linux/drivers/mtd/devices/mtd_intel_dg.c
Reuven Abliyev a1c940cbf5
drm/xe/nvm: add support for non-posted erase
Erase command is slow on discrete graphics storage
and may overshot PCI completion timeout.
BMG introduces the ability to have non-posted erase.
Add driver support for non-posted erase with polling
for erase completion.

Reviewed-by: Rodrigo Vivi <rodrigo.vivi@intel.com>
Acked-by: Rodrigo Vivi <rodrigo.vivi@intel.com>
Signed-off-by: Reuven Abliyev <reuven.abliyev@intel.com>
Signed-off-by: Alexander Usyskin <alexander.usyskin@intel.com>
Link: https://lore.kernel.org/r/20250617145159.3803852-9-alexander.usyskin@intel.com
Signed-off-by: Rodrigo Vivi <rodrigo.vivi@intel.com>
2025-06-23 13:14:50 -04:00

830 lines
19 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright(c) 2019-2025, Intel Corporation. All rights reserved.
*/
#include <linux/bitfield.h>
#include <linux/bits.h>
#include <linux/cleanup.h>
#include <linux/delay.h>
#include <linux/device.h>
#include <linux/intel_dg_nvm_aux.h>
#include <linux/io.h>
#include <linux/io-64-nonatomic-lo-hi.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/partitions.h>
#include <linux/string.h>
#include <linux/slab.h>
#include <linux/sizes.h>
#include <linux/types.h>
struct intel_dg_nvm {
struct kref refcnt;
struct mtd_info mtd;
struct mutex lock; /* region access lock */
void __iomem *base;
void __iomem *base2;
bool non_posted_erase;
size_t size;
unsigned int nregions;
struct {
const char *name;
u8 id;
u64 offset;
u64 size;
unsigned int is_readable:1;
unsigned int is_writable:1;
} regions[] __counted_by(nregions);
};
#define NVM_TRIGGER_REG 0x00000000
#define NVM_VALSIG_REG 0x00000010
#define NVM_ADDRESS_REG 0x00000040
#define NVM_REGION_ID_REG 0x00000044
#define NVM_DEBUG_REG 0x00000000
/*
* [15:0]-Erase size = 0x0010 4K 0x0080 32K 0x0100 64K
* [23:16]-Reserved
* [31:24]-Erase MEM RegionID
*/
#define NVM_ERASE_REG 0x00000048
#define NVM_ACCESS_ERROR_REG 0x00000070
#define NVM_ADDRESS_ERROR_REG 0x00000074
/* Flash Valid Signature */
#define NVM_FLVALSIG 0x0FF0A55A
#define NVM_MAP_ADDR_MASK GENMASK(7, 0)
#define NVM_MAP_ADDR_SHIFT 0x00000004
#define NVM_REGION_ID_DESCRIPTOR 0
/* Flash Region Base Address */
#define NVM_FRBA 0x40
/* Flash Region __n - Flash Descriptor Record */
#define NVM_FLREG(__n) (NVM_FRBA + ((__n) * 4))
/* Flash Map 1 Register */
#define NVM_FLMAP1_REG 0x18
#define NVM_FLMSTR4_OFFSET 0x00C
#define NVM_ACCESS_ERROR_PCIE_MASK 0x7
#define NVM_FREG_BASE_MASK GENMASK(15, 0)
#define NVM_FREG_ADDR_MASK GENMASK(31, 16)
#define NVM_FREG_ADDR_SHIFT 12
#define NVM_FREG_MIN_REGION_SIZE 0xFFF
#define NVM_NON_POSTED_ERASE_DONE BIT(23)
#define NVM_NON_POSTED_ERASE_DONE_ITER 3000
static inline void idg_nvm_set_region_id(struct intel_dg_nvm *nvm, u8 region)
{
iowrite32((u32)region, nvm->base + NVM_REGION_ID_REG);
}
static inline u32 idg_nvm_error(struct intel_dg_nvm *nvm)
{
void __iomem *base = nvm->base;
u32 reg = ioread32(base + NVM_ACCESS_ERROR_REG) & NVM_ACCESS_ERROR_PCIE_MASK;
/* reset error bits */
if (reg)
iowrite32(reg, base + NVM_ACCESS_ERROR_REG);
return reg;
}
static inline u32 idg_nvm_read32(struct intel_dg_nvm *nvm, u32 address)
{
void __iomem *base = nvm->base;
iowrite32(address, base + NVM_ADDRESS_REG);
return ioread32(base + NVM_TRIGGER_REG);
}
static inline u64 idg_nvm_read64(struct intel_dg_nvm *nvm, u32 address)
{
void __iomem *base = nvm->base;
iowrite32(address, base + NVM_ADDRESS_REG);
return readq(base + NVM_TRIGGER_REG);
}
static void idg_nvm_write32(struct intel_dg_nvm *nvm, u32 address, u32 data)
{
void __iomem *base = nvm->base;
iowrite32(address, base + NVM_ADDRESS_REG);
iowrite32(data, base + NVM_TRIGGER_REG);
}
static void idg_nvm_write64(struct intel_dg_nvm *nvm, u32 address, u64 data)
{
void __iomem *base = nvm->base;
iowrite32(address, base + NVM_ADDRESS_REG);
writeq(data, base + NVM_TRIGGER_REG);
}
static int idg_nvm_get_access_map(struct intel_dg_nvm *nvm, u32 *access_map)
{
u32 fmstr4_addr;
u32 fmstr4;
u32 flmap1;
u32 fmba;
idg_nvm_set_region_id(nvm, NVM_REGION_ID_DESCRIPTOR);
flmap1 = idg_nvm_read32(nvm, NVM_FLMAP1_REG);
if (idg_nvm_error(nvm))
return -EIO;
/* Get Flash Master Baser Address (FMBA) */
fmba = (FIELD_GET(NVM_MAP_ADDR_MASK, flmap1) << NVM_MAP_ADDR_SHIFT);
fmstr4_addr = fmba + NVM_FLMSTR4_OFFSET;
fmstr4 = idg_nvm_read32(nvm, fmstr4_addr);
if (idg_nvm_error(nvm))
return -EIO;
*access_map = fmstr4;
return 0;
}
/*
* Region read/write access encoded in the access map
* in the following order from the lower bit:
* [3:0] regions 12-15 read state
* [7:4] regions 12-15 write state
* [19:8] regions 0-11 read state
* [31:20] regions 0-11 write state
*/
static bool idg_nvm_region_readable(u32 access_map, u8 region)
{
if (region < 12)
return access_map & BIT(region + 8); /* [19:8] */
else
return access_map & BIT(region - 12); /* [3:0] */
}
static bool idg_nvm_region_writable(u32 access_map, u8 region)
{
if (region < 12)
return access_map & BIT(region + 20); /* [31:20] */
else
return access_map & BIT(region - 8); /* [7:4] */
}
static int idg_nvm_is_valid(struct intel_dg_nvm *nvm)
{
u32 is_valid;
idg_nvm_set_region_id(nvm, NVM_REGION_ID_DESCRIPTOR);
is_valid = idg_nvm_read32(nvm, NVM_VALSIG_REG);
if (idg_nvm_error(nvm))
return -EIO;
if (is_valid != NVM_FLVALSIG)
return -ENODEV;
return 0;
}
static unsigned int idg_nvm_get_region(const struct intel_dg_nvm *nvm, loff_t from)
{
unsigned int i;
for (i = 0; i < nvm->nregions; i++) {
if ((nvm->regions[i].offset + nvm->regions[i].size - 1) >= from &&
nvm->regions[i].offset <= from &&
nvm->regions[i].size != 0)
break;
}
return i;
}
static ssize_t idg_nvm_rewrite_partial(struct intel_dg_nvm *nvm, loff_t to,
loff_t offset, size_t len, const u32 *newdata)
{
u32 data = idg_nvm_read32(nvm, to);
if (idg_nvm_error(nvm))
return -EIO;
memcpy((u8 *)&data + offset, newdata, len);
idg_nvm_write32(nvm, to, data);
if (idg_nvm_error(nvm))
return -EIO;
return len;
}
static ssize_t idg_write(struct intel_dg_nvm *nvm, u8 region,
loff_t to, size_t len, const unsigned char *buf)
{
size_t len_s = len;
size_t to_shift;
size_t len8;
size_t len4;
ssize_t ret;
size_t to4;
size_t i;
idg_nvm_set_region_id(nvm, region);
to4 = ALIGN_DOWN(to, sizeof(u32));
to_shift = min(sizeof(u32) - ((size_t)to - to4), len);
if (to - to4) {
ret = idg_nvm_rewrite_partial(nvm, to4, to - to4, to_shift, (u32 *)&buf[0]);
if (ret < 0)
return ret;
buf += to_shift;
to += to_shift;
len_s -= to_shift;
}
if (!IS_ALIGNED(to, sizeof(u64)) &&
((to ^ (to + len_s)) & GENMASK(31, 10))) {
/*
* Workaround reads/writes across 1k-aligned addresses
* (start u32 before 1k, end u32 after)
* as this fails on hardware.
*/
u32 data;
memcpy(&data, &buf[0], sizeof(u32));
idg_nvm_write32(nvm, to, data);
if (idg_nvm_error(nvm))
return -EIO;
buf += sizeof(u32);
to += sizeof(u32);
len_s -= sizeof(u32);
}
len8 = ALIGN_DOWN(len_s, sizeof(u64));
for (i = 0; i < len8; i += sizeof(u64)) {
u64 data;
memcpy(&data, &buf[i], sizeof(u64));
idg_nvm_write64(nvm, to + i, data);
if (idg_nvm_error(nvm))
return -EIO;
}
len4 = len_s - len8;
if (len4 >= sizeof(u32)) {
u32 data;
memcpy(&data, &buf[i], sizeof(u32));
idg_nvm_write32(nvm, to + i, data);
if (idg_nvm_error(nvm))
return -EIO;
i += sizeof(u32);
len4 -= sizeof(u32);
}
if (len4 > 0) {
ret = idg_nvm_rewrite_partial(nvm, to + i, 0, len4, (u32 *)&buf[i]);
if (ret < 0)
return ret;
}
return len;
}
static ssize_t idg_read(struct intel_dg_nvm *nvm, u8 region,
loff_t from, size_t len, unsigned char *buf)
{
size_t len_s = len;
size_t from_shift;
size_t from4;
size_t len8;
size_t len4;
size_t i;
idg_nvm_set_region_id(nvm, region);
from4 = ALIGN_DOWN(from, sizeof(u32));
from_shift = min(sizeof(u32) - ((size_t)from - from4), len);
if (from - from4) {
u32 data = idg_nvm_read32(nvm, from4);
if (idg_nvm_error(nvm))
return -EIO;
memcpy(&buf[0], (u8 *)&data + (from - from4), from_shift);
len_s -= from_shift;
buf += from_shift;
from += from_shift;
}
if (!IS_ALIGNED(from, sizeof(u64)) &&
((from ^ (from + len_s)) & GENMASK(31, 10))) {
/*
* Workaround reads/writes across 1k-aligned addresses
* (start u32 before 1k, end u32 after)
* as this fails on hardware.
*/
u32 data = idg_nvm_read32(nvm, from);
if (idg_nvm_error(nvm))
return -EIO;
memcpy(&buf[0], &data, sizeof(data));
len_s -= sizeof(u32);
buf += sizeof(u32);
from += sizeof(u32);
}
len8 = ALIGN_DOWN(len_s, sizeof(u64));
for (i = 0; i < len8; i += sizeof(u64)) {
u64 data = idg_nvm_read64(nvm, from + i);
if (idg_nvm_error(nvm))
return -EIO;
memcpy(&buf[i], &data, sizeof(data));
}
len4 = len_s - len8;
if (len4 >= sizeof(u32)) {
u32 data = idg_nvm_read32(nvm, from + i);
if (idg_nvm_error(nvm))
return -EIO;
memcpy(&buf[i], &data, sizeof(data));
i += sizeof(u32);
len4 -= sizeof(u32);
}
if (len4 > 0) {
u32 data = idg_nvm_read32(nvm, from + i);
if (idg_nvm_error(nvm))
return -EIO;
memcpy(&buf[i], &data, len4);
}
return len;
}
static ssize_t
idg_erase(struct intel_dg_nvm *nvm, u8 region, loff_t from, u64 len, u64 *fail_addr)
{
void __iomem *base2 = nvm->base2;
void __iomem *base = nvm->base;
const u32 block = 0x10;
u32 iter = 0;
u32 reg;
u64 i;
for (i = 0; i < len; i += SZ_4K) {
iowrite32(from + i, base + NVM_ADDRESS_REG);
iowrite32(region << 24 | block, base + NVM_ERASE_REG);
if (nvm->non_posted_erase) {
/* Wait for Erase Done */
reg = ioread32(base2 + NVM_DEBUG_REG);
while (!(reg & NVM_NON_POSTED_ERASE_DONE) &&
++iter < NVM_NON_POSTED_ERASE_DONE_ITER) {
msleep(10);
reg = ioread32(base2 + NVM_DEBUG_REG);
}
if (reg & NVM_NON_POSTED_ERASE_DONE) {
/* Clear Erase Done */
iowrite32(reg, base2 + NVM_DEBUG_REG);
} else {
*fail_addr = from + i;
return -ETIME;
}
}
/* Since the writes are via sgunit
* we cannot do back to back erases.
*/
msleep(50);
}
return len;
}
static int intel_dg_nvm_init(struct intel_dg_nvm *nvm, struct device *device,
bool non_posted_erase)
{
u32 access_map = 0;
unsigned int i, n;
int ret;
/* clean error register, previous errors are ignored */
idg_nvm_error(nvm);
ret = idg_nvm_is_valid(nvm);
if (ret) {
dev_err(device, "The MEM is not valid %d\n", ret);
return ret;
}
if (idg_nvm_get_access_map(nvm, &access_map))
return -EIO;
for (i = 0, n = 0; i < nvm->nregions; i++) {
u32 address, base, limit, region;
u8 id = nvm->regions[i].id;
address = NVM_FLREG(id);
region = idg_nvm_read32(nvm, address);
base = FIELD_GET(NVM_FREG_BASE_MASK, region) << NVM_FREG_ADDR_SHIFT;
limit = (FIELD_GET(NVM_FREG_ADDR_MASK, region) << NVM_FREG_ADDR_SHIFT) |
NVM_FREG_MIN_REGION_SIZE;
dev_dbg(device, "[%d] %s: region: 0x%08X base: 0x%08x limit: 0x%08x\n",
id, nvm->regions[i].name, region, base, limit);
if (base >= limit || (i > 0 && limit == 0)) {
dev_dbg(device, "[%d] %s: disabled\n",
id, nvm->regions[i].name);
nvm->regions[i].is_readable = 0;
continue;
}
if (nvm->size < limit)
nvm->size = limit;
nvm->regions[i].offset = base;
nvm->regions[i].size = limit - base + 1;
/* No write access to descriptor; mask it out*/
nvm->regions[i].is_writable = idg_nvm_region_writable(access_map, id);
nvm->regions[i].is_readable = idg_nvm_region_readable(access_map, id);
dev_dbg(device, "Registered, %s id=%d offset=%lld size=%lld rd=%d wr=%d\n",
nvm->regions[i].name,
nvm->regions[i].id,
nvm->regions[i].offset,
nvm->regions[i].size,
nvm->regions[i].is_readable,
nvm->regions[i].is_writable);
if (nvm->regions[i].is_readable)
n++;
}
nvm->non_posted_erase = non_posted_erase;
dev_dbg(device, "Registered %d regions\n", n);
dev_dbg(device, "Non posted erase %d\n", nvm->non_posted_erase);
/* Need to add 1 to the amount of memory
* so it is reported as an even block
*/
nvm->size += 1;
return n;
}
static int intel_dg_mtd_erase(struct mtd_info *mtd, struct erase_info *info)
{
struct intel_dg_nvm *nvm = mtd->priv;
size_t total_len;
unsigned int idx;
ssize_t bytes;
loff_t from;
size_t len;
u8 region;
u64 addr;
if (WARN_ON(!nvm))
return -EINVAL;
if (!IS_ALIGNED(info->addr, SZ_4K) || !IS_ALIGNED(info->len, SZ_4K)) {
dev_err(&mtd->dev, "unaligned erase %llx %llx\n",
info->addr, info->len);
info->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
return -EINVAL;
}
total_len = info->len;
addr = info->addr;
guard(mutex)(&nvm->lock);
while (total_len > 0) {
if (!IS_ALIGNED(addr, SZ_4K) || !IS_ALIGNED(total_len, SZ_4K)) {
dev_err(&mtd->dev, "unaligned erase %llx %zx\n", addr, total_len);
info->fail_addr = addr;
return -ERANGE;
}
idx = idg_nvm_get_region(nvm, addr);
if (idx >= nvm->nregions) {
dev_err(&mtd->dev, "out of range");
info->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
return -ERANGE;
}
from = addr - nvm->regions[idx].offset;
region = nvm->regions[idx].id;
len = total_len;
if (len > nvm->regions[idx].size - from)
len = nvm->regions[idx].size - from;
dev_dbg(&mtd->dev, "erasing region[%d] %s from %llx len %zx\n",
region, nvm->regions[idx].name, from, len);
bytes = idg_erase(nvm, region, from, len, &info->fail_addr);
if (bytes < 0) {
dev_dbg(&mtd->dev, "erase failed with %zd\n", bytes);
info->fail_addr += nvm->regions[idx].offset;
return bytes;
}
addr += len;
total_len -= len;
}
return 0;
}
static int intel_dg_mtd_read(struct mtd_info *mtd, loff_t from, size_t len,
size_t *retlen, u_char *buf)
{
struct intel_dg_nvm *nvm = mtd->priv;
unsigned int idx;
ssize_t ret;
u8 region;
if (WARN_ON(!nvm))
return -EINVAL;
idx = idg_nvm_get_region(nvm, from);
dev_dbg(&mtd->dev, "reading region[%d] %s from %lld len %zd\n",
nvm->regions[idx].id, nvm->regions[idx].name, from, len);
if (idx >= nvm->nregions) {
dev_err(&mtd->dev, "out of range");
return -ERANGE;
}
from -= nvm->regions[idx].offset;
region = nvm->regions[idx].id;
if (len > nvm->regions[idx].size - from)
len = nvm->regions[idx].size - from;
guard(mutex)(&nvm->lock);
ret = idg_read(nvm, region, from, len, buf);
if (ret < 0) {
dev_dbg(&mtd->dev, "read failed with %zd\n", ret);
return ret;
}
*retlen = ret;
return 0;
}
static int intel_dg_mtd_write(struct mtd_info *mtd, loff_t to, size_t len,
size_t *retlen, const u_char *buf)
{
struct intel_dg_nvm *nvm = mtd->priv;
unsigned int idx;
ssize_t ret;
u8 region;
if (WARN_ON(!nvm))
return -EINVAL;
idx = idg_nvm_get_region(nvm, to);
dev_dbg(&mtd->dev, "writing region[%d] %s to %lld len %zd\n",
nvm->regions[idx].id, nvm->regions[idx].name, to, len);
if (idx >= nvm->nregions) {
dev_err(&mtd->dev, "out of range");
return -ERANGE;
}
to -= nvm->regions[idx].offset;
region = nvm->regions[idx].id;
if (len > nvm->regions[idx].size - to)
len = nvm->regions[idx].size - to;
guard(mutex)(&nvm->lock);
ret = idg_write(nvm, region, to, len, buf);
if (ret < 0) {
dev_dbg(&mtd->dev, "write failed with %zd\n", ret);
return ret;
}
*retlen = ret;
return 0;
}
static void intel_dg_nvm_release(struct kref *kref)
{
struct intel_dg_nvm *nvm = container_of(kref, struct intel_dg_nvm, refcnt);
int i;
pr_debug("freeing intel_dg nvm\n");
for (i = 0; i < nvm->nregions; i++)
kfree(nvm->regions[i].name);
mutex_destroy(&nvm->lock);
kfree(nvm);
}
static int intel_dg_mtd_get_device(struct mtd_info *mtd)
{
struct mtd_info *master = mtd_get_master(mtd);
struct intel_dg_nvm *nvm = master->priv;
if (WARN_ON(!nvm))
return -EINVAL;
pr_debug("get mtd %s %d\n", mtd->name, kref_read(&nvm->refcnt));
kref_get(&nvm->refcnt);
return 0;
}
static void intel_dg_mtd_put_device(struct mtd_info *mtd)
{
struct mtd_info *master = mtd_get_master(mtd);
struct intel_dg_nvm *nvm = master->priv;
if (WARN_ON(!nvm))
return;
pr_debug("put mtd %s %d\n", mtd->name, kref_read(&nvm->refcnt));
kref_put(&nvm->refcnt, intel_dg_nvm_release);
}
static int intel_dg_nvm_init_mtd(struct intel_dg_nvm *nvm, struct device *device,
unsigned int nparts, bool writable_override)
{
struct mtd_partition *parts = NULL;
unsigned int i, n;
int ret;
dev_dbg(device, "registering with mtd\n");
nvm->mtd.owner = THIS_MODULE;
nvm->mtd.dev.parent = device;
nvm->mtd.flags = MTD_CAP_NORFLASH;
nvm->mtd.type = MTD_DATAFLASH;
nvm->mtd.priv = nvm;
nvm->mtd._write = intel_dg_mtd_write;
nvm->mtd._read = intel_dg_mtd_read;
nvm->mtd._erase = intel_dg_mtd_erase;
nvm->mtd._get_device = intel_dg_mtd_get_device;
nvm->mtd._put_device = intel_dg_mtd_put_device;
nvm->mtd.writesize = SZ_1; /* 1 byte granularity */
nvm->mtd.erasesize = SZ_4K; /* 4K bytes granularity */
nvm->mtd.size = nvm->size;
parts = kcalloc(nvm->nregions, sizeof(*parts), GFP_KERNEL);
if (!parts)
return -ENOMEM;
for (i = 0, n = 0; i < nvm->nregions && n < nparts; i++) {
if (!nvm->regions[i].is_readable)
continue;
parts[n].name = nvm->regions[i].name;
parts[n].offset = nvm->regions[i].offset;
parts[n].size = nvm->regions[i].size;
if (!nvm->regions[i].is_writable && !writable_override)
parts[n].mask_flags = MTD_WRITEABLE;
n++;
}
ret = mtd_device_register(&nvm->mtd, parts, n);
kfree(parts);
return ret;
}
static int intel_dg_mtd_probe(struct auxiliary_device *aux_dev,
const struct auxiliary_device_id *aux_dev_id)
{
struct intel_dg_nvm_dev *invm = auxiliary_dev_to_intel_dg_nvm_dev(aux_dev);
struct intel_dg_nvm *nvm;
struct device *device;
unsigned int nregions;
unsigned int i, n;
int ret;
device = &aux_dev->dev;
/* count available regions */
for (nregions = 0, i = 0; i < INTEL_DG_NVM_REGIONS; i++) {
if (invm->regions[i].name)
nregions++;
}
if (!nregions) {
dev_err(device, "no regions defined\n");
return -ENODEV;
}
nvm = kzalloc(struct_size(nvm, regions, nregions), GFP_KERNEL);
if (!nvm)
return -ENOMEM;
kref_init(&nvm->refcnt);
mutex_init(&nvm->lock);
for (n = 0, i = 0; i < INTEL_DG_NVM_REGIONS; i++) {
if (!invm->regions[i].name)
continue;
char *name = kasprintf(GFP_KERNEL, "%s.%s",
dev_name(&aux_dev->dev), invm->regions[i].name);
if (!name)
continue;
nvm->regions[n].name = name;
nvm->regions[n].id = i;
n++;
}
nvm->nregions = n; /* in case where kasprintf fail */
nvm->base = devm_ioremap_resource(device, &invm->bar);
if (IS_ERR(nvm->base)) {
ret = PTR_ERR(nvm->base);
goto err;
}
if (invm->non_posted_erase) {
nvm->base2 = devm_ioremap_resource(device, &invm->bar2);
if (IS_ERR(nvm->base2)) {
ret = PTR_ERR(nvm->base2);
goto err;
}
}
ret = intel_dg_nvm_init(nvm, device, invm->non_posted_erase);
if (ret < 0) {
dev_err(device, "cannot initialize nvm %d\n", ret);
goto err;
}
ret = intel_dg_nvm_init_mtd(nvm, device, ret, invm->writable_override);
if (ret) {
dev_err(device, "failed init mtd %d\n", ret);
goto err;
}
dev_set_drvdata(&aux_dev->dev, nvm);
return 0;
err:
kref_put(&nvm->refcnt, intel_dg_nvm_release);
return ret;
}
static void intel_dg_mtd_remove(struct auxiliary_device *aux_dev)
{
struct intel_dg_nvm *nvm = dev_get_drvdata(&aux_dev->dev);
if (!nvm)
return;
mtd_device_unregister(&nvm->mtd);
dev_set_drvdata(&aux_dev->dev, NULL);
kref_put(&nvm->refcnt, intel_dg_nvm_release);
}
static const struct auxiliary_device_id intel_dg_mtd_id_table[] = {
{
.name = "i915.nvm",
},
{
.name = "xe.nvm",
},
{
/* sentinel */
}
};
MODULE_DEVICE_TABLE(auxiliary, intel_dg_mtd_id_table);
static struct auxiliary_driver intel_dg_mtd_driver = {
.probe = intel_dg_mtd_probe,
.remove = intel_dg_mtd_remove,
.driver = {
/* auxiliary_driver_register() sets .name to be the modname */
},
.id_table = intel_dg_mtd_id_table
};
module_auxiliary_driver(intel_dg_mtd_driver);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Intel Corporation");
MODULE_DESCRIPTION("Intel DGFX MTD driver");