linux/drivers/net/wireless/realtek/rtw88/sdio.c
Bitterblue Smith 57d6be36cf wifi: rtw88: Rename the RTW_WCPU_11{AC,N} enums
The RTW_WCPU_11AC and RTW_WCPU_11N enums are used to identify two
types of microcontrollers used in Realtek chips, but these names are
misleading. The "11AC" type was also used in 11n devices (e.g.
RTL8733BU, not supported by rtw88), and the "11N" type was also used
in 11ac devices (RTL8821AU, RTL8812AU).

Rename RTW_WCPU_11AC to RTW_WCPU_3081 and RTW_WCPU_11N to RTW_WCPU_8051.
(8051 is well known. It's less clear what 3081 is, but the out of tree
drivers use this name.)

Signed-off-by: Bitterblue Smith <rtl8821cerfe2@gmail.com>
Signed-off-by: Ping-Ke Shih <pkshih@realtek.com>
Link: https://patch.msgid.link/bfb1099c-db52-4b25-b111-17ab712e9404@gmail.com
2025-06-10 10:19:45 +08:00

1433 lines
34 KiB
C

// SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
/* Copyright (C) 2021 Martin Blumenstingl <martin.blumenstingl@googlemail.com>
* Copyright (C) 2021 Jernej Skrabec <jernej.skrabec@gmail.com>
*
* Based on rtw88/pci.c:
* Copyright(c) 2018-2019 Realtek Corporation
*/
#include <linux/module.h>
#include <linux/mmc/host.h>
#include <linux/mmc/sdio_func.h>
#include "main.h"
#include "mac.h"
#include "debug.h"
#include "fw.h"
#include "ps.h"
#include "reg.h"
#include "rx.h"
#include "sdio.h"
#include "tx.h"
#define RTW_SDIO_INDIRECT_RW_RETRIES 50
static bool rtw_sdio_is_bus_addr(u32 addr)
{
return !!(addr & RTW_SDIO_BUS_MSK);
}
static bool rtw_sdio_bus_claim_needed(struct rtw_sdio *rtwsdio)
{
return !rtwsdio->irq_thread ||
rtwsdio->irq_thread != current;
}
static u32 rtw_sdio_to_bus_offset(struct rtw_dev *rtwdev, u32 addr)
{
switch (addr & RTW_SDIO_BUS_MSK) {
case WLAN_IOREG_OFFSET:
addr &= WLAN_IOREG_REG_MSK;
addr |= FIELD_PREP(REG_SDIO_CMD_ADDR_MSK,
REG_SDIO_CMD_ADDR_MAC_REG);
break;
case SDIO_LOCAL_OFFSET:
addr &= SDIO_LOCAL_REG_MSK;
addr |= FIELD_PREP(REG_SDIO_CMD_ADDR_MSK,
REG_SDIO_CMD_ADDR_SDIO_REG);
break;
default:
rtw_warn(rtwdev, "Cannot convert addr 0x%08x to bus offset",
addr);
}
return addr;
}
static bool rtw_sdio_use_memcpy_io(struct rtw_dev *rtwdev, u32 addr,
u8 alignment)
{
return IS_ALIGNED(addr, alignment) &&
test_bit(RTW_FLAG_POWERON, rtwdev->flags);
}
static void rtw_sdio_writel(struct rtw_dev *rtwdev, u32 val, u32 addr,
int *err_ret)
{
struct rtw_sdio *rtwsdio = (struct rtw_sdio *)rtwdev->priv;
u8 buf[4];
int i;
if (rtw_sdio_use_memcpy_io(rtwdev, addr, 4)) {
sdio_writel(rtwsdio->sdio_func, val, addr, err_ret);
return;
}
*(__le32 *)buf = cpu_to_le32(val);
for (i = 0; i < 4; i++) {
sdio_writeb(rtwsdio->sdio_func, buf[i], addr + i, err_ret);
if (*err_ret)
return;
}
}
static void rtw_sdio_writew(struct rtw_dev *rtwdev, u16 val, u32 addr,
int *err_ret)
{
struct rtw_sdio *rtwsdio = (struct rtw_sdio *)rtwdev->priv;
u8 buf[2];
int i;
*(__le16 *)buf = cpu_to_le16(val);
for (i = 0; i < 2; i++) {
sdio_writeb(rtwsdio->sdio_func, buf[i], addr + i, err_ret);
if (*err_ret)
return;
}
}
static u32 rtw_sdio_readl(struct rtw_dev *rtwdev, u32 addr, int *err_ret)
{
struct rtw_sdio *rtwsdio = (struct rtw_sdio *)rtwdev->priv;
u8 buf[4];
int i;
if (rtw_sdio_use_memcpy_io(rtwdev, addr, 4))
return sdio_readl(rtwsdio->sdio_func, addr, err_ret);
for (i = 0; i < 4; i++) {
buf[i] = sdio_readb(rtwsdio->sdio_func, addr + i, err_ret);
if (*err_ret)
return 0;
}
return le32_to_cpu(*(__le32 *)buf);
}
static u16 rtw_sdio_readw(struct rtw_dev *rtwdev, u32 addr, int *err_ret)
{
struct rtw_sdio *rtwsdio = (struct rtw_sdio *)rtwdev->priv;
u8 buf[2];
int i;
for (i = 0; i < 2; i++) {
buf[i] = sdio_readb(rtwsdio->sdio_func, addr + i, err_ret);
if (*err_ret)
return 0;
}
return le16_to_cpu(*(__le16 *)buf);
}
static u32 rtw_sdio_to_io_address(struct rtw_dev *rtwdev, u32 addr,
bool direct)
{
if (!direct)
return addr;
if (!rtw_sdio_is_bus_addr(addr))
addr |= WLAN_IOREG_OFFSET;
return rtw_sdio_to_bus_offset(rtwdev, addr);
}
static bool rtw_sdio_use_direct_io(struct rtw_dev *rtwdev, u32 addr)
{
return !rtw_sdio_is_sdio30_supported(rtwdev) ||
rtw_sdio_is_bus_addr(addr);
}
static int rtw_sdio_indirect_reg_cfg(struct rtw_dev *rtwdev, u32 addr, u32 cfg)
{
struct rtw_sdio *rtwsdio = (struct rtw_sdio *)rtwdev->priv;
unsigned int retry;
u32 reg_cfg;
int ret;
u8 tmp;
reg_cfg = rtw_sdio_to_bus_offset(rtwdev, REG_SDIO_INDIRECT_REG_CFG);
rtw_sdio_writel(rtwdev, addr | cfg | BIT_SDIO_INDIRECT_REG_CFG_UNK20,
reg_cfg, &ret);
if (ret)
return ret;
for (retry = 0; retry < RTW_SDIO_INDIRECT_RW_RETRIES; retry++) {
tmp = sdio_readb(rtwsdio->sdio_func, reg_cfg + 2, &ret);
if (!ret && (tmp & BIT(4)))
return 0;
}
return -ETIMEDOUT;
}
static u8 rtw_sdio_indirect_read8(struct rtw_dev *rtwdev, u32 addr,
int *err_ret)
{
struct rtw_sdio *rtwsdio = (struct rtw_sdio *)rtwdev->priv;
u32 reg_data;
*err_ret = rtw_sdio_indirect_reg_cfg(rtwdev, addr,
BIT_SDIO_INDIRECT_REG_CFG_READ);
if (*err_ret)
return 0;
reg_data = rtw_sdio_to_bus_offset(rtwdev, REG_SDIO_INDIRECT_REG_DATA);
return sdio_readb(rtwsdio->sdio_func, reg_data, err_ret);
}
static int rtw_sdio_indirect_read_bytes(struct rtw_dev *rtwdev, u32 addr,
u8 *buf, int count)
{
int i, ret = 0;
for (i = 0; i < count; i++) {
buf[i] = rtw_sdio_indirect_read8(rtwdev, addr + i, &ret);
if (ret)
break;
}
return ret;
}
static u16 rtw_sdio_indirect_read16(struct rtw_dev *rtwdev, u32 addr,
int *err_ret)
{
u32 reg_data;
u8 buf[2];
if (!IS_ALIGNED(addr, 2)) {
*err_ret = rtw_sdio_indirect_read_bytes(rtwdev, addr, buf, 2);
if (*err_ret)
return 0;
return le16_to_cpu(*(__le16 *)buf);
}
*err_ret = rtw_sdio_indirect_reg_cfg(rtwdev, addr,
BIT_SDIO_INDIRECT_REG_CFG_READ);
if (*err_ret)
return 0;
reg_data = rtw_sdio_to_bus_offset(rtwdev, REG_SDIO_INDIRECT_REG_DATA);
return rtw_sdio_readw(rtwdev, reg_data, err_ret);
}
static u32 rtw_sdio_indirect_read32(struct rtw_dev *rtwdev, u32 addr,
int *err_ret)
{
u32 reg_data;
u8 buf[4];
if (!IS_ALIGNED(addr, 4)) {
*err_ret = rtw_sdio_indirect_read_bytes(rtwdev, addr, buf, 4);
if (*err_ret)
return 0;
return le32_to_cpu(*(__le32 *)buf);
}
*err_ret = rtw_sdio_indirect_reg_cfg(rtwdev, addr,
BIT_SDIO_INDIRECT_REG_CFG_READ);
if (*err_ret)
return 0;
reg_data = rtw_sdio_to_bus_offset(rtwdev, REG_SDIO_INDIRECT_REG_DATA);
return rtw_sdio_readl(rtwdev, reg_data, err_ret);
}
static u8 rtw_sdio_read8(struct rtw_dev *rtwdev, u32 addr)
{
struct rtw_sdio *rtwsdio = (struct rtw_sdio *)rtwdev->priv;
bool direct, bus_claim;
int ret;
u8 val;
direct = rtw_sdio_use_direct_io(rtwdev, addr);
addr = rtw_sdio_to_io_address(rtwdev, addr, direct);
bus_claim = rtw_sdio_bus_claim_needed(rtwsdio);
if (bus_claim)
sdio_claim_host(rtwsdio->sdio_func);
if (direct)
val = sdio_readb(rtwsdio->sdio_func, addr, &ret);
else
val = rtw_sdio_indirect_read8(rtwdev, addr, &ret);
if (bus_claim)
sdio_release_host(rtwsdio->sdio_func);
if (ret)
rtw_warn(rtwdev, "sdio read8 failed (0x%x): %d", addr, ret);
return val;
}
static u16 rtw_sdio_read16(struct rtw_dev *rtwdev, u32 addr)
{
struct rtw_sdio *rtwsdio = (struct rtw_sdio *)rtwdev->priv;
bool direct, bus_claim;
int ret;
u16 val;
direct = rtw_sdio_use_direct_io(rtwdev, addr);
addr = rtw_sdio_to_io_address(rtwdev, addr, direct);
bus_claim = rtw_sdio_bus_claim_needed(rtwsdio);
if (bus_claim)
sdio_claim_host(rtwsdio->sdio_func);
if (direct)
val = rtw_sdio_readw(rtwdev, addr, &ret);
else
val = rtw_sdio_indirect_read16(rtwdev, addr, &ret);
if (bus_claim)
sdio_release_host(rtwsdio->sdio_func);
if (ret)
rtw_warn(rtwdev, "sdio read16 failed (0x%x): %d", addr, ret);
return val;
}
static u32 rtw_sdio_read32(struct rtw_dev *rtwdev, u32 addr)
{
struct rtw_sdio *rtwsdio = (struct rtw_sdio *)rtwdev->priv;
bool direct, bus_claim;
u32 val;
int ret;
direct = rtw_sdio_use_direct_io(rtwdev, addr);
addr = rtw_sdio_to_io_address(rtwdev, addr, direct);
bus_claim = rtw_sdio_bus_claim_needed(rtwsdio);
if (bus_claim)
sdio_claim_host(rtwsdio->sdio_func);
if (direct)
val = rtw_sdio_readl(rtwdev, addr, &ret);
else
val = rtw_sdio_indirect_read32(rtwdev, addr, &ret);
if (bus_claim)
sdio_release_host(rtwsdio->sdio_func);
if (ret)
rtw_warn(rtwdev, "sdio read32 failed (0x%x): %d", addr, ret);
return val;
}
static void rtw_sdio_indirect_write8(struct rtw_dev *rtwdev, u8 val, u32 addr,
int *err_ret)
{
struct rtw_sdio *rtwsdio = (struct rtw_sdio *)rtwdev->priv;
u32 reg_data;
reg_data = rtw_sdio_to_bus_offset(rtwdev, REG_SDIO_INDIRECT_REG_DATA);
sdio_writeb(rtwsdio->sdio_func, val, reg_data, err_ret);
if (*err_ret)
return;
*err_ret = rtw_sdio_indirect_reg_cfg(rtwdev, addr,
BIT_SDIO_INDIRECT_REG_CFG_WRITE);
}
static void rtw_sdio_indirect_write16(struct rtw_dev *rtwdev, u16 val, u32 addr,
int *err_ret)
{
u32 reg_data;
if (!IS_ALIGNED(addr, 2)) {
addr = rtw_sdio_to_io_address(rtwdev, addr, true);
rtw_sdio_writew(rtwdev, val, addr, err_ret);
return;
}
reg_data = rtw_sdio_to_bus_offset(rtwdev, REG_SDIO_INDIRECT_REG_DATA);
rtw_sdio_writew(rtwdev, val, reg_data, err_ret);
if (*err_ret)
return;
*err_ret = rtw_sdio_indirect_reg_cfg(rtwdev, addr,
BIT_SDIO_INDIRECT_REG_CFG_WRITE |
BIT_SDIO_INDIRECT_REG_CFG_WORD);
}
static void rtw_sdio_indirect_write32(struct rtw_dev *rtwdev, u32 val,
u32 addr, int *err_ret)
{
u32 reg_data;
if (!IS_ALIGNED(addr, 4)) {
addr = rtw_sdio_to_io_address(rtwdev, addr, true);
rtw_sdio_writel(rtwdev, val, addr, err_ret);
return;
}
reg_data = rtw_sdio_to_bus_offset(rtwdev, REG_SDIO_INDIRECT_REG_DATA);
rtw_sdio_writel(rtwdev, val, reg_data, err_ret);
*err_ret = rtw_sdio_indirect_reg_cfg(rtwdev, addr,
BIT_SDIO_INDIRECT_REG_CFG_WRITE |
BIT_SDIO_INDIRECT_REG_CFG_DWORD);
}
static void rtw_sdio_write8(struct rtw_dev *rtwdev, u32 addr, u8 val)
{
struct rtw_sdio *rtwsdio = (struct rtw_sdio *)rtwdev->priv;
bool direct, bus_claim;
int ret;
direct = rtw_sdio_use_direct_io(rtwdev, addr);
addr = rtw_sdio_to_io_address(rtwdev, addr, direct);
bus_claim = rtw_sdio_bus_claim_needed(rtwsdio);
if (bus_claim)
sdio_claim_host(rtwsdio->sdio_func);
if (direct)
sdio_writeb(rtwsdio->sdio_func, val, addr, &ret);
else
rtw_sdio_indirect_write8(rtwdev, val, addr, &ret);
if (bus_claim)
sdio_release_host(rtwsdio->sdio_func);
if (ret)
rtw_warn(rtwdev, "sdio write8 failed (0x%x): %d", addr, ret);
}
static void rtw_sdio_write16(struct rtw_dev *rtwdev, u32 addr, u16 val)
{
struct rtw_sdio *rtwsdio = (struct rtw_sdio *)rtwdev->priv;
bool direct, bus_claim;
int ret;
direct = rtw_sdio_use_direct_io(rtwdev, addr);
addr = rtw_sdio_to_io_address(rtwdev, addr, direct);
bus_claim = rtw_sdio_bus_claim_needed(rtwsdio);
if (bus_claim)
sdio_claim_host(rtwsdio->sdio_func);
if (direct)
rtw_sdio_writew(rtwdev, val, addr, &ret);
else
rtw_sdio_indirect_write16(rtwdev, val, addr, &ret);
if (bus_claim)
sdio_release_host(rtwsdio->sdio_func);
if (ret)
rtw_warn(rtwdev, "sdio write16 failed (0x%x): %d", addr, ret);
}
static void rtw_sdio_write32(struct rtw_dev *rtwdev, u32 addr, u32 val)
{
struct rtw_sdio *rtwsdio = (struct rtw_sdio *)rtwdev->priv;
bool direct, bus_claim;
int ret;
direct = rtw_sdio_use_direct_io(rtwdev, addr);
addr = rtw_sdio_to_io_address(rtwdev, addr, direct);
bus_claim = rtw_sdio_bus_claim_needed(rtwsdio);
if (bus_claim)
sdio_claim_host(rtwsdio->sdio_func);
if (direct)
rtw_sdio_writel(rtwdev, val, addr, &ret);
else
rtw_sdio_indirect_write32(rtwdev, val, addr, &ret);
if (bus_claim)
sdio_release_host(rtwsdio->sdio_func);
if (ret)
rtw_warn(rtwdev, "sdio write32 failed (0x%x): %d", addr, ret);
}
static u32 rtw_sdio_get_tx_addr(struct rtw_dev *rtwdev, size_t size,
enum rtw_tx_queue_type queue)
{
u32 txaddr;
switch (queue) {
case RTW_TX_QUEUE_BCN:
case RTW_TX_QUEUE_H2C:
case RTW_TX_QUEUE_HI0:
txaddr = FIELD_PREP(REG_SDIO_CMD_ADDR_MSK,
REG_SDIO_CMD_ADDR_TXFF_HIGH);
break;
case RTW_TX_QUEUE_VI:
case RTW_TX_QUEUE_VO:
txaddr = FIELD_PREP(REG_SDIO_CMD_ADDR_MSK,
REG_SDIO_CMD_ADDR_TXFF_NORMAL);
break;
case RTW_TX_QUEUE_BE:
case RTW_TX_QUEUE_BK:
txaddr = FIELD_PREP(REG_SDIO_CMD_ADDR_MSK,
REG_SDIO_CMD_ADDR_TXFF_LOW);
break;
case RTW_TX_QUEUE_MGMT:
txaddr = FIELD_PREP(REG_SDIO_CMD_ADDR_MSK,
REG_SDIO_CMD_ADDR_TXFF_EXTRA);
break;
default:
rtw_warn(rtwdev, "Unsupported queue for TX addr: 0x%02x\n",
queue);
return 0;
}
txaddr += DIV_ROUND_UP(size, 4);
return txaddr;
};
static int rtw_sdio_read_port(struct rtw_dev *rtwdev, u8 *buf, size_t count)
{
struct rtw_sdio *rtwsdio = (struct rtw_sdio *)rtwdev->priv;
struct mmc_host *host = rtwsdio->sdio_func->card->host;
bool bus_claim = rtw_sdio_bus_claim_needed(rtwsdio);
u32 rxaddr = rtwsdio->rx_addr++;
int ret = 0, err;
size_t bytes;
if (bus_claim)
sdio_claim_host(rtwsdio->sdio_func);
while (count > 0) {
bytes = min_t(size_t, host->max_req_size, count);
err = sdio_memcpy_fromio(rtwsdio->sdio_func, buf,
RTW_SDIO_ADDR_RX_RX0FF_GEN(rxaddr),
bytes);
if (err) {
rtw_warn(rtwdev,
"Failed to read %zu byte(s) from SDIO port 0x%08x: %d",
bytes, rxaddr, err);
/* Signal to the caller that reading did not work and
* that the data in the buffer is short/corrupted.
*/
ret = err;
/* Don't stop here - instead drain the remaining data
* from the card's buffer, else the card will return
* corrupt data for the next rtw_sdio_read_port() call.
*/
}
count -= bytes;
buf += bytes;
}
if (bus_claim)
sdio_release_host(rtwsdio->sdio_func);
return ret;
}
static int rtw_sdio_check_free_txpg(struct rtw_dev *rtwdev, u8 queue,
size_t count)
{
unsigned int pages_free, pages_needed;
if (rtw_chip_wcpu_8051(rtwdev)) {
u32 free_txpg;
free_txpg = rtw_sdio_read32(rtwdev, REG_SDIO_FREE_TXPG);
switch (queue) {
case RTW_TX_QUEUE_BCN:
case RTW_TX_QUEUE_H2C:
case RTW_TX_QUEUE_HI0:
case RTW_TX_QUEUE_MGMT:
/* high */
pages_free = free_txpg & 0xff;
break;
case RTW_TX_QUEUE_VI:
case RTW_TX_QUEUE_VO:
/* normal */
pages_free = (free_txpg >> 8) & 0xff;
break;
case RTW_TX_QUEUE_BE:
case RTW_TX_QUEUE_BK:
/* low */
pages_free = (free_txpg >> 16) & 0xff;
break;
default:
rtw_warn(rtwdev, "Unknown mapping for queue %u\n", queue);
return -EINVAL;
}
/* add the pages from the public queue */
pages_free += (free_txpg >> 24) & 0xff;
} else {
u32 free_txpg[3];
free_txpg[0] = rtw_sdio_read32(rtwdev, REG_SDIO_FREE_TXPG);
free_txpg[1] = rtw_sdio_read32(rtwdev, REG_SDIO_FREE_TXPG + 4);
free_txpg[2] = rtw_sdio_read32(rtwdev, REG_SDIO_FREE_TXPG + 8);
switch (queue) {
case RTW_TX_QUEUE_BCN:
case RTW_TX_QUEUE_H2C:
case RTW_TX_QUEUE_HI0:
/* high */
pages_free = free_txpg[0] & 0xfff;
break;
case RTW_TX_QUEUE_VI:
case RTW_TX_QUEUE_VO:
/* normal */
pages_free = (free_txpg[0] >> 16) & 0xfff;
break;
case RTW_TX_QUEUE_BE:
case RTW_TX_QUEUE_BK:
/* low */
pages_free = free_txpg[1] & 0xfff;
break;
case RTW_TX_QUEUE_MGMT:
/* extra */
pages_free = free_txpg[2] & 0xfff;
break;
default:
rtw_warn(rtwdev, "Unknown mapping for queue %u\n", queue);
return -EINVAL;
}
/* add the pages from the public queue */
pages_free += (free_txpg[1] >> 16) & 0xfff;
}
pages_needed = DIV_ROUND_UP(count, rtwdev->chip->page_size);
if (pages_needed > pages_free) {
rtw_dbg(rtwdev, RTW_DBG_SDIO,
"Not enough free pages (%u needed, %u free) in queue %u for %zu bytes\n",
pages_needed, pages_free, queue, count);
return -EBUSY;
}
return 0;
}
static int rtw_sdio_write_port(struct rtw_dev *rtwdev, struct sk_buff *skb,
enum rtw_tx_queue_type queue)
{
struct rtw_sdio *rtwsdio = (struct rtw_sdio *)rtwdev->priv;
bool bus_claim;
size_t txsize;
u32 txaddr;
int ret;
txaddr = rtw_sdio_get_tx_addr(rtwdev, skb->len, queue);
if (!txaddr)
return -EINVAL;
txsize = sdio_align_size(rtwsdio->sdio_func, skb->len);
ret = rtw_sdio_check_free_txpg(rtwdev, queue, txsize);
if (ret)
return ret;
if (!IS_ALIGNED((unsigned long)skb->data, RTW_SDIO_DATA_PTR_ALIGN))
rtw_warn(rtwdev, "Got unaligned SKB in %s() for queue %u\n",
__func__, queue);
bus_claim = rtw_sdio_bus_claim_needed(rtwsdio);
if (bus_claim)
sdio_claim_host(rtwsdio->sdio_func);
ret = sdio_memcpy_toio(rtwsdio->sdio_func, txaddr, skb->data, txsize);
if (bus_claim)
sdio_release_host(rtwsdio->sdio_func);
if (ret)
rtw_warn(rtwdev,
"Failed to write %zu byte(s) to SDIO port 0x%08x",
txsize, txaddr);
return ret;
}
static void rtw_sdio_init(struct rtw_dev *rtwdev)
{
struct rtw_sdio *rtwsdio = (struct rtw_sdio *)rtwdev->priv;
rtwsdio->irq_mask = REG_SDIO_HIMR_RX_REQUEST | REG_SDIO_HIMR_CPWM1;
}
static void rtw_sdio_enable_rx_aggregation(struct rtw_dev *rtwdev)
{
u8 size, timeout;
switch (rtwdev->chip->id) {
case RTW_CHIP_TYPE_8703B:
case RTW_CHIP_TYPE_8821A:
case RTW_CHIP_TYPE_8812A:
size = 0x6;
timeout = 0x6;
break;
case RTW_CHIP_TYPE_8723D:
size = 0xa;
timeout = 0x3;
rtw_write8_set(rtwdev, REG_RXDMA_AGG_PG_TH + 3, BIT(7));
break;
default:
size = 0xff;
timeout = 0x1;
break;
}
/* Make the firmware honor the size limit configured below */
rtw_write32_set(rtwdev, REG_RXDMA_AGG_PG_TH, BIT_EN_PRE_CALC);
rtw_write8_set(rtwdev, REG_TXDMA_PQ_MAP, BIT_RXDMA_AGG_EN);
rtw_write16(rtwdev, REG_RXDMA_AGG_PG_TH,
FIELD_PREP(BIT_RXDMA_AGG_PG_TH, size) |
FIELD_PREP(BIT_DMA_AGG_TO_V1, timeout));
rtw_write8_set(rtwdev, REG_RXDMA_MODE, BIT_DMA_MODE);
}
static void rtw_sdio_enable_interrupt(struct rtw_dev *rtwdev)
{
struct rtw_sdio *rtwsdio = (struct rtw_sdio *)rtwdev->priv;
rtw_write32(rtwdev, REG_SDIO_HIMR, rtwsdio->irq_mask);
}
static void rtw_sdio_disable_interrupt(struct rtw_dev *rtwdev)
{
rtw_write32(rtwdev, REG_SDIO_HIMR, 0x0);
}
static u8 rtw_sdio_get_tx_qsel(struct rtw_dev *rtwdev, struct sk_buff *skb,
u8 queue)
{
switch (queue) {
case RTW_TX_QUEUE_BCN:
return TX_DESC_QSEL_BEACON;
case RTW_TX_QUEUE_H2C:
return TX_DESC_QSEL_H2C;
case RTW_TX_QUEUE_MGMT:
return TX_DESC_QSEL_MGMT;
case RTW_TX_QUEUE_HI0:
return TX_DESC_QSEL_HIGH;
default:
return skb->priority;
}
}
static int rtw_sdio_setup(struct rtw_dev *rtwdev)
{
/* nothing to do */
return 0;
}
static int rtw_sdio_start(struct rtw_dev *rtwdev)
{
rtw_sdio_enable_rx_aggregation(rtwdev);
rtw_sdio_enable_interrupt(rtwdev);
return 0;
}
static void rtw_sdio_stop(struct rtw_dev *rtwdev)
{
rtw_sdio_disable_interrupt(rtwdev);
}
static void rtw_sdio_deep_ps_enter(struct rtw_dev *rtwdev)
{
struct rtw_sdio *rtwsdio = (struct rtw_sdio *)rtwdev->priv;
bool tx_empty = true;
u8 queue;
if (!rtw_fw_feature_check(&rtwdev->fw, FW_FEATURE_TX_WAKE)) {
/* Deep PS state is not allowed to TX-DMA */
for (queue = 0; queue < RTK_MAX_TX_QUEUE_NUM; queue++) {
/* BCN queue is rsvd page, does not have DMA interrupt
* H2C queue is managed by firmware
*/
if (queue == RTW_TX_QUEUE_BCN ||
queue == RTW_TX_QUEUE_H2C)
continue;
/* check if there is any skb DMAing */
if (skb_queue_len(&rtwsdio->tx_queue[queue])) {
tx_empty = false;
break;
}
}
}
if (!tx_empty) {
rtw_dbg(rtwdev, RTW_DBG_PS,
"TX path not empty, cannot enter deep power save state\n");
return;
}
set_bit(RTW_FLAG_LEISURE_PS_DEEP, rtwdev->flags);
rtw_power_mode_change(rtwdev, true);
}
static void rtw_sdio_deep_ps_leave(struct rtw_dev *rtwdev)
{
if (test_and_clear_bit(RTW_FLAG_LEISURE_PS_DEEP, rtwdev->flags))
rtw_power_mode_change(rtwdev, false);
}
static void rtw_sdio_deep_ps(struct rtw_dev *rtwdev, bool enter)
{
if (enter && !test_bit(RTW_FLAG_LEISURE_PS_DEEP, rtwdev->flags))
rtw_sdio_deep_ps_enter(rtwdev);
if (!enter && test_bit(RTW_FLAG_LEISURE_PS_DEEP, rtwdev->flags))
rtw_sdio_deep_ps_leave(rtwdev);
}
static void rtw_sdio_tx_kick_off(struct rtw_dev *rtwdev)
{
struct rtw_sdio *rtwsdio = (struct rtw_sdio *)rtwdev->priv;
queue_work(rtwsdio->txwq, &rtwsdio->tx_handler_data->work);
}
static void rtw_sdio_link_ps(struct rtw_dev *rtwdev, bool enter)
{
/* nothing to do */
}
static void rtw_sdio_interface_cfg(struct rtw_dev *rtwdev)
{
u32 val;
rtw_read32(rtwdev, REG_SDIO_FREE_TXPG);
val = rtw_read32(rtwdev, REG_SDIO_TX_CTRL);
val &= 0xfff8;
rtw_write32(rtwdev, REG_SDIO_TX_CTRL, val);
}
static struct rtw_sdio_tx_data *rtw_sdio_get_tx_data(struct sk_buff *skb)
{
struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
BUILD_BUG_ON(sizeof(struct rtw_sdio_tx_data) >
sizeof(info->status.status_driver_data));
return (struct rtw_sdio_tx_data *)info->status.status_driver_data;
}
static void rtw_sdio_tx_skb_prepare(struct rtw_dev *rtwdev,
struct rtw_tx_pkt_info *pkt_info,
struct sk_buff *skb,
enum rtw_tx_queue_type queue)
{
const struct rtw_chip_info *chip = rtwdev->chip;
unsigned long data_addr, aligned_addr;
size_t offset;
u8 *pkt_desc;
pkt_desc = skb_push(skb, chip->tx_pkt_desc_sz);
data_addr = (unsigned long)pkt_desc;
aligned_addr = ALIGN(data_addr, RTW_SDIO_DATA_PTR_ALIGN);
if (data_addr != aligned_addr) {
/* Ensure that the start of the pkt_desc is always aligned at
* RTW_SDIO_DATA_PTR_ALIGN.
*/
offset = RTW_SDIO_DATA_PTR_ALIGN - (aligned_addr - data_addr);
pkt_desc = skb_push(skb, offset);
/* By inserting padding to align the start of the pkt_desc we
* need to inform the firmware that the actual data starts at
* a different offset than normal.
*/
pkt_info->offset += offset;
}
memset(pkt_desc, 0, chip->tx_pkt_desc_sz);
pkt_info->qsel = rtw_sdio_get_tx_qsel(rtwdev, skb, queue);
rtw_tx_fill_tx_desc(rtwdev, pkt_info, skb);
rtw_tx_fill_txdesc_checksum(rtwdev, pkt_info, pkt_desc);
}
static int rtw_sdio_write_data(struct rtw_dev *rtwdev,
struct rtw_tx_pkt_info *pkt_info,
struct sk_buff *skb,
enum rtw_tx_queue_type queue)
{
int ret;
rtw_sdio_tx_skb_prepare(rtwdev, pkt_info, skb, queue);
ret = rtw_sdio_write_port(rtwdev, skb, queue);
dev_kfree_skb_any(skb);
return ret;
}
static int rtw_sdio_write_data_rsvd_page(struct rtw_dev *rtwdev, u8 *buf,
u32 size)
{
struct rtw_tx_pkt_info pkt_info = {};
struct sk_buff *skb;
skb = rtw_tx_write_data_rsvd_page_get(rtwdev, &pkt_info, buf, size);
if (!skb)
return -ENOMEM;
return rtw_sdio_write_data(rtwdev, &pkt_info, skb, RTW_TX_QUEUE_BCN);
}
static int rtw_sdio_write_data_h2c(struct rtw_dev *rtwdev, u8 *buf, u32 size)
{
struct rtw_tx_pkt_info pkt_info = {};
struct sk_buff *skb;
skb = rtw_tx_write_data_h2c_get(rtwdev, &pkt_info, buf, size);
if (!skb)
return -ENOMEM;
return rtw_sdio_write_data(rtwdev, &pkt_info, skb, RTW_TX_QUEUE_H2C);
}
static int rtw_sdio_tx_write(struct rtw_dev *rtwdev,
struct rtw_tx_pkt_info *pkt_info,
struct sk_buff *skb)
{
struct rtw_sdio *rtwsdio = (struct rtw_sdio *)rtwdev->priv;
enum rtw_tx_queue_type queue = rtw_tx_queue_mapping(skb);
struct rtw_sdio_tx_data *tx_data;
rtw_sdio_tx_skb_prepare(rtwdev, pkt_info, skb, queue);
tx_data = rtw_sdio_get_tx_data(skb);
tx_data->sn = pkt_info->sn;
skb_queue_tail(&rtwsdio->tx_queue[queue], skb);
return 0;
}
static void rtw_sdio_tx_err_isr(struct rtw_dev *rtwdev)
{
u32 val = rtw_read32(rtwdev, REG_TXDMA_STATUS);
rtw_write32(rtwdev, REG_TXDMA_STATUS, val);
}
static void rtw_sdio_rx_skb(struct rtw_dev *rtwdev, struct sk_buff *skb,
u32 pkt_offset, struct rtw_rx_pkt_stat *pkt_stat,
struct ieee80211_rx_status *rx_status)
{
*IEEE80211_SKB_RXCB(skb) = *rx_status;
if (pkt_stat->is_c2h) {
skb_put(skb, pkt_stat->pkt_len + pkt_offset);
rtw_fw_c2h_cmd_rx_irqsafe(rtwdev, pkt_offset, skb);
return;
}
skb_put(skb, pkt_stat->pkt_len);
skb_reserve(skb, pkt_offset);
rtw_update_rx_freq_for_invalid(rtwdev, skb, rx_status, pkt_stat);
rtw_rx_stats(rtwdev, pkt_stat->vif, skb);
ieee80211_rx_irqsafe(rtwdev->hw, skb);
}
static void rtw_sdio_rxfifo_recv(struct rtw_dev *rtwdev, u32 rx_len)
{
struct rtw_sdio *rtwsdio = (struct rtw_sdio *)rtwdev->priv;
const struct rtw_chip_info *chip = rtwdev->chip;
u32 pkt_desc_sz = chip->rx_pkt_desc_sz;
struct ieee80211_rx_status rx_status;
struct rtw_rx_pkt_stat pkt_stat;
struct sk_buff *skb, *split_skb;
u32 pkt_offset, curr_pkt_len;
size_t bufsz;
u8 *rx_desc;
int ret;
bufsz = sdio_align_size(rtwsdio->sdio_func, rx_len);
skb = dev_alloc_skb(bufsz);
if (!skb)
return;
ret = rtw_sdio_read_port(rtwdev, skb->data, bufsz);
if (ret) {
dev_kfree_skb_any(skb);
return;
}
while (true) {
rx_desc = skb->data;
rtw_rx_query_rx_desc(rtwdev, rx_desc, &pkt_stat, &rx_status);
pkt_offset = pkt_desc_sz + pkt_stat.drv_info_sz +
pkt_stat.shift;
curr_pkt_len = ALIGN(pkt_offset + pkt_stat.pkt_len,
RTW_SDIO_DATA_PTR_ALIGN);
if ((curr_pkt_len + pkt_desc_sz) >= rx_len) {
/* Use the original skb (with it's adjusted offset)
* when processing the last (or even the only) entry to
* have it's memory freed automatically.
*/
rtw_sdio_rx_skb(rtwdev, skb, pkt_offset, &pkt_stat,
&rx_status);
break;
}
split_skb = dev_alloc_skb(curr_pkt_len);
if (!split_skb) {
rtw_sdio_rx_skb(rtwdev, skb, pkt_offset, &pkt_stat,
&rx_status);
break;
}
skb_copy_header(split_skb, skb);
memcpy(split_skb->data, skb->data, curr_pkt_len);
rtw_sdio_rx_skb(rtwdev, split_skb, pkt_offset, &pkt_stat,
&rx_status);
/* Move to the start of the next RX descriptor */
skb_reserve(skb, curr_pkt_len);
rx_len -= curr_pkt_len;
}
}
static void rtw_sdio_rx_isr(struct rtw_dev *rtwdev)
{
u32 rx_len, hisr, total_rx_bytes = 0;
do {
if (rtw_chip_wcpu_8051(rtwdev))
rx_len = rtw_read16(rtwdev, REG_SDIO_RX0_REQ_LEN);
else
rx_len = rtw_read32(rtwdev, REG_SDIO_RX0_REQ_LEN);
if (!rx_len)
break;
rtw_sdio_rxfifo_recv(rtwdev, rx_len);
total_rx_bytes += rx_len;
if (rtw_chip_wcpu_8051(rtwdev)) {
/* Stop if no more RX requests are pending, even if
* rx_len could be greater than zero in the next
* iteration. This is needed because the RX buffer may
* already contain data while either HW or FW are not
* done filling that buffer yet. Still reading the
* buffer can result in packets where
* rtw_rx_pkt_stat.pkt_len is zero or points beyond the
* end of the buffer.
*/
hisr = rtw_read32(rtwdev, REG_SDIO_HISR);
} else {
/* RTW_WCPU_3081 chips have improved hardware or
* firmware and can use rx_len unconditionally.
*/
hisr = REG_SDIO_HISR_RX_REQUEST;
}
} while (total_rx_bytes < SZ_64K && hisr & REG_SDIO_HISR_RX_REQUEST);
}
static void rtw_sdio_handle_interrupt(struct sdio_func *sdio_func)
{
struct ieee80211_hw *hw = sdio_get_drvdata(sdio_func);
struct rtw_sdio *rtwsdio;
struct rtw_dev *rtwdev;
u32 hisr;
rtwdev = hw->priv;
rtwsdio = (struct rtw_sdio *)rtwdev->priv;
rtwsdio->irq_thread = current;
hisr = rtw_read32(rtwdev, REG_SDIO_HISR);
if (hisr & REG_SDIO_HISR_TXERR)
rtw_sdio_tx_err_isr(rtwdev);
if (hisr & REG_SDIO_HISR_RX_REQUEST) {
hisr &= ~REG_SDIO_HISR_RX_REQUEST;
rtw_sdio_rx_isr(rtwdev);
}
rtw_write32(rtwdev, REG_SDIO_HISR, hisr);
rtwsdio->irq_thread = NULL;
}
static int __maybe_unused rtw_sdio_suspend(struct device *dev)
{
struct sdio_func *func = dev_to_sdio_func(dev);
struct ieee80211_hw *hw = dev_get_drvdata(dev);
struct rtw_dev *rtwdev = hw->priv;
int ret;
ret = sdio_set_host_pm_flags(func, MMC_PM_KEEP_POWER);
if (ret)
rtw_err(rtwdev, "Failed to host PM flag MMC_PM_KEEP_POWER");
return ret;
}
static int __maybe_unused rtw_sdio_resume(struct device *dev)
{
return 0;
}
SIMPLE_DEV_PM_OPS(rtw_sdio_pm_ops, rtw_sdio_suspend, rtw_sdio_resume);
EXPORT_SYMBOL(rtw_sdio_pm_ops);
static int rtw_sdio_claim(struct rtw_dev *rtwdev, struct sdio_func *sdio_func)
{
struct rtw_sdio *rtwsdio = (struct rtw_sdio *)rtwdev->priv;
int ret;
sdio_claim_host(sdio_func);
ret = sdio_enable_func(sdio_func);
if (ret) {
rtw_err(rtwdev, "Failed to enable SDIO func");
goto err_release_host;
}
ret = sdio_set_block_size(sdio_func, RTW_SDIO_BLOCK_SIZE);
if (ret) {
rtw_err(rtwdev, "Failed to set SDIO block size to 512");
goto err_disable_func;
}
rtwsdio->sdio_func = sdio_func;
rtwsdio->sdio3_bus_mode = mmc_card_uhs(sdio_func->card);
sdio_set_drvdata(sdio_func, rtwdev->hw);
SET_IEEE80211_DEV(rtwdev->hw, &sdio_func->dev);
sdio_release_host(sdio_func);
return 0;
err_disable_func:
sdio_disable_func(sdio_func);
err_release_host:
sdio_release_host(sdio_func);
return ret;
}
static void rtw_sdio_declaim(struct rtw_dev *rtwdev,
struct sdio_func *sdio_func)
{
sdio_claim_host(sdio_func);
sdio_disable_func(sdio_func);
sdio_release_host(sdio_func);
}
static const struct rtw_hci_ops rtw_sdio_ops = {
.tx_write = rtw_sdio_tx_write,
.tx_kick_off = rtw_sdio_tx_kick_off,
.setup = rtw_sdio_setup,
.start = rtw_sdio_start,
.stop = rtw_sdio_stop,
.deep_ps = rtw_sdio_deep_ps,
.link_ps = rtw_sdio_link_ps,
.interface_cfg = rtw_sdio_interface_cfg,
.dynamic_rx_agg = NULL,
.write_firmware_page = rtw_write_firmware_page,
.read8 = rtw_sdio_read8,
.read16 = rtw_sdio_read16,
.read32 = rtw_sdio_read32,
.write8 = rtw_sdio_write8,
.write16 = rtw_sdio_write16,
.write32 = rtw_sdio_write32,
.write_data_rsvd_page = rtw_sdio_write_data_rsvd_page,
.write_data_h2c = rtw_sdio_write_data_h2c,
};
static int rtw_sdio_request_irq(struct rtw_dev *rtwdev,
struct sdio_func *sdio_func)
{
int ret;
sdio_claim_host(sdio_func);
ret = sdio_claim_irq(sdio_func, &rtw_sdio_handle_interrupt);
sdio_release_host(sdio_func);
if (ret) {
rtw_err(rtwdev, "failed to claim SDIO IRQ");
return ret;
}
return 0;
}
static void rtw_sdio_indicate_tx_status(struct rtw_dev *rtwdev,
struct sk_buff *skb)
{
struct rtw_sdio_tx_data *tx_data = rtw_sdio_get_tx_data(skb);
struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
struct ieee80211_hw *hw = rtwdev->hw;
skb_pull(skb, rtwdev->chip->tx_pkt_desc_sz);
/* enqueue to wait for tx report */
if (info->flags & IEEE80211_TX_CTL_REQ_TX_STATUS) {
rtw_tx_report_enqueue(rtwdev, skb, tx_data->sn);
return;
}
/* always ACK for others, then they won't be marked as drop */
ieee80211_tx_info_clear_status(info);
if (info->flags & IEEE80211_TX_CTL_NO_ACK)
info->flags |= IEEE80211_TX_STAT_NOACK_TRANSMITTED;
else
info->flags |= IEEE80211_TX_STAT_ACK;
ieee80211_tx_status_irqsafe(hw, skb);
}
static void rtw_sdio_process_tx_queue(struct rtw_dev *rtwdev,
enum rtw_tx_queue_type queue)
{
struct rtw_sdio *rtwsdio = (struct rtw_sdio *)rtwdev->priv;
struct sk_buff *skb;
int ret;
skb = skb_dequeue(&rtwsdio->tx_queue[queue]);
if (!skb)
return;
ret = rtw_sdio_write_port(rtwdev, skb, queue);
if (ret) {
skb_queue_head(&rtwsdio->tx_queue[queue], skb);
return;
}
rtw_sdio_indicate_tx_status(rtwdev, skb);
}
static void rtw_sdio_tx_handler(struct work_struct *work)
{
struct rtw_sdio_work_data *work_data =
container_of(work, struct rtw_sdio_work_data, work);
struct rtw_sdio *rtwsdio;
struct rtw_dev *rtwdev;
int limit, queue;
rtwdev = work_data->rtwdev;
rtwsdio = (struct rtw_sdio *)rtwdev->priv;
if (!rtw_fw_feature_check(&rtwdev->fw, FW_FEATURE_TX_WAKE))
rtw_sdio_deep_ps_leave(rtwdev);
for (queue = RTK_MAX_TX_QUEUE_NUM - 1; queue >= 0; queue--) {
for (limit = 0; limit < 1000; limit++) {
rtw_sdio_process_tx_queue(rtwdev, queue);
if (skb_queue_empty(&rtwsdio->tx_queue[queue]))
break;
}
}
}
static void rtw_sdio_free_irq(struct rtw_dev *rtwdev,
struct sdio_func *sdio_func)
{
sdio_claim_host(sdio_func);
sdio_release_irq(sdio_func);
sdio_release_host(sdio_func);
}
static int rtw_sdio_init_tx(struct rtw_dev *rtwdev)
{
struct rtw_sdio *rtwsdio = (struct rtw_sdio *)rtwdev->priv;
int i;
rtwsdio->txwq = create_singlethread_workqueue("rtw88_sdio: tx wq");
if (!rtwsdio->txwq) {
rtw_err(rtwdev, "failed to create TX work queue\n");
return -ENOMEM;
}
for (i = 0; i < RTK_MAX_TX_QUEUE_NUM; i++)
skb_queue_head_init(&rtwsdio->tx_queue[i]);
rtwsdio->tx_handler_data = kmalloc(sizeof(*rtwsdio->tx_handler_data),
GFP_KERNEL);
if (!rtwsdio->tx_handler_data)
goto err_destroy_wq;
rtwsdio->tx_handler_data->rtwdev = rtwdev;
INIT_WORK(&rtwsdio->tx_handler_data->work, rtw_sdio_tx_handler);
return 0;
err_destroy_wq:
destroy_workqueue(rtwsdio->txwq);
return -ENOMEM;
}
static void rtw_sdio_deinit_tx(struct rtw_dev *rtwdev)
{
struct rtw_sdio *rtwsdio = (struct rtw_sdio *)rtwdev->priv;
int i;
destroy_workqueue(rtwsdio->txwq);
kfree(rtwsdio->tx_handler_data);
for (i = 0; i < RTK_MAX_TX_QUEUE_NUM; i++)
ieee80211_purge_tx_queue(rtwdev->hw, &rtwsdio->tx_queue[i]);
}
int rtw_sdio_probe(struct sdio_func *sdio_func,
const struct sdio_device_id *id)
{
struct ieee80211_hw *hw;
struct rtw_dev *rtwdev;
int drv_data_size;
int ret;
drv_data_size = sizeof(struct rtw_dev) + sizeof(struct rtw_sdio);
hw = ieee80211_alloc_hw(drv_data_size, &rtw_ops);
if (!hw) {
dev_err(&sdio_func->dev, "failed to allocate hw");
return -ENOMEM;
}
rtwdev = hw->priv;
rtwdev->hw = hw;
rtwdev->dev = &sdio_func->dev;
rtwdev->chip = (struct rtw_chip_info *)id->driver_data;
rtwdev->hci.ops = &rtw_sdio_ops;
rtwdev->hci.type = RTW_HCI_TYPE_SDIO;
ret = rtw_core_init(rtwdev);
if (ret)
goto err_release_hw;
rtw_dbg(rtwdev, RTW_DBG_SDIO,
"rtw88 SDIO probe: vendor=0x%04x device=%04x class=%02x",
id->vendor, id->device, id->class);
ret = rtw_sdio_claim(rtwdev, sdio_func);
if (ret) {
rtw_err(rtwdev, "failed to claim SDIO device");
goto err_deinit_core;
}
rtw_sdio_init(rtwdev);
ret = rtw_sdio_init_tx(rtwdev);
if (ret) {
rtw_err(rtwdev, "failed to init SDIO TX queue\n");
goto err_sdio_declaim;
}
ret = rtw_chip_info_setup(rtwdev);
if (ret) {
rtw_err(rtwdev, "failed to setup chip information");
goto err_destroy_txwq;
}
ret = rtw_sdio_request_irq(rtwdev, sdio_func);
if (ret)
goto err_destroy_txwq;
ret = rtw_register_hw(rtwdev, hw);
if (ret) {
rtw_err(rtwdev, "failed to register hw");
goto err_free_irq;
}
return 0;
err_free_irq:
rtw_sdio_free_irq(rtwdev, sdio_func);
err_destroy_txwq:
rtw_sdio_deinit_tx(rtwdev);
err_sdio_declaim:
rtw_sdio_declaim(rtwdev, sdio_func);
err_deinit_core:
rtw_core_deinit(rtwdev);
err_release_hw:
ieee80211_free_hw(hw);
return ret;
}
EXPORT_SYMBOL(rtw_sdio_probe);
void rtw_sdio_remove(struct sdio_func *sdio_func)
{
struct ieee80211_hw *hw = sdio_get_drvdata(sdio_func);
struct rtw_dev *rtwdev;
if (!hw)
return;
rtwdev = hw->priv;
rtw_unregister_hw(rtwdev, hw);
rtw_sdio_disable_interrupt(rtwdev);
rtw_sdio_free_irq(rtwdev, sdio_func);
rtw_sdio_declaim(rtwdev, sdio_func);
rtw_sdio_deinit_tx(rtwdev);
rtw_core_deinit(rtwdev);
ieee80211_free_hw(hw);
}
EXPORT_SYMBOL(rtw_sdio_remove);
void rtw_sdio_shutdown(struct device *dev)
{
struct sdio_func *sdio_func = dev_to_sdio_func(dev);
const struct rtw_chip_info *chip;
struct ieee80211_hw *hw;
struct rtw_dev *rtwdev;
hw = sdio_get_drvdata(sdio_func);
if (!hw)
return;
rtwdev = hw->priv;
chip = rtwdev->chip;
if (chip->ops->shutdown)
chip->ops->shutdown(rtwdev);
}
EXPORT_SYMBOL(rtw_sdio_shutdown);
MODULE_AUTHOR("Martin Blumenstingl");
MODULE_AUTHOR("Jernej Skrabec");
MODULE_DESCRIPTION("Realtek 802.11ac wireless SDIO driver");
MODULE_LICENSE("Dual BSD/GPL");