linux/drivers/mtd/spi-nor/macronix.c
Cheng Ming Lin 594c8df92b mtd: spi-nor: macronix: Add fixups for MX25L3255E
SFDP of MX25L3255E is JESD216, which does not include the Quad
Enable bit Requirement in BFPT. As a result, during BFPT parsing,
the quad_enable method is not set to spi_nor_sr1_bit6_quad_enable.
Therefore, it is necessary to correct this setting by late_init.

In addition, MX25L3255E also supports 1-4-4 page program in 3-byte
address mode. However, since the 3-byte address 1-4-4 page program
is not defined in SFDP, it needs to be configured in late_init.

Signed-off-by: Cheng Ming Lin <chengminglin@mxic.com.tw>
Acked-by: Pratyush Yadav <pratyush@kernel.org>
Signed-off-by: Pratyush Yadav <pratyush@kernel.org>
[pratyush@kernel.org: move params declaration to top, and use it everywhere]
Link: https://lore.kernel.org/r/20250407075400.1113177-4-linchengming884@gmail.com
2025-04-08 15:04:54 +00:00

339 lines
9.4 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2005, Intec Automation Inc.
* Copyright (C) 2014, Freescale Semiconductor, Inc.
*/
#include <linux/mtd/spi-nor.h>
#include "core.h"
#define MXIC_NOR_OP_RD_CR2 0x71 /* Read configuration register 2 opcode */
#define MXIC_NOR_OP_WR_CR2 0x72 /* Write configuration register 2 opcode */
#define MXIC_NOR_ADDR_CR2_MODE 0x00000000 /* CR2 address for setting spi/sopi/dopi mode */
#define MXIC_NOR_ADDR_CR2_DC 0x00000300 /* CR2 address for setting dummy cycles */
#define MXIC_NOR_REG_DOPI_EN 0x2 /* Enable Octal DTR */
#define MXIC_NOR_REG_SPI_EN 0x0 /* Enable SPI */
/* Convert dummy cycles to bit pattern */
#define MXIC_NOR_REG_DC(p) \
((20 - (p)) >> 1)
#define MXIC_NOR_WR_CR2(addr, ndata, buf) \
SPI_MEM_OP(SPI_MEM_OP_CMD(MXIC_NOR_OP_WR_CR2, 0), \
SPI_MEM_OP_ADDR(4, addr, 0), \
SPI_MEM_OP_NO_DUMMY, \
SPI_MEM_OP_DATA_OUT(ndata, buf, 0))
static int
mx25l25635_post_bfpt_fixups(struct spi_nor *nor,
const struct sfdp_parameter_header *bfpt_header,
const struct sfdp_bfpt *bfpt)
{
/*
* MX25L25635F supports 4B opcodes but MX25L25635E does not.
* Unfortunately, Macronix has re-used the same JEDEC ID for both
* variants which prevents us from defining a new entry in the parts
* table.
* We need a way to differentiate MX25L25635E and MX25L25635F, and it
* seems that the F version advertises support for Fast Read 4-4-4 in
* its BFPT table.
*/
if (bfpt->dwords[SFDP_DWORD(5)] & BFPT_DWORD5_FAST_READ_4_4_4)
nor->flags |= SNOR_F_4B_OPCODES;
return 0;
}
static int
macronix_qpp4b_post_sfdp_fixups(struct spi_nor *nor)
{
/* PP_1_1_4_4B is supported but missing in 4BAIT. */
struct spi_nor_flash_parameter *params = nor->params;
params->hwcaps.mask |= SNOR_HWCAPS_PP_1_1_4;
spi_nor_set_pp_settings(&params->page_programs[SNOR_CMD_PP_1_1_4],
SPINOR_OP_PP_1_1_4_4B, SNOR_PROTO_1_1_4);
return 0;
}
static int
mx25l3255e_late_init_fixups(struct spi_nor *nor)
{
struct spi_nor_flash_parameter *params = nor->params;
/*
* SFDP of MX25L3255E is JESD216, which does not include the Quad
* Enable bit Requirement in BFPT. As a result, during BFPT parsing,
* the quad_enable method is not set to spi_nor_sr1_bit6_quad_enable.
* Therefore, it is necessary to correct this setting by late_init.
*/
params->quad_enable = spi_nor_sr1_bit6_quad_enable;
/*
* In addition, MX25L3255E also supports 1-4-4 page program in 3-byte
* address mode. However, since the 3-byte address 1-4-4 page program
* is not defined in SFDP, it needs to be configured in late_init.
*/
params->hwcaps.mask |= SNOR_HWCAPS_PP_1_4_4;
spi_nor_set_pp_settings(&params->page_programs[SNOR_CMD_PP_1_4_4],
SPINOR_OP_PP_1_4_4, SNOR_PROTO_1_4_4);
return 0;
}
static const struct spi_nor_fixups mx25l25635_fixups = {
.post_bfpt = mx25l25635_post_bfpt_fixups,
.post_sfdp = macronix_qpp4b_post_sfdp_fixups,
};
static const struct spi_nor_fixups macronix_qpp4b_fixups = {
.post_sfdp = macronix_qpp4b_post_sfdp_fixups,
};
static const struct spi_nor_fixups mx25l3255e_fixups = {
.late_init = mx25l3255e_late_init_fixups,
};
static const struct flash_info macronix_nor_parts[] = {
{
.id = SNOR_ID(0xc2, 0x20, 0x10),
.name = "mx25l512e",
.size = SZ_64K,
.no_sfdp_flags = SECT_4K,
}, {
.id = SNOR_ID(0xc2, 0x20, 0x12),
.name = "mx25l2005a",
.size = SZ_256K,
.no_sfdp_flags = SECT_4K,
}, {
.id = SNOR_ID(0xc2, 0x20, 0x13),
.name = "mx25l4005a",
.size = SZ_512K,
.no_sfdp_flags = SECT_4K,
}, {
.id = SNOR_ID(0xc2, 0x20, 0x14),
.name = "mx25l8005",
.size = SZ_1M,
}, {
/* MX25L1606E */
.id = SNOR_ID(0xc2, 0x20, 0x15),
}, {
.id = SNOR_ID(0xc2, 0x20, 0x16),
.name = "mx25l3205d",
.size = SZ_4M,
.no_sfdp_flags = SECT_4K,
}, {
.id = SNOR_ID(0xc2, 0x20, 0x17),
.name = "mx25l6405d",
.size = SZ_8M,
.no_sfdp_flags = SECT_4K,
}, {
/* MX25L12805D */
.id = SNOR_ID(0xc2, 0x20, 0x18),
.flags = SPI_NOR_HAS_LOCK | SPI_NOR_4BIT_BP,
}, {
/* MX25L25635E, MX25L25645G */
.id = SNOR_ID(0xc2, 0x20, 0x19),
.fixups = &mx25l25635_fixups
}, {
/* MX66L51235F */
.id = SNOR_ID(0xc2, 0x20, 0x1a),
.fixup_flags = SPI_NOR_4B_OPCODES,
.fixups = &macronix_qpp4b_fixups,
}, {
/* MX66L1G45G */
.id = SNOR_ID(0xc2, 0x20, 0x1b),
.fixups = &macronix_qpp4b_fixups,
}, {
/* MX66L2G45G */
.id = SNOR_ID(0xc2, 0x20, 0x1c),
.fixups = &macronix_qpp4b_fixups,
}, {
.id = SNOR_ID(0xc2, 0x23, 0x14),
.name = "mx25v8035f",
.size = SZ_1M,
.no_sfdp_flags = SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ,
}, {
.id = SNOR_ID(0xc2, 0x25, 0x32),
.name = "mx25u2033e",
.size = SZ_256K,
.no_sfdp_flags = SECT_4K,
}, {
.id = SNOR_ID(0xc2, 0x25, 0x33),
.name = "mx25u4035",
.size = SZ_512K,
.no_sfdp_flags = SECT_4K,
}, {
.id = SNOR_ID(0xc2, 0x25, 0x34),
.name = "mx25u8035",
.size = SZ_1M,
.no_sfdp_flags = SECT_4K,
}, {
.id = SNOR_ID(0xc2, 0x25, 0x36),
.name = "mx25u3235f",
.size = SZ_4M,
.no_sfdp_flags = SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ,
}, {
.id = SNOR_ID(0xc2, 0x25, 0x37),
.name = "mx25u6435f",
.size = SZ_8M,
.no_sfdp_flags = SECT_4K,
}, {
.id = SNOR_ID(0xc2, 0x25, 0x38),
.name = "mx25u12835f",
.size = SZ_16M,
.no_sfdp_flags = SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ,
}, {
/* MX25U51245G */
.id = SNOR_ID(0xc2, 0x25, 0x3a),
.fixups = &macronix_qpp4b_fixups,
}, {
/* MX66U1G45G */
.id = SNOR_ID(0xc2, 0x25, 0x3b),
.fixups = &macronix_qpp4b_fixups,
}, {
/* MX66U2G45G */
.id = SNOR_ID(0xc2, 0x25, 0x3c),
.fixups = &macronix_qpp4b_fixups,
}, {
.id = SNOR_ID(0xc2, 0x26, 0x18),
.name = "mx25l12855e",
.size = SZ_16M,
}, {
.id = SNOR_ID(0xc2, 0x26, 0x19),
.name = "mx25l25655e",
.size = SZ_32M,
}, {
.id = SNOR_ID(0xc2, 0x26, 0x1b),
.name = "mx66l1g55g",
.size = SZ_128M,
.no_sfdp_flags = SPI_NOR_QUAD_READ,
}, {
.id = SNOR_ID(0xc2, 0x28, 0x15),
.name = "mx25r1635f",
.size = SZ_2M,
.no_sfdp_flags = SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ,
}, {
.id = SNOR_ID(0xc2, 0x28, 0x16),
.name = "mx25r3235f",
.size = SZ_4M,
.no_sfdp_flags = SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ,
}, {
/* MX25UW51245G */
.id = SNOR_ID(0xc2, 0x81, 0x3a),
.n_banks = 4,
.flags = SPI_NOR_RWW,
}, {
/* MX25L3255E */
.id = SNOR_ID(0xc2, 0x9e, 0x16),
.fixups = &mx25l3255e_fixups,
},
/*
* This spares us of adding new flash entries for flashes that can be
* initialized solely based on the SFDP data, but still need the
* manufacturer hooks to set parameters that can't be discovered at SFDP
* parsing time.
*/
{ .id = SNOR_ID(0xc2) }
};
static int macronix_nor_octal_dtr_en(struct spi_nor *nor)
{
struct spi_mem_op op;
u8 *buf = nor->bouncebuf, i;
int ret;
/* Use dummy cycles which is parse by SFDP and convert to bit pattern. */
buf[0] = MXIC_NOR_REG_DC(nor->params->reads[SNOR_CMD_READ_8_8_8_DTR].num_wait_states);
op = (struct spi_mem_op)MXIC_NOR_WR_CR2(MXIC_NOR_ADDR_CR2_DC, 1, buf);
ret = spi_nor_write_any_volatile_reg(nor, &op, nor->reg_proto);
if (ret)
return ret;
/* Set the octal and DTR enable bits. */
buf[0] = MXIC_NOR_REG_DOPI_EN;
op = (struct spi_mem_op)MXIC_NOR_WR_CR2(MXIC_NOR_ADDR_CR2_MODE, 1, buf);
ret = spi_nor_write_any_volatile_reg(nor, &op, nor->reg_proto);
if (ret)
return ret;
/* Read flash ID to make sure the switch was successful. */
ret = spi_nor_read_id(nor, nor->addr_nbytes, 4, buf,
SNOR_PROTO_8_8_8_DTR);
if (ret) {
dev_dbg(nor->dev, "error %d reading JEDEC ID after enabling 8D-8D-8D mode\n", ret);
return ret;
}
/* Macronix SPI-NOR flash 8D-8D-8D read ID would get 6 bytes data A-A-B-B-C-C */
for (i = 0; i < nor->info->id->len; i++)
if (buf[i * 2] != buf[(i * 2) + 1] || buf[i * 2] != nor->info->id->bytes[i])
return -EINVAL;
return 0;
}
static int macronix_nor_octal_dtr_dis(struct spi_nor *nor)
{
struct spi_mem_op op;
u8 *buf = nor->bouncebuf;
int ret;
/*
* The register is 1-byte wide, but 1-byte transactions are not
* allowed in 8D-8D-8D mode. Since there is no register at the
* next location, just initialize the value to 0 and let the
* transaction go on.
*/
buf[0] = MXIC_NOR_REG_SPI_EN;
buf[1] = 0x0;
op = (struct spi_mem_op)MXIC_NOR_WR_CR2(MXIC_NOR_ADDR_CR2_MODE, 2, buf);
ret = spi_nor_write_any_volatile_reg(nor, &op, SNOR_PROTO_8_8_8_DTR);
if (ret)
return ret;
/* Read flash ID to make sure the switch was successful. */
ret = spi_nor_read_id(nor, 0, 0, buf, SNOR_PROTO_1_1_1);
if (ret) {
dev_dbg(nor->dev, "error %d reading JEDEC ID after disabling 8D-8D-8D mode\n", ret);
return ret;
}
if (memcmp(buf, nor->info->id->bytes, nor->info->id->len))
return -EINVAL;
return 0;
}
static int macronix_nor_set_octal_dtr(struct spi_nor *nor, bool enable)
{
return enable ? macronix_nor_octal_dtr_en(nor) : macronix_nor_octal_dtr_dis(nor);
}
static void macronix_nor_default_init(struct spi_nor *nor)
{
nor->params->quad_enable = spi_nor_sr1_bit6_quad_enable;
}
static int macronix_nor_late_init(struct spi_nor *nor)
{
if (!nor->params->set_4byte_addr_mode)
nor->params->set_4byte_addr_mode = spi_nor_set_4byte_addr_mode_en4b_ex4b;
nor->params->set_octal_dtr = macronix_nor_set_octal_dtr;
return 0;
}
static const struct spi_nor_fixups macronix_nor_fixups = {
.default_init = macronix_nor_default_init,
.late_init = macronix_nor_late_init,
};
const struct spi_nor_manufacturer spi_nor_macronix = {
.name = "macronix",
.parts = macronix_nor_parts,
.nparts = ARRAY_SIZE(macronix_nor_parts),
.fixups = &macronix_nor_fixups,
};