linux/drivers/net/ethernet/sfc/efx_reflash.c
Edward Cree 5726a15499 sfc: support X4 devlink flash
Unlike X2 and EF100, we do not attempt to parse the firmware file to
 find an image within it; we simply hand the entire file to the MC,
 which is responsible for understanding any container formats we might
 use and validating that the firmware file is applicable to this NIC.

Signed-off-by: Edward Cree <ecree.xilinx@gmail.com>
Link: https://patch.msgid.link/9a72a74002a7819c780b0a18ce9294c9d4e1db12.1742493017.git.ecree.xilinx@gmail.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2025-03-25 07:55:11 -07:00

522 lines
16 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/****************************************************************************
* Driver for AMD network controllers and boards
* Copyright (C) 2025, Advanced Micro Devices, Inc.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published
* by the Free Software Foundation, incorporated herein by reference.
*/
#include <linux/crc32.h>
#include <net/devlink.h>
#include "efx_reflash.h"
#include "net_driver.h"
#include "fw_formats.h"
#include "mcdi_pcol.h"
#include "mcdi.h"
/* Try to parse a Reflash header at the specified offset */
static bool efx_reflash_parse_reflash_header(const struct firmware *fw,
size_t header_offset, u32 *type,
u32 *subtype, const u8 **data,
size_t *data_size)
{
size_t header_end, trailer_offset, trailer_end;
u32 magic, version, payload_size, header_len;
const u8 *header, *trailer;
u32 expected_crc, crc;
if (check_add_overflow(header_offset, EFX_REFLASH_HEADER_LENGTH_OFST +
EFX_REFLASH_HEADER_LENGTH_LEN,
&header_end))
return false;
if (fw->size < header_end)
return false;
header = fw->data + header_offset;
magic = get_unaligned_le32(header + EFX_REFLASH_HEADER_MAGIC_OFST);
if (magic != EFX_REFLASH_HEADER_MAGIC_VALUE)
return false;
version = get_unaligned_le32(header + EFX_REFLASH_HEADER_VERSION_OFST);
if (version != EFX_REFLASH_HEADER_VERSION_VALUE)
return false;
payload_size = get_unaligned_le32(header + EFX_REFLASH_HEADER_PAYLOAD_SIZE_OFST);
header_len = get_unaligned_le32(header + EFX_REFLASH_HEADER_LENGTH_OFST);
if (check_add_overflow(header_offset, header_len, &trailer_offset) ||
check_add_overflow(trailer_offset, payload_size, &trailer_offset) ||
check_add_overflow(trailer_offset, EFX_REFLASH_TRAILER_LEN,
&trailer_end))
return false;
if (fw->size < trailer_end)
return false;
trailer = fw->data + trailer_offset;
expected_crc = get_unaligned_le32(trailer + EFX_REFLASH_TRAILER_CRC_OFST);
/* Addition could overflow u32, but not size_t since we already
* checked trailer_offset didn't overflow. So cast to size_t first.
*/
crc = crc32_le(0, header, (size_t)header_len + payload_size);
if (crc != expected_crc)
return false;
*type = get_unaligned_le32(header + EFX_REFLASH_HEADER_FIRMWARE_TYPE_OFST);
*subtype = get_unaligned_le32(header + EFX_REFLASH_HEADER_FIRMWARE_SUBTYPE_OFST);
if (*type == EFX_REFLASH_FIRMWARE_TYPE_BUNDLE) {
/* All the bundle data is written verbatim to NVRAM */
*data = fw->data;
*data_size = fw->size;
} else {
/* Other payload types strip the reflash header and trailer
* from the data written to NVRAM
*/
*data = header + header_len;
*data_size = payload_size;
}
return true;
}
/* Map from FIRMWARE_TYPE to NVRAM_PARTITION_TYPE */
static int efx_reflash_partition_type(u32 type, u32 subtype,
u32 *partition_type,
u32 *partition_subtype)
{
int rc = 0;
switch (type) {
case EFX_REFLASH_FIRMWARE_TYPE_BOOTROM:
*partition_type = NVRAM_PARTITION_TYPE_EXPANSION_ROM;
*partition_subtype = subtype;
break;
case EFX_REFLASH_FIRMWARE_TYPE_BUNDLE:
*partition_type = NVRAM_PARTITION_TYPE_BUNDLE;
*partition_subtype = subtype;
break;
default:
/* Not supported */
rc = -EINVAL;
}
return rc;
}
/* Try to parse a SmartNIC image header at the specified offset */
static bool efx_reflash_parse_snic_header(const struct firmware *fw,
size_t header_offset,
u32 *partition_type,
u32 *partition_subtype,
const u8 **data, size_t *data_size)
{
u32 magic, version, payload_size, header_len, expected_crc, crc;
size_t header_end, payload_end;
const u8 *header;
if (check_add_overflow(header_offset, EFX_SNICIMAGE_HEADER_MINLEN,
&header_end) ||
fw->size < header_end)
return false;
header = fw->data + header_offset;
magic = get_unaligned_le32(header + EFX_SNICIMAGE_HEADER_MAGIC_OFST);
if (magic != EFX_SNICIMAGE_HEADER_MAGIC_VALUE)
return false;
version = get_unaligned_le32(header + EFX_SNICIMAGE_HEADER_VERSION_OFST);
if (version != EFX_SNICIMAGE_HEADER_VERSION_VALUE)
return false;
header_len = get_unaligned_le32(header + EFX_SNICIMAGE_HEADER_LENGTH_OFST);
if (check_add_overflow(header_offset, header_len, &header_end))
return false;
payload_size = get_unaligned_le32(header + EFX_SNICIMAGE_HEADER_PAYLOAD_SIZE_OFST);
if (check_add_overflow(header_end, payload_size, &payload_end) ||
fw->size < payload_end)
return false;
expected_crc = get_unaligned_le32(header + EFX_SNICIMAGE_HEADER_CRC_OFST);
/* Calculate CRC omitting the expected CRC field itself */
crc = crc32_le(~0, header, EFX_SNICIMAGE_HEADER_CRC_OFST);
crc = ~crc32_le(crc,
header + EFX_SNICIMAGE_HEADER_CRC_OFST +
EFX_SNICIMAGE_HEADER_CRC_LEN,
header_len + payload_size - EFX_SNICIMAGE_HEADER_CRC_OFST -
EFX_SNICIMAGE_HEADER_CRC_LEN);
if (crc != expected_crc)
return false;
*partition_type =
get_unaligned_le32(header + EFX_SNICIMAGE_HEADER_PARTITION_TYPE_OFST);
*partition_subtype =
get_unaligned_le32(header + EFX_SNICIMAGE_HEADER_PARTITION_SUBTYPE_OFST);
*data = fw->data;
*data_size = fw->size;
return true;
}
/* Try to parse a SmartNIC bundle header at the specified offset */
static bool efx_reflash_parse_snic_bundle_header(const struct firmware *fw,
size_t header_offset,
u32 *partition_type,
u32 *partition_subtype,
const u8 **data,
size_t *data_size)
{
u32 magic, version, bundle_type, header_len, expected_crc, crc;
size_t header_end;
const u8 *header;
if (check_add_overflow(header_offset, EFX_SNICBUNDLE_HEADER_LEN,
&header_end))
return false;
if (fw->size < header_end)
return false;
header = fw->data + header_offset;
magic = get_unaligned_le32(header + EFX_SNICBUNDLE_HEADER_MAGIC_OFST);
if (magic != EFX_SNICBUNDLE_HEADER_MAGIC_VALUE)
return false;
version = get_unaligned_le32(header + EFX_SNICBUNDLE_HEADER_VERSION_OFST);
if (version != EFX_SNICBUNDLE_HEADER_VERSION_VALUE)
return false;
bundle_type = get_unaligned_le32(header + EFX_SNICBUNDLE_HEADER_BUNDLE_TYPE_OFST);
if (bundle_type != NVRAM_PARTITION_TYPE_BUNDLE)
return false;
header_len = get_unaligned_le32(header + EFX_SNICBUNDLE_HEADER_LENGTH_OFST);
if (header_len != EFX_SNICBUNDLE_HEADER_LEN)
return false;
expected_crc = get_unaligned_le32(header + EFX_SNICBUNDLE_HEADER_CRC_OFST);
crc = ~crc32_le(~0, header, EFX_SNICBUNDLE_HEADER_CRC_OFST);
if (crc != expected_crc)
return false;
*partition_type = NVRAM_PARTITION_TYPE_BUNDLE;
*partition_subtype = get_unaligned_le32(header + EFX_SNICBUNDLE_HEADER_BUNDLE_SUBTYPE_OFST);
*data = fw->data;
*data_size = fw->size;
return true;
}
/* Try to find a valid firmware payload in the firmware data.
* When we recognise a valid header, we parse it for the partition type
* (so we know where to ask the MC to write it to) and the location of
* the data blob to write.
*/
static int efx_reflash_parse_firmware_data(const struct firmware *fw,
u32 *partition_type,
u32 *partition_subtype,
const u8 **data, size_t *data_size)
{
size_t header_offset;
u32 type, subtype;
/* Some packaging formats (such as CMS/PKCS#7 signed images)
* prepend a header for which finding the size is a non-trivial
* task, so step through the firmware data until we find a valid
* header.
*
* The checks are intended to reject firmware data that is clearly not
* in the expected format. They do not need to be exhaustive as the
* running firmware will perform its own comprehensive validity and
* compatibility checks during the update procedure.
*
* Firmware packages may contain multiple reflash images, e.g. a
* bundle containing one or more other images. Only check the
* outermost container by stopping after the first candidate image
* found even it is for an unsupported partition type.
*/
for (header_offset = 0; header_offset < fw->size; header_offset++) {
if (efx_reflash_parse_snic_bundle_header(fw, header_offset,
partition_type,
partition_subtype,
data, data_size))
return 0;
if (efx_reflash_parse_snic_header(fw, header_offset,
partition_type,
partition_subtype, data,
data_size))
return 0;
if (efx_reflash_parse_reflash_header(fw, header_offset, &type,
&subtype, data, data_size))
return efx_reflash_partition_type(type, subtype,
partition_type,
partition_subtype);
}
return -EINVAL;
}
/* Limit the number of status updates during the erase or write phases */
#define EFX_DEVLINK_STATUS_UPDATE_COUNT 50
/* Expected timeout for the efx_mcdi_nvram_update_finish_polled() */
#define EFX_DEVLINK_UPDATE_FINISH_TIMEOUT 900
/* Ideal erase chunk size. This is a balance between minimising the number of
* MCDI requests to erase an entire partition whilst avoiding tripping the MCDI
* RPC timeout.
*/
#define EFX_NVRAM_ERASE_IDEAL_CHUNK_SIZE (64 * 1024)
static int efx_reflash_erase_partition(struct efx_nic *efx,
struct netlink_ext_ack *extack,
struct devlink *devlink, u32 type,
size_t partition_size,
size_t align)
{
size_t chunk, offset, next_update;
int rc;
/* Partitions that cannot be erased or do not require erase before
* write are advertised with a erase alignment/sector size of zero.
*/
if (align == 0)
/* Nothing to do */
return 0;
if (partition_size % align)
return -EINVAL;
/* Erase the entire NVRAM partition a chunk at a time to avoid
* potentially tripping the MCDI RPC timeout.
*/
if (align >= EFX_NVRAM_ERASE_IDEAL_CHUNK_SIZE)
chunk = align;
else
chunk = rounddown(EFX_NVRAM_ERASE_IDEAL_CHUNK_SIZE, align);
for (offset = 0, next_update = 0; offset < partition_size; offset += chunk) {
if (offset >= next_update) {
devlink_flash_update_status_notify(devlink, "Erasing",
NULL, offset,
partition_size);
next_update += partition_size / EFX_DEVLINK_STATUS_UPDATE_COUNT;
}
chunk = min_t(size_t, partition_size - offset, chunk);
rc = efx_mcdi_nvram_erase(efx, type, offset, chunk);
if (rc) {
NL_SET_ERR_MSG_FMT_MOD(extack,
"Erase failed for NVRAM partition %#x at %#zx-%#zx",
type, offset, offset + chunk - 1);
return rc;
}
}
devlink_flash_update_status_notify(devlink, "Erasing", NULL,
partition_size, partition_size);
return 0;
}
static int efx_reflash_write_partition(struct efx_nic *efx,
struct netlink_ext_ack *extack,
struct devlink *devlink, u32 type,
const u8 *data, size_t data_size,
size_t align)
{
size_t write_max, chunk, offset, next_update;
int rc;
if (align == 0)
return -EINVAL;
/* Write the NVRAM partition in chunks that are the largest multiple
* of the partition's required write alignment that will fit into the
* MCDI NVRAM_WRITE RPC payload.
*/
if (efx->type->mcdi_max_ver < 2)
write_max = MC_CMD_NVRAM_WRITE_IN_WRITE_BUFFER_LEN *
MC_CMD_NVRAM_WRITE_IN_WRITE_BUFFER_MAXNUM;
else
write_max = MC_CMD_NVRAM_WRITE_IN_WRITE_BUFFER_LEN *
MC_CMD_NVRAM_WRITE_IN_WRITE_BUFFER_MAXNUM_MCDI2;
chunk = rounddown(write_max, align);
for (offset = 0, next_update = 0; offset + chunk <= data_size; offset += chunk) {
if (offset >= next_update) {
devlink_flash_update_status_notify(devlink, "Writing",
NULL, offset,
data_size);
next_update += data_size / EFX_DEVLINK_STATUS_UPDATE_COUNT;
}
rc = efx_mcdi_nvram_write(efx, type, offset, data + offset, chunk);
if (rc) {
NL_SET_ERR_MSG_FMT_MOD(extack,
"Write failed for NVRAM partition %#x at %#zx-%#zx",
type, offset, offset + chunk - 1);
return rc;
}
}
/* Round up left over data to satisfy write alignment */
if (offset < data_size) {
size_t remaining = data_size - offset;
u8 *buf;
if (offset >= next_update)
devlink_flash_update_status_notify(devlink, "Writing",
NULL, offset,
data_size);
chunk = roundup(remaining, align);
buf = kmalloc(chunk, GFP_KERNEL);
if (!buf)
return -ENOMEM;
memcpy(buf, data + offset, remaining);
memset(buf + remaining, 0xFF, chunk - remaining);
rc = efx_mcdi_nvram_write(efx, type, offset, buf, chunk);
kfree(buf);
if (rc) {
NL_SET_ERR_MSG_FMT_MOD(extack,
"Write failed for NVRAM partition %#x at %#zx-%#zx",
type, offset, offset + chunk - 1);
return rc;
}
}
devlink_flash_update_status_notify(devlink, "Writing", NULL, data_size,
data_size);
return 0;
}
int efx_reflash_flash_firmware(struct efx_nic *efx, const struct firmware *fw,
struct netlink_ext_ack *extack)
{
size_t data_size, size, erase_align, write_align;
struct devlink *devlink = efx->devlink;
u32 type, data_subtype, subtype;
const u8 *data;
bool protected;
int rc;
if (!efx_has_cap(efx, BUNDLE_UPDATE)) {
NL_SET_ERR_MSG_MOD(extack, "NVRAM bundle updates are not supported by the firmware");
return -EOPNOTSUPP;
}
mutex_lock(&efx->reflash_mutex);
devlink_flash_update_status_notify(devlink, "Checking update", NULL, 0, 0);
if (efx->type->flash_auto_partition) {
/* NIC wants entire FW file including headers;
* FW will validate 'subtype' if there is one
*/
type = NVRAM_PARTITION_TYPE_AUTO;
data = fw->data;
data_size = fw->size;
} else {
rc = efx_reflash_parse_firmware_data(fw, &type, &data_subtype, &data,
&data_size);
if (rc) {
NL_SET_ERR_MSG_MOD(extack,
"Firmware image validation check failed");
goto out_unlock;
}
rc = efx_mcdi_nvram_metadata(efx, type, &subtype, NULL, NULL, 0);
if (rc) {
NL_SET_ERR_MSG_FMT_MOD(extack,
"Metadata query for NVRAM partition %#x failed",
type);
goto out_unlock;
}
if (subtype != data_subtype) {
NL_SET_ERR_MSG_MOD(extack,
"Firmware image is not appropriate for this adapter");
rc = -EINVAL;
goto out_unlock;
}
}
rc = efx_mcdi_nvram_info(efx, type, &size, &erase_align, &write_align,
&protected);
if (rc) {
NL_SET_ERR_MSG_FMT_MOD(extack,
"Info query for NVRAM partition %#x failed",
type);
goto out_unlock;
}
if (protected) {
NL_SET_ERR_MSG_FMT_MOD(extack,
"NVRAM partition %#x is protected",
type);
rc = -EPERM;
goto out_unlock;
}
if (write_align == 0) {
NL_SET_ERR_MSG_FMT_MOD(extack,
"NVRAM partition %#x is not writable",
type);
rc = -EACCES;
goto out_unlock;
}
if (erase_align != 0 && size % erase_align) {
NL_SET_ERR_MSG_FMT_MOD(extack,
"NVRAM partition %#x has a bad partition table entry, can't erase it",
type);
rc = -EACCES;
goto out_unlock;
}
if (data_size > size) {
NL_SET_ERR_MSG_FMT_MOD(extack,
"Firmware image is too big for NVRAM partition %#x",
type);
rc = -EFBIG;
goto out_unlock;
}
devlink_flash_update_status_notify(devlink, "Starting update", NULL, 0, 0);
rc = efx_mcdi_nvram_update_start(efx, type);
if (rc) {
NL_SET_ERR_MSG_FMT_MOD(extack,
"Update start request for NVRAM partition %#x failed",
type);
goto out_unlock;
}
rc = efx_reflash_erase_partition(efx, extack, devlink, type, size,
erase_align);
if (rc)
goto out_update_finish;
rc = efx_reflash_write_partition(efx, extack, devlink, type, data,
data_size, write_align);
if (rc)
goto out_update_finish;
devlink_flash_update_timeout_notify(devlink, "Finishing update", NULL,
EFX_DEVLINK_UPDATE_FINISH_TIMEOUT);
out_update_finish:
if (rc)
/* Don't obscure the return code from an earlier failure */
efx_mcdi_nvram_update_finish(efx, type, EFX_UPDATE_FINISH_ABORT);
else
rc = efx_mcdi_nvram_update_finish_polled(efx, type);
out_unlock:
mutex_unlock(&efx->reflash_mutex);
devlink_flash_update_status_notify(devlink, rc ? "Update failed" :
"Update complete",
NULL, 0, 0);
return rc;
}