linux/drivers/net/ethernet/cisco/enic/enic_rq.c
Satish Kharat bcb725c79c enic: enable rq extended cq support
Enables getting from hw all the supported rq cq sizes and
uses the highest supported cq size.

Co-developed-by: Nelson Escobar <neescoba@cisco.com>
Signed-off-by: Nelson Escobar <neescoba@cisco.com>
Co-developed-by: John Daley <johndale@cisco.com>
Signed-off-by: John Daley <johndale@cisco.com>
Signed-off-by: Satish Kharat <satishkh@cisco.com>
Link: https://patch.msgid.link/20250304-enic_cleanup_and_ext_cq-v2-4-85804263dad8@cisco.com
Signed-off-by: Paolo Abeni <pabeni@redhat.com>
2025-03-11 10:21:15 +01:00

436 lines
13 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
// Copyright 2024 Cisco Systems, Inc. All rights reserved.
#include <linux/skbuff.h>
#include <linux/if_vlan.h>
#include <net/busy_poll.h>
#include "enic.h"
#include "enic_res.h"
#include "enic_rq.h"
#include "vnic_rq.h"
#include "cq_enet_desc.h"
#define ENIC_LARGE_PKT_THRESHOLD 1000
static void enic_intr_update_pkt_size(struct vnic_rx_bytes_counter *pkt_size,
u32 pkt_len)
{
if (pkt_len > ENIC_LARGE_PKT_THRESHOLD)
pkt_size->large_pkt_bytes_cnt += pkt_len;
else
pkt_size->small_pkt_bytes_cnt += pkt_len;
}
static void enic_rq_cq_desc_dec(void *cq_desc, u8 cq_desc_size, u8 *type,
u8 *color, u16 *q_number, u16 *completed_index)
{
/* type_color is the last field for all cq structs */
u8 type_color;
switch (cq_desc_size) {
case VNIC_RQ_CQ_ENTRY_SIZE_16: {
struct cq_enet_rq_desc *desc =
(struct cq_enet_rq_desc *)cq_desc;
type_color = desc->type_color;
/* Make sure color bit is read from desc *before* other fields
* are read from desc. Hardware guarantees color bit is last
* bit (byte) written. Adding the rmb() prevents the compiler
* and/or CPU from reordering the reads which would potentially
* result in reading stale values.
*/
rmb();
*q_number = le16_to_cpu(desc->q_number_rss_type_flags) &
CQ_DESC_Q_NUM_MASK;
*completed_index = le16_to_cpu(desc->completed_index_flags) &
CQ_DESC_COMP_NDX_MASK;
break;
}
case VNIC_RQ_CQ_ENTRY_SIZE_32: {
struct cq_enet_rq_desc_32 *desc =
(struct cq_enet_rq_desc_32 *)cq_desc;
type_color = desc->type_color;
/* Make sure color bit is read from desc *before* other fields
* are read from desc. Hardware guarantees color bit is last
* bit (byte) written. Adding the rmb() prevents the compiler
* and/or CPU from reordering the reads which would potentially
* result in reading stale values.
*/
rmb();
*q_number = le16_to_cpu(desc->q_number_rss_type_flags) &
CQ_DESC_Q_NUM_MASK;
*completed_index = le16_to_cpu(desc->completed_index_flags) &
CQ_DESC_COMP_NDX_MASK;
*completed_index |= (desc->fetch_index_flags & CQ_DESC_32_FI_MASK) <<
CQ_DESC_COMP_NDX_BITS;
break;
}
case VNIC_RQ_CQ_ENTRY_SIZE_64: {
struct cq_enet_rq_desc_64 *desc =
(struct cq_enet_rq_desc_64 *)cq_desc;
type_color = desc->type_color;
/* Make sure color bit is read from desc *before* other fields
* are read from desc. Hardware guarantees color bit is last
* bit (byte) written. Adding the rmb() prevents the compiler
* and/or CPU from reordering the reads which would potentially
* result in reading stale values.
*/
rmb();
*q_number = le16_to_cpu(desc->q_number_rss_type_flags) &
CQ_DESC_Q_NUM_MASK;
*completed_index = le16_to_cpu(desc->completed_index_flags) &
CQ_DESC_COMP_NDX_MASK;
*completed_index |= (desc->fetch_index_flags & CQ_DESC_64_FI_MASK) <<
CQ_DESC_COMP_NDX_BITS;
break;
}
}
*color = (type_color >> CQ_DESC_COLOR_SHIFT) & CQ_DESC_COLOR_MASK;
*type = type_color & CQ_DESC_TYPE_MASK;
}
static void enic_rq_set_skb_flags(struct vnic_rq *vrq, u8 type, u32 rss_hash,
u8 rss_type, u8 fcoe, u8 fcoe_fc_crc_ok,
u8 vlan_stripped, u8 csum_not_calc,
u8 tcp_udp_csum_ok, u8 ipv6, u8 ipv4_csum_ok,
u16 vlan_tci, struct sk_buff *skb)
{
struct enic *enic = vnic_dev_priv(vrq->vdev);
struct net_device *netdev = enic->netdev;
struct enic_rq_stats *rqstats = &enic->rq[vrq->index].stats;
bool outer_csum_ok = true, encap = false;
if ((netdev->features & NETIF_F_RXHASH) && rss_hash && type == 3) {
switch (rss_type) {
case CQ_ENET_RQ_DESC_RSS_TYPE_TCP_IPv4:
case CQ_ENET_RQ_DESC_RSS_TYPE_TCP_IPv6:
case CQ_ENET_RQ_DESC_RSS_TYPE_TCP_IPv6_EX:
skb_set_hash(skb, rss_hash, PKT_HASH_TYPE_L4);
rqstats->l4_rss_hash++;
break;
case CQ_ENET_RQ_DESC_RSS_TYPE_IPv4:
case CQ_ENET_RQ_DESC_RSS_TYPE_IPv6:
case CQ_ENET_RQ_DESC_RSS_TYPE_IPv6_EX:
skb_set_hash(skb, rss_hash, PKT_HASH_TYPE_L3);
rqstats->l3_rss_hash++;
break;
}
}
if (enic->vxlan.vxlan_udp_port_number) {
switch (enic->vxlan.patch_level) {
case 0:
if (fcoe) {
encap = true;
outer_csum_ok = fcoe_fc_crc_ok;
}
break;
case 2:
if (type == 7 && (rss_hash & BIT(0))) {
encap = true;
outer_csum_ok = (rss_hash & BIT(1)) &&
(rss_hash & BIT(2));
}
break;
}
}
/* Hardware does not provide whole packet checksum. It only
* provides pseudo checksum. Since hw validates the packet
* checksum but not provide us the checksum value. use
* CHECSUM_UNNECESSARY.
*
* In case of encap pkt tcp_udp_csum_ok/tcp_udp_csum_ok is
* inner csum_ok. outer_csum_ok is set by hw when outer udp
* csum is correct or is zero.
*/
if ((netdev->features & NETIF_F_RXCSUM) && !csum_not_calc &&
tcp_udp_csum_ok && outer_csum_ok && (ipv4_csum_ok || ipv6)) {
skb->ip_summed = CHECKSUM_UNNECESSARY;
skb->csum_level = encap;
if (encap)
rqstats->csum_unnecessary_encap++;
else
rqstats->csum_unnecessary++;
}
if (vlan_stripped) {
__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tci);
rqstats->vlan_stripped++;
}
}
/*
* cq_enet_rq_desc accesses section uses only the 1st 15 bytes of the cq which
* is identical for all type (16,32 and 64 byte) of cqs.
*/
static void cq_enet_rq_desc_dec(struct cq_enet_rq_desc *desc, u8 *ingress_port,
u8 *fcoe, u8 *eop, u8 *sop, u8 *rss_type,
u8 *csum_not_calc, u32 *rss_hash,
u16 *bytes_written, u8 *packet_error,
u8 *vlan_stripped, u16 *vlan_tci,
u16 *checksum, u8 *fcoe_sof,
u8 *fcoe_fc_crc_ok, u8 *fcoe_enc_error,
u8 *fcoe_eof, u8 *tcp_udp_csum_ok, u8 *udp,
u8 *tcp, u8 *ipv4_csum_ok, u8 *ipv6, u8 *ipv4,
u8 *ipv4_fragment, u8 *fcs_ok)
{
u16 completed_index_flags;
u16 q_number_rss_type_flags;
u16 bytes_written_flags;
completed_index_flags = le16_to_cpu(desc->completed_index_flags);
q_number_rss_type_flags =
le16_to_cpu(desc->q_number_rss_type_flags);
bytes_written_flags = le16_to_cpu(desc->bytes_written_flags);
*ingress_port = (completed_index_flags &
CQ_ENET_RQ_DESC_FLAGS_INGRESS_PORT) ? 1 : 0;
*fcoe = (completed_index_flags & CQ_ENET_RQ_DESC_FLAGS_FCOE) ?
1 : 0;
*eop = (completed_index_flags & CQ_ENET_RQ_DESC_FLAGS_EOP) ?
1 : 0;
*sop = (completed_index_flags & CQ_ENET_RQ_DESC_FLAGS_SOP) ?
1 : 0;
*rss_type = (u8)((q_number_rss_type_flags >> CQ_DESC_Q_NUM_BITS) &
CQ_ENET_RQ_DESC_RSS_TYPE_MASK);
*csum_not_calc = (q_number_rss_type_flags &
CQ_ENET_RQ_DESC_FLAGS_CSUM_NOT_CALC) ? 1 : 0;
*rss_hash = le32_to_cpu(desc->rss_hash);
*bytes_written = bytes_written_flags &
CQ_ENET_RQ_DESC_BYTES_WRITTEN_MASK;
*packet_error = (bytes_written_flags &
CQ_ENET_RQ_DESC_FLAGS_TRUNCATED) ? 1 : 0;
*vlan_stripped = (bytes_written_flags &
CQ_ENET_RQ_DESC_FLAGS_VLAN_STRIPPED) ? 1 : 0;
/*
* Tag Control Information(16) = user_priority(3) + cfi(1) + vlan(12)
*/
*vlan_tci = le16_to_cpu(desc->vlan);
if (*fcoe) {
*fcoe_sof = (u8)(le16_to_cpu(desc->checksum_fcoe) &
CQ_ENET_RQ_DESC_FCOE_SOF_MASK);
*fcoe_fc_crc_ok = (desc->flags &
CQ_ENET_RQ_DESC_FCOE_FC_CRC_OK) ? 1 : 0;
*fcoe_enc_error = (desc->flags &
CQ_ENET_RQ_DESC_FCOE_ENC_ERROR) ? 1 : 0;
*fcoe_eof = (u8)((le16_to_cpu(desc->checksum_fcoe) >>
CQ_ENET_RQ_DESC_FCOE_EOF_SHIFT) &
CQ_ENET_RQ_DESC_FCOE_EOF_MASK);
*checksum = 0;
} else {
*fcoe_sof = 0;
*fcoe_fc_crc_ok = 0;
*fcoe_enc_error = 0;
*fcoe_eof = 0;
*checksum = le16_to_cpu(desc->checksum_fcoe);
}
*tcp_udp_csum_ok =
(desc->flags & CQ_ENET_RQ_DESC_FLAGS_TCP_UDP_CSUM_OK) ? 1 : 0;
*udp = (desc->flags & CQ_ENET_RQ_DESC_FLAGS_UDP) ? 1 : 0;
*tcp = (desc->flags & CQ_ENET_RQ_DESC_FLAGS_TCP) ? 1 : 0;
*ipv4_csum_ok =
(desc->flags & CQ_ENET_RQ_DESC_FLAGS_IPV4_CSUM_OK) ? 1 : 0;
*ipv6 = (desc->flags & CQ_ENET_RQ_DESC_FLAGS_IPV6) ? 1 : 0;
*ipv4 = (desc->flags & CQ_ENET_RQ_DESC_FLAGS_IPV4) ? 1 : 0;
*ipv4_fragment =
(desc->flags & CQ_ENET_RQ_DESC_FLAGS_IPV4_FRAGMENT) ? 1 : 0;
*fcs_ok = (desc->flags & CQ_ENET_RQ_DESC_FLAGS_FCS_OK) ? 1 : 0;
}
static bool enic_rq_pkt_error(struct vnic_rq *vrq, u8 packet_error, u8 fcs_ok,
u16 bytes_written)
{
struct enic *enic = vnic_dev_priv(vrq->vdev);
struct enic_rq_stats *rqstats = &enic->rq[vrq->index].stats;
if (packet_error) {
if (!fcs_ok) {
if (bytes_written > 0)
rqstats->bad_fcs++;
else if (bytes_written == 0)
rqstats->pkt_truncated++;
}
return true;
}
return false;
}
int enic_rq_alloc_buf(struct vnic_rq *rq)
{
struct enic *enic = vnic_dev_priv(rq->vdev);
struct net_device *netdev = enic->netdev;
struct enic_rq *erq = &enic->rq[rq->index];
struct enic_rq_stats *rqstats = &erq->stats;
unsigned int offset = 0;
unsigned int len = netdev->mtu + VLAN_ETH_HLEN;
unsigned int os_buf_index = 0;
dma_addr_t dma_addr;
struct vnic_rq_buf *buf = rq->to_use;
struct page *page;
unsigned int truesize = len;
if (buf->os_buf) {
enic_queue_rq_desc(rq, buf->os_buf, os_buf_index, buf->dma_addr,
buf->len);
return 0;
}
page = page_pool_dev_alloc(erq->pool, &offset, &truesize);
if (unlikely(!page)) {
rqstats->pp_alloc_fail++;
return -ENOMEM;
}
buf->offset = offset;
buf->truesize = truesize;
dma_addr = page_pool_get_dma_addr(page) + offset;
enic_queue_rq_desc(rq, (void *)page, os_buf_index, dma_addr, len);
return 0;
}
void enic_free_rq_buf(struct vnic_rq *rq, struct vnic_rq_buf *buf)
{
struct enic *enic = vnic_dev_priv(rq->vdev);
struct enic_rq *erq = &enic->rq[rq->index];
if (!buf->os_buf)
return;
page_pool_put_full_page(erq->pool, (struct page *)buf->os_buf, true);
buf->os_buf = NULL;
}
static void enic_rq_indicate_buf(struct enic *enic, struct vnic_rq *rq,
struct vnic_rq_buf *buf, void *cq_desc,
u8 type, u16 q_number, u16 completed_index)
{
struct sk_buff *skb;
struct vnic_cq *cq = &enic->cq[enic_cq_rq(enic, rq->index)];
struct enic_rq_stats *rqstats = &enic->rq[rq->index].stats;
struct napi_struct *napi;
u8 eop, sop, ingress_port, vlan_stripped;
u8 fcoe, fcoe_sof, fcoe_fc_crc_ok, fcoe_enc_error, fcoe_eof;
u8 tcp_udp_csum_ok, udp, tcp, ipv4_csum_ok;
u8 ipv6, ipv4, ipv4_fragment, fcs_ok, rss_type, csum_not_calc;
u8 packet_error;
u16 bytes_written, vlan_tci, checksum;
u32 rss_hash;
rqstats->packets++;
cq_enet_rq_desc_dec((struct cq_enet_rq_desc *)cq_desc, &ingress_port,
&fcoe, &eop, &sop, &rss_type, &csum_not_calc,
&rss_hash, &bytes_written, &packet_error,
&vlan_stripped, &vlan_tci, &checksum, &fcoe_sof,
&fcoe_fc_crc_ok, &fcoe_enc_error, &fcoe_eof,
&tcp_udp_csum_ok, &udp, &tcp, &ipv4_csum_ok, &ipv6,
&ipv4, &ipv4_fragment, &fcs_ok);
if (enic_rq_pkt_error(rq, packet_error, fcs_ok, bytes_written))
return;
if (eop && bytes_written > 0) {
/* Good receive
*/
rqstats->bytes += bytes_written;
napi = &enic->napi[rq->index];
skb = napi_get_frags(napi);
if (unlikely(!skb)) {
net_warn_ratelimited("%s: skb alloc error rq[%d], desc[%d]\n",
enic->netdev->name, rq->index,
completed_index);
rqstats->no_skb++;
return;
}
prefetch(skb->data - NET_IP_ALIGN);
dma_sync_single_for_cpu(&enic->pdev->dev, buf->dma_addr,
bytes_written, DMA_FROM_DEVICE);
skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags,
(struct page *)buf->os_buf, buf->offset,
bytes_written, buf->truesize);
skb_record_rx_queue(skb, q_number);
enic_rq_set_skb_flags(rq, type, rss_hash, rss_type, fcoe,
fcoe_fc_crc_ok, vlan_stripped,
csum_not_calc, tcp_udp_csum_ok, ipv6,
ipv4_csum_ok, vlan_tci, skb);
skb_mark_for_recycle(skb);
napi_gro_frags(napi);
if (enic->rx_coalesce_setting.use_adaptive_rx_coalesce)
enic_intr_update_pkt_size(&cq->pkt_size_counter,
bytes_written);
buf->os_buf = NULL;
buf->dma_addr = 0;
buf = buf->next;
} else {
/* Buffer overflow
*/
rqstats->pkt_truncated++;
}
}
static void enic_rq_service(struct enic *enic, void *cq_desc, u8 type,
u16 q_number, u16 completed_index)
{
struct enic_rq_stats *rqstats = &enic->rq[q_number].stats;
struct vnic_rq *vrq = &enic->rq[q_number].vrq;
struct vnic_rq_buf *vrq_buf = vrq->to_clean;
int skipped;
while (1) {
skipped = (vrq_buf->index != completed_index);
if (!skipped)
enic_rq_indicate_buf(enic, vrq, vrq_buf, cq_desc, type,
q_number, completed_index);
else
rqstats->desc_skip++;
vrq->ring.desc_avail++;
vrq->to_clean = vrq_buf->next;
vrq_buf = vrq_buf->next;
if (!skipped)
break;
}
}
unsigned int enic_rq_cq_service(struct enic *enic, unsigned int cq_index,
unsigned int work_to_do)
{
struct vnic_cq *cq = &enic->cq[cq_index];
void *cq_desc = vnic_cq_to_clean(cq);
u16 q_number, completed_index;
unsigned int work_done = 0;
u8 type, color;
enic_rq_cq_desc_dec(cq_desc, enic->ext_cq, &type, &color, &q_number,
&completed_index);
while (color != cq->last_color) {
enic_rq_service(enic, cq_desc, type, q_number, completed_index);
vnic_cq_inc_to_clean(cq);
if (++work_done >= work_to_do)
break;
cq_desc = vnic_cq_to_clean(cq);
enic_rq_cq_desc_dec(cq_desc, enic->ext_cq, &type, &color,
&q_number, &completed_index);
}
return work_done;
}