar(rtwdev, cfg);
if (ret) {
rtw89_debug(rtwdev, RTW89_DBG_SAR,
"evaluating ACPI SAR returns %d\n", ret);
goto out;
}
if (unlikely(!cfg->valid_num)) {
rtw89_debug(rtwdev, RTW89_DBG_SAR, "no valid SAR table from ACPI\n");
goto out;
}
rtw89_apply_sar_acpi(rtwdev, cfg);
out:
kfree(cfg);
}
static bool rtw89_tas_query_sar_config(struct rtw89_dev *rtwdev, s32 *cfg)
{
const struct rtw89_chan *chan = rtw89_chan_get(rtwdev, RTW89_CHANCTX_0);
const enum rtw89_sar_sources src = rtwdev->sar.src;
/* its members are protected by rtw89_sar_set_src() */
const struct rtw89_sar_handler *sar_hdl = &rtw89_sar_handlers[src];
struct rtw89_sar_parm sar_parm = {};
int ret;
if (src == RTW89_SAR_SOURCE_NONE)
return false;
sar_parm.center_freq = chan->freq;
ret = sar_hdl->query_sar_config(rtwdev, &sar_parm, cfg);
if (ret)
return false;
*cfg = rtw89_txpwr_sar_to_tas(sar_hdl, *cfg);
return true;
}
static bool __rtw89_tas_state_update(struct rtw89_dev *rtwdev,
enum rtw89_tas_state state)
{
struct rtw89_tas_info *tas = &rtwdev->tas;
if (tas->state == state)
return false;
rtw89_debug(rtwdev, RTW89_DBG_SAR, "tas: switch state: %s -> %s\n",
rtw89_tas_state_str(tas->state), rtw89_tas_state_str(state));
tas->state = state;
return true;
}
static void rtw89_tas_state_update(struct rtw89_dev *rtwdev,
enum rtw89_tas_state state)
{
if (!__rtw89_tas_state_update(rtwdev, state))
return;
rtw89_core_set_chip_txpwr(rtwdev);
}
static u32 rtw89_tas_get_window_size(struct rtw89_dev *rtwdev)
{
const struct rtw89_chan *chan = rtw89_chan_get(rtwdev, RTW89_CHANCTX_0);
u8 band = chan->band_type;
u8 regd = rtw89_regd_get(rtwdev, band);
switch (regd) {
default:
rtw89_debug(rtwdev, RTW89_DBG_SAR,
"tas: regd: %u is unhandled\n", regd);
fallthrough;
case RTW89_IC:
case RTW89_KCC:
return 180;
case RTW89_FCC:
switch (band) {
case RTW89_BAND_2G:
return 50;
case RTW89_BAND_5G:
return 30;
case RTW89_BAND_6G:
default:
return 15;
}
break;
}
}
static void rtw89_tas_window_update(struct rtw89_dev *rtwdev)
{
u32 window_size = rtw89_tas_get_window_size(rtwdev);
struct rtw89_tas_info *tas = &rtwdev->tas;
u64 total_txpwr = 0;
u8 head_idx;
u32 i, j;
WARN_ON_ONCE(tas->window_size > RTW89_TAS_TXPWR_WINDOW);
if (tas->window_size == window_size)
return;
rtw89_debug(rtwdev, RTW89_DBG_SAR, "tas: window update: %u -> %u\n",
tas->window_size, window_size);
head_idx = (tas->txpwr_tail_idx - window_size + 1 + RTW89_TAS_TXPWR_WINDOW) %
RTW89_TAS_TXPWR_WINDOW;
for (i = 0; i < window_size; i++) {
j = (head_idx + i) % RTW89_TAS_TXPWR_WINDOW;
total_txpwr += tas->txpwr_history[j];
}
tas->window_size = window_size;
tas->total_txpwr = total_txpwr;
tas->txpwr_head_idx = head_idx;
}
static void rtw89_tas_history_update(struct rtw89_dev *rtwdev)
{
struct rtw89_bb_ctx *bb = rtw89_get_bb_ctx(rtwdev, RTW89_PHY_0);
struct rtw89_env_monitor_info *env = &bb->env_monitor;
struct rtw89_tas_info *tas = &rtwdev->tas;
u8 tx_ratio = env->ifs_clm_tx_ratio;
u64 instant_txpwr, txpwr;
/* txpwr in unit of linear(mW) multiply by percentage */
if (tx_ratio == 0) {
/* special case: idle tx power
* use -40 dBm * 100 tx ratio
*/
instant_txpwr = rtw89_db_to_linear(-40);
txpwr = instant_txpwr * 100;
} else {
instant_txpwr = tas->instant_txpwr;
txpwr = instant_txpwr * tx_ratio;
}
tas->total_txpwr += txpwr - tas->txpwr_history[tas->txpwr_head_idx];
tas->total_tx_ratio += tx_ratio - tas->tx_ratio_history[tas->tx_ratio_idx];
tas->tx_ratio_history[tas->tx_ratio_idx] = tx_ratio;
tas->txpwr_head_idx = (tas->txpwr_head_idx + 1) % RTW89_TAS_TXPWR_WINDOW;
tas->txpwr_tail_idx = (tas->txpwr_tail_idx + 1) % RTW89_TAS_TXPWR_WINDOW;
tas->tx_ratio_idx = (tas->tx_ratio_idx + 1) % RTW89_TAS_TX_RATIO_WINDOW;
tas->txpwr_history[tas->txpwr_tail_idx] = txpwr;
rtw89_debug(rtwdev, RTW89_DBG_SAR,
"tas: instant_txpwr: %d, tx_ratio: %u, txpwr: %d\n",
rtw89_linear_to_db_quarter(instant_txpwr), tx_ratio,
rtw89_linear_to_db_quarter(div_u64(txpwr, PERCENT)));
}
static bool rtw89_tas_rolling_average(struct rtw89_dev *rtwdev)
{
struct rtw89_tas_info *tas = &rtwdev->tas;
s32 dpr_on_threshold, dpr_off_threshold;
enum rtw89_tas_state state;
u16 tx_ratio_avg;
s32 txpwr_avg;
u64 linear;
linear = DIV_ROUND_DOWN_ULL(tas->total_txpwr, tas->window_size * PERCENT);
txpwr_avg = rtw89_linear_to_db_quarter(linear);
tx_ratio_avg = tas->total_tx_ratio / RTW89_TAS_TX_RATIO_WINDOW;
dpr_on_threshold = tas->dpr_on_threshold;
dpr_off_threshold = tas->dpr_off_threshold;
rtw89_debug(rtwdev, RTW89_DBG_SAR,
"tas: DPR_ON: %d, DPR_OFF: %d, txpwr_avg: %d, tx_ratio_avg: %u\n",
dpr_on_threshold, dpr_off_threshold, txpwr_avg, tx_ratio_avg);
if (tx_ratio_avg >= RTW89_TAS_TX_RATIO_THRESHOLD)
state = RTW89_TAS_STATE_STATIC_SAR;
else if (txpwr_avg >= dpr_on_threshold)
state = RTW89_TAS_STATE_DPR_ON;
else if (txpwr_avg < dpr_off_threshold)
state = RTW89_TAS_STATE_DPR_OFF;
else
return false;
return __rtw89_tas_state_update(rtwdev, state);
}
static void rtw89_tas_init(struct rtw89_dev *rtwdev)
{
const struct rtw89_chip_info *chip = rtwdev->chip;
struct rtw89_tas_info *tas = &rtwdev->tas;
const struct rtw89_acpi_policy_tas *ptr;
struct rtw89_acpi_dsm_result res = {};
int ret;
if (!chip->support_tas)
return;
ret = rtw89_acpi_evaluate_dsm(rtwdev, RTW89_ACPI_DSM_FUNC_TAS_EN, &res);
if (ret) {
rtw89_debug(rtwdev, RTW89_DBG_SAR,
"acpi: cannot get TAS: %d\n", ret);
return;
}
ptr = res.u.policy_tas;
switch (ptr->enable) {
case 0:
tas->enable = false;
break;
case 1:
tas->enable = true;
break;
default:
break;
}
if (!tas->enable) {
rtw89_debug(rtwdev, RTW89_DBG_SAR, "TAS not enable\n");
goto out;
}
tas->enabled_countries = ptr->enabled_countries;
out:
kfree(ptr);
}
void rtw89_tas_reset(struct rtw89_dev *rtwdev, bool force)
{
const struct rtw89_chan *chan = rtw89_chan_get(rtwdev, RTW89_CHANCTX_0);
struct rtw89_tas_info *tas = &rtwdev->tas;
u64 linear;
s32 cfg;
int i;
if (!rtw89_tas_is_active(rtwdev))
return;
if (!rtw89_tas_query_sar_config(rtwdev, &cfg))
return;
tas->dpr_on_threshold = cfg - RTW89_TAS_SAR_GAP;
tas->dpr_off_threshold = cfg - RTW89_TAS_SAR_GAP - RTW89_TAS_DPR_GAP;
/* avoid history reset after new SAR apply */
if (!force && tas->keep_history)
return;
linear = rtw89_db_quarter_to_linear(cfg) * RTW89_TAS_DFLT_TX_RATIO;
for (i = 0; i < RTW89_TAS_TXPWR_WINDOW; i++)
tas->txpwr_history[i] = linear;
for (i = 0; i < RTW89_TAS_TX_RATIO_WINDOW; i++)
tas->tx_ratio_history[i] = RTW89_TAS_DFLT_TX_RATIO;
tas->total_tx_ratio = RTW89_TAS_DFLT_TX_RATIO * RTW89_TAS_TX_RATIO_WINDOW;
tas->total_txpwr = linear * RTW89_TAS_TXPWR_WINDOW;
tas->window_size = RTW89_TAS_TXPWR_WINDOW;
tas->txpwr_head_idx = 0;
tas->txpwr_tail_idx = RTW89_TAS_TXPWR_WINDOW - 1;
tas->tx_ratio_idx = 0;
tas->state = RTW89_TAS_STATE_DPR_OFF;
tas->backup_state = RTW89_TAS_STATE_DPR_OFF;
tas->keep_history = true;
rtw89_debug(rtwdev, RTW89_DBG_SAR,
"tas: band: %u, freq: %u\n", chan->band_type, chan->freq);
}
static bool rtw89_tas_track(struct rtw89_dev *rtwdev)
{
struct rtw89_tas_info *tas = &rtwdev->tas;
struct rtw89_hal *hal = &rtwdev->hal;
s32 cfg;
if (hal->disabled_dm_bitmap & BIT(RTW89_DM_TAS))
return false;
if (!rtw89_tas_is_active(rtwdev))
return false;
if (!rtw89_tas_query_sar_config(rtwdev, &cfg) || tas->block_regd)
return __rtw89_tas_state_update(rtwdev, RTW89_TAS_STATE_STATIC_SAR);
if (tas->pause)
return false;
rtw89_tas_window_update(rtwdev);
rtw89_tas_history_update(rtwdev);
return rtw89_tas_rolling_average(rtwdev);
}
void rtw89_tas_scan(struct rtw89_dev *rtwdev, bool start)
{
struct rtw89_tas_info *tas = &rtwdev->tas;
s32 cfg;
if (!rtw89_tas_is_active(rtwdev))
return;
if (!rtw89_tas_query_sar_config(rtwdev, &cfg))
return;
if (start) {
tas->backup_state = tas->state;
rtw89_tas_state_update(rtwdev, RTW89_TAS_STATE_STATIC_SAR);
} else {
rtw89_tas_state_update(rtwdev, tas->backup_state);
}
}
void rtw89_tas_chanctx_cb(struct rtw89_dev *rtwdev,
enum rtw89_chanctx_state state)
{
struct rtw89_tas_info *tas = &rtwdev->tas;
s32 cfg;
if (!rtw89_tas_is_active(rtwdev))
return;
if (!rtw89_tas_query_sar_config(rtwdev, &cfg))
return;
switch (state) {
case RTW89_CHANCTX_STATE_MCC_START:
tas->pause = true;
rtw89_tas_state_update(rtwdev, RTW89_TAS_STATE_STATIC_SAR);
break;
case RTW89_CHANCTX_STATE_MCC_STOP:
tas->pause = false;
break;
default:
break;
}
}
EXPORT_SYMBOL(rtw89_tas_chanctx_cb);
void rtw89_sar_init(struct rtw89_dev *rtwdev)
{
rtw89_set_sar_from_acpi(rtwdev);
rtw89_tas_init(rtwdev);
}
static bool rtw89_sar_track_acpi(struct rtw89_dev *rtwdev)
{
struct rtw89_sar_cfg_acpi *cfg = &rtwdev->sar.cfg_acpi;
struct rtw89_sar_indicator_from_acpi *ind = &cfg->indicator;
const enum rtw89_sar_sources src = rtwdev->sar.src;
bool changed;
int ret;
lockdep_assert_wiphy(rtwdev->hw->wiphy);
if (src != RTW89_SAR_SOURCE_ACPI)
return false;
if (!ind->enable_sync)
return false;
ret = rtw89_acpi_evaluate_dynamic_sar_indicator(rtwdev, cfg, &changed);
if (likely(!ret))
return changed;
rtw89_debug(rtwdev, RTW89_DBG_SAR,
"%s: failed to track indicator: %d; reset and disable\n",
__func__, ret);
memset(ind->tblsel, 0, sizeof(ind->tblsel));
ind->enable_sync = false;
return true;
}
void rtw89_sar_track(struct rtw89_dev *rtwdev)
{
unsigned int changes = 0;
changes += rtw89_sar_track_acpi(rtwdev);
changes += rtw89_tas_track(rtwdev);
if (!changes)
return;
rtw89_core_set_chip_txpwr(rtwdev);
}