linux/drivers/misc/eeprom/at25.c
Alexander Sverdlin 8ad6249c51 eeprom: at25: convert to spi-mem API
Replace the RAW SPI accesses with spi-mem API. The latter will fall back to
RAW SPI accesses if spi-mem callbacks are not implemented by a controller
driver.

Notable advantages:
- read function now allocates a bounce buffer for SPI DMA compatibility,
  similar to write function;
- the driver can now be used in conjunction with SPI controller drivers
  providing spi-mem API only, e.g. spi-nxp-fspi.
- during the initial probe the driver polls busy/ready status bit for 25ms
  instead of giving up instantly and hoping that the FW didn't write the
  EEPROM

Notes:
- mutex_lock() has been dropped from fm25_aux_read() because the latter is
  only being called in probe phase and therefore cannot race with
  at25_ee_read() or at25_ee_write()

Quick 4KB block size test with CY15B102Q 256KB F-RAM over spi_omap2_mcspi
driver (no spi-mem ops provided, fallback to raw SPI inside spi-mem):

OP	| throughput, KB/s	| change
--------+-----------------------+-------
write	| 1717.847 -> 1656.684	| -3.6%
read	| 1115.868 -> 1059.367	| -5.1%

The lower throughtput probably comes from the 3 messages per SPI transfer
inside spi-mem instead of hand-crafted 2 messages per transfer in the
former at25 code. However, if the raw SPI access is not preserved, then
the driver doesn't grow from the lines-of-code perspective and subjectively
could be considered even a bit simpler.

Higher performance impact on the read operation could be explained by the
newly introduced bounce buffer in read operation. I didn't find any
explanation or guarantee, why would a bounce buffer be not needed on the
read side, so I assume it's a pure luck that nobody read EEPROM into
some variable on stack on an architecture where kernel stack would be
not DMA-able.

Cc: Michael Walle <mwalle@kernel.org>
Cc: Hui Wang <hui.wang@canonical.com>
Link: https://lore.kernel.org/all/28ab8b72afee1af59b628f7389f0d7f5@kernel.org/
Signed-off-by: Alexander Sverdlin <alexander.sverdlin@siemens.com>
Link: https://lore.kernel.org/r/20250702222823.864803-1-alexander.sverdlin@siemens.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2025-07-16 14:24:52 +02:00

548 lines
14 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Driver for most of the SPI EEPROMs, such as Atmel AT25 models
* and Cypress FRAMs FM25 models.
*
* Copyright (C) 2006 David Brownell
*/
#include <linux/bits.h>
#include <linux/cleanup.h>
#include <linux/delay.h>
#include <linux/device.h>
#include <linux/iopoll.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/property.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/spi/eeprom.h>
#include <linux/spi/spi.h>
#include <linux/spi/spi-mem.h>
#include <linux/nvmem-provider.h>
/*
* NOTE: this is an *EEPROM* driver. The vagaries of product naming
* mean that some AT25 products are EEPROMs, and others are FLASH.
* Handle FLASH chips with the drivers/mtd/devices/m25p80.c driver,
* not this one!
*
* EEPROMs that can be used with this driver include, for example:
* AT25M02, AT25128B
*/
#define FM25_SN_LEN 8 /* serial number length */
#define EE_MAXADDRLEN 3 /* 24 bit addresses, up to 2 MBytes */
struct at25_data {
struct spi_eeprom chip;
struct spi_mem *spimem;
struct mutex lock;
unsigned addrlen;
struct nvmem_config nvmem_config;
struct nvmem_device *nvmem;
u8 sernum[FM25_SN_LEN];
};
#define AT25_WREN 0x06 /* latch the write enable */
#define AT25_WRDI 0x04 /* reset the write enable */
#define AT25_RDSR 0x05 /* read status register */
#define AT25_WRSR 0x01 /* write status register */
#define AT25_READ 0x03 /* read byte(s) */
#define AT25_WRITE 0x02 /* write byte(s)/sector */
#define FM25_SLEEP 0xb9 /* enter sleep mode */
#define FM25_RDID 0x9f /* read device ID */
#define FM25_RDSN 0xc3 /* read S/N */
#define AT25_SR_nRDY 0x01 /* nRDY = write-in-progress */
#define AT25_SR_WEN 0x02 /* write enable (latched) */
#define AT25_SR_BP0 0x04 /* BP for software writeprotect */
#define AT25_SR_BP1 0x08
#define AT25_SR_WPEN 0x80 /* writeprotect enable */
#define AT25_INSTR_BIT3 0x08 /* additional address bit in instr */
#define FM25_ID_LEN 9 /* ID length */
/*
* Specs often allow 5ms for a page write, sometimes 20ms;
* it's important to recover from write timeouts.
*/
#define EE_TIMEOUT 25
/*-------------------------------------------------------------------------*/
#define io_limit PAGE_SIZE /* bytes */
/* Handle the address MSB as part of instruction byte */
static u8 at25_instr(struct at25_data *at25, u8 instr, unsigned int off)
{
if (!(at25->chip.flags & EE_INSTR_BIT3_IS_ADDR))
return instr;
if (off < BIT(at25->addrlen * 8))
return instr;
return instr | AT25_INSTR_BIT3;
}
static int at25_ee_read(void *priv, unsigned int offset,
void *val, size_t count)
{
u8 *bounce __free(kfree) = kmalloc(min(count, io_limit), GFP_KERNEL);
struct at25_data *at25 = priv;
char *buf = val;
unsigned int msg_offset = offset;
size_t bytes_left = count;
size_t segment;
int status;
if (!bounce)
return -ENOMEM;
if (unlikely(offset >= at25->chip.byte_len))
return -EINVAL;
if ((offset + count) > at25->chip.byte_len)
count = at25->chip.byte_len - offset;
if (unlikely(!count))
return -EINVAL;
do {
struct spi_mem_op op;
segment = min(bytes_left, io_limit);
op = (struct spi_mem_op)SPI_MEM_OP(SPI_MEM_OP_CMD(at25_instr(at25, AT25_READ,
msg_offset), 1),
SPI_MEM_OP_ADDR(at25->addrlen, msg_offset, 1),
SPI_MEM_OP_NO_DUMMY,
SPI_MEM_OP_DATA_IN(segment, bounce, 1));
status = spi_mem_adjust_op_size(at25->spimem, &op);
if (status)
return status;
segment = op.data.nbytes;
mutex_lock(&at25->lock);
status = spi_mem_exec_op(at25->spimem, &op);
mutex_unlock(&at25->lock);
if (status)
return status;
memcpy(buf, bounce, segment);
msg_offset += segment;
buf += segment;
bytes_left -= segment;
} while (bytes_left > 0);
dev_dbg(&at25->spimem->spi->dev, "read %zu bytes at %d\n",
count, offset);
return 0;
}
/*
* Read extra registers as ID or serial number
*
* Allow for the callers to provide @buf on stack (not necessary DMA-capable)
* by allocating a bounce buffer internally.
*/
static int fm25_aux_read(struct at25_data *at25, u8 *buf, uint8_t command,
int len)
{
u8 *bounce __free(kfree) = kmalloc(len, GFP_KERNEL);
struct spi_mem_op op;
int status;
if (!bounce)
return -ENOMEM;
op = (struct spi_mem_op)SPI_MEM_OP(SPI_MEM_OP_CMD(command, 1),
SPI_MEM_OP_NO_ADDR,
SPI_MEM_OP_NO_DUMMY,
SPI_MEM_OP_DATA_IN(len, bounce, 1));
status = spi_mem_exec_op(at25->spimem, &op);
dev_dbg(&at25->spimem->spi->dev, "read %d aux bytes --> %d\n", len, status);
if (status)
return status;
memcpy(buf, bounce, len);
return 0;
}
static ssize_t sernum_show(struct device *dev, struct device_attribute *attr, char *buf)
{
struct at25_data *at25;
at25 = dev_get_drvdata(dev);
return sysfs_emit(buf, "%*ph\n", (int)sizeof(at25->sernum), at25->sernum);
}
static DEVICE_ATTR_RO(sernum);
static struct attribute *sernum_attrs[] = {
&dev_attr_sernum.attr,
NULL,
};
ATTRIBUTE_GROUPS(sernum);
/*
* Poll Read Status Register with timeout
*
* Return:
* 0, if the chip is ready
* [positive] Status Register value as-is, if the chip is busy
* [negative] error code in case of read failure
*/
static int at25_wait_ready(struct at25_data *at25)
{
u8 *bounce __free(kfree) = kmalloc(1, GFP_KERNEL);
struct spi_mem_op op;
int status;
if (!bounce)
return -ENOMEM;
op = (struct spi_mem_op)SPI_MEM_OP(SPI_MEM_OP_CMD(AT25_RDSR, 1),
SPI_MEM_OP_NO_ADDR,
SPI_MEM_OP_NO_DUMMY,
SPI_MEM_OP_DATA_IN(1, bounce, 1));
read_poll_timeout(spi_mem_exec_op, status,
status || !(bounce[0] & AT25_SR_nRDY), false,
USEC_PER_MSEC, USEC_PER_MSEC * EE_TIMEOUT,
at25->spimem, &op);
if (status < 0)
return status;
if (!(bounce[0] & AT25_SR_nRDY))
return 0;
return bounce[0];
}
static int at25_ee_write(void *priv, unsigned int off, void *val, size_t count)
{
u8 *bounce __free(kfree) = kmalloc(min(count, io_limit), GFP_KERNEL);
struct at25_data *at25 = priv;
const char *buf = val;
unsigned int buf_size;
int status;
if (unlikely(off >= at25->chip.byte_len))
return -EFBIG;
if ((off + count) > at25->chip.byte_len)
count = at25->chip.byte_len - off;
if (unlikely(!count))
return -EINVAL;
buf_size = at25->chip.page_size;
if (!bounce)
return -ENOMEM;
/*
* For write, rollover is within the page ... so we write at
* most one page, then manually roll over to the next page.
*/
guard(mutex)(&at25->lock);
do {
struct spi_mem_op op = SPI_MEM_OP(SPI_MEM_OP_CMD(AT25_WREN, 1),
SPI_MEM_OP_NO_ADDR,
SPI_MEM_OP_NO_DUMMY,
SPI_MEM_OP_NO_DATA);
unsigned int segment;
status = spi_mem_exec_op(at25->spimem, &op);
if (status < 0) {
dev_dbg(&at25->spimem->spi->dev, "WREN --> %d\n", status);
return status;
}
/* Write as much of a page as we can */
segment = buf_size - (off % buf_size);
if (segment > count)
segment = count;
if (segment > io_limit)
segment = io_limit;
op = (struct spi_mem_op)SPI_MEM_OP(SPI_MEM_OP_CMD(at25_instr(at25, AT25_WRITE, off),
1),
SPI_MEM_OP_ADDR(at25->addrlen, off, 1),
SPI_MEM_OP_NO_DUMMY,
SPI_MEM_OP_DATA_OUT(segment, bounce, 1));
status = spi_mem_adjust_op_size(at25->spimem, &op);
if (status)
return status;
segment = op.data.nbytes;
memcpy(bounce, buf, segment);
status = spi_mem_exec_op(at25->spimem, &op);
dev_dbg(&at25->spimem->spi->dev, "write %u bytes at %u --> %d\n",
segment, off, status);
if (status)
return status;
/*
* REVISIT this should detect (or prevent) failed writes
* to read-only sections of the EEPROM...
*/
status = at25_wait_ready(at25);
if (status < 0) {
dev_err_probe(&at25->spimem->spi->dev, status,
"Read Status Redister command failed\n");
return status;
}
if (status) {
dev_dbg(&at25->spimem->spi->dev,
"Status %02x\n", status);
dev_err(&at25->spimem->spi->dev,
"write %u bytes offset %u, timeout after %u msecs\n",
segment, off, EE_TIMEOUT);
return -ETIMEDOUT;
}
off += segment;
buf += segment;
count -= segment;
} while (count > 0);
return status;
}
/*-------------------------------------------------------------------------*/
static int at25_fw_to_chip(struct device *dev, struct spi_eeprom *chip)
{
u32 val;
int err;
strscpy(chip->name, "at25", sizeof(chip->name));
err = device_property_read_u32(dev, "size", &val);
if (err)
err = device_property_read_u32(dev, "at25,byte-len", &val);
if (err) {
dev_err(dev, "Error: missing \"size\" property\n");
return err;
}
chip->byte_len = val;
err = device_property_read_u32(dev, "pagesize", &val);
if (err)
err = device_property_read_u32(dev, "at25,page-size", &val);
if (err) {
dev_err(dev, "Error: missing \"pagesize\" property\n");
return err;
}
chip->page_size = val;
err = device_property_read_u32(dev, "address-width", &val);
if (err) {
err = device_property_read_u32(dev, "at25,addr-mode", &val);
if (err) {
dev_err(dev, "Error: missing \"address-width\" property\n");
return err;
}
chip->flags = (u16)val;
} else {
switch (val) {
case 9:
chip->flags |= EE_INSTR_BIT3_IS_ADDR;
fallthrough;
case 8:
chip->flags |= EE_ADDR1;
break;
case 16:
chip->flags |= EE_ADDR2;
break;
case 24:
chip->flags |= EE_ADDR3;
break;
default:
dev_err(dev,
"Error: bad \"address-width\" property: %u\n",
val);
return -ENODEV;
}
if (device_property_present(dev, "read-only"))
chip->flags |= EE_READONLY;
}
return 0;
}
static int at25_fram_to_chip(struct device *dev, struct spi_eeprom *chip)
{
struct at25_data *at25 = container_of(chip, struct at25_data, chip);
u8 sernum[FM25_SN_LEN];
u8 id[FM25_ID_LEN];
int i;
strscpy(chip->name, "fm25", sizeof(chip->name));
/* Get ID of chip */
fm25_aux_read(at25, id, FM25_RDID, FM25_ID_LEN);
/* There are inside-out FRAM variations, detect them and reverse the ID bytes */
if (id[6] == 0x7f && id[2] == 0xc2)
for (i = 0; i < ARRAY_SIZE(id) / 2; i++) {
u8 tmp = id[i];
int j = ARRAY_SIZE(id) - i - 1;
id[i] = id[j];
id[j] = tmp;
}
if (id[6] != 0xc2) {
dev_err(dev, "Error: no Cypress FRAM (id %02x)\n", id[6]);
return -ENODEV;
}
switch (id[7]) {
case 0x21 ... 0x26:
chip->byte_len = BIT(id[7] - 0x21 + 4) * 1024;
break;
case 0x2a ... 0x30:
/* CY15B116QN ... CY15B116QN */
chip->byte_len = BIT(((id[7] >> 1) & 0xf) + 13);
break;
default:
dev_err(dev, "Error: unsupported size (id %02x)\n", id[7]);
return -ENODEV;
}
if (chip->byte_len > 64 * 1024)
chip->flags |= EE_ADDR3;
else
chip->flags |= EE_ADDR2;
if (id[8]) {
fm25_aux_read(at25, sernum, FM25_RDSN, FM25_SN_LEN);
/* Swap byte order */
for (i = 0; i < FM25_SN_LEN; i++)
at25->sernum[i] = sernum[FM25_SN_LEN - 1 - i];
}
chip->page_size = PAGE_SIZE;
return 0;
}
static const struct of_device_id at25_of_match[] = {
{ .compatible = "atmel,at25" },
{ .compatible = "cypress,fm25" },
{ }
};
MODULE_DEVICE_TABLE(of, at25_of_match);
static const struct spi_device_id at25_spi_ids[] = {
{ .name = "at25" },
{ .name = "fm25" },
{ }
};
MODULE_DEVICE_TABLE(spi, at25_spi_ids);
static int at25_probe(struct spi_mem *mem)
{
struct spi_device *spi = mem->spi;
struct spi_eeprom *pdata;
struct at25_data *at25;
bool is_fram;
int err;
at25 = devm_kzalloc(&spi->dev, sizeof(*at25), GFP_KERNEL);
if (!at25)
return -ENOMEM;
at25->spimem = mem;
/*
* Ping the chip ... the status register is pretty portable,
* unlike probing manufacturer IDs.
*/
err = at25_wait_ready(at25);
if (err < 0)
return dev_err_probe(&spi->dev, err, "Read Status Register command failed\n");
if (err) {
dev_err(&spi->dev, "Not ready (%02x)\n", err);
return -ENXIO;
}
mutex_init(&at25->lock);
spi_set_drvdata(spi, at25);
is_fram = fwnode_device_is_compatible(dev_fwnode(&spi->dev), "cypress,fm25");
/* Chip description */
pdata = dev_get_platdata(&spi->dev);
if (pdata) {
at25->chip = *pdata;
} else {
if (is_fram)
err = at25_fram_to_chip(&spi->dev, &at25->chip);
else
err = at25_fw_to_chip(&spi->dev, &at25->chip);
if (err)
return err;
}
/* For now we only support 8/16/24 bit addressing */
if (at25->chip.flags & EE_ADDR1)
at25->addrlen = 1;
else if (at25->chip.flags & EE_ADDR2)
at25->addrlen = 2;
else if (at25->chip.flags & EE_ADDR3)
at25->addrlen = 3;
else {
dev_dbg(&spi->dev, "unsupported address type\n");
return -EINVAL;
}
at25->nvmem_config.type = is_fram ? NVMEM_TYPE_FRAM : NVMEM_TYPE_EEPROM;
at25->nvmem_config.name = dev_name(&spi->dev);
at25->nvmem_config.dev = &spi->dev;
at25->nvmem_config.read_only = at25->chip.flags & EE_READONLY;
at25->nvmem_config.root_only = true;
at25->nvmem_config.owner = THIS_MODULE;
at25->nvmem_config.compat = true;
at25->nvmem_config.base_dev = &spi->dev;
at25->nvmem_config.reg_read = at25_ee_read;
at25->nvmem_config.reg_write = at25_ee_write;
at25->nvmem_config.priv = at25;
at25->nvmem_config.stride = 1;
at25->nvmem_config.word_size = 1;
at25->nvmem_config.size = at25->chip.byte_len;
at25->nvmem = devm_nvmem_register(&spi->dev, &at25->nvmem_config);
if (IS_ERR(at25->nvmem))
return PTR_ERR(at25->nvmem);
dev_info(&spi->dev, "%d %s %s %s%s, pagesize %u\n",
(at25->chip.byte_len < 1024) ?
at25->chip.byte_len : (at25->chip.byte_len / 1024),
(at25->chip.byte_len < 1024) ? "Byte" : "KByte",
at25->chip.name, is_fram ? "fram" : "eeprom",
(at25->chip.flags & EE_READONLY) ? " (readonly)" : "",
at25->chip.page_size);
return 0;
}
/*-------------------------------------------------------------------------*/
static struct spi_mem_driver at25_driver = {
.spidrv = {
.driver = {
.name = "at25",
.of_match_table = at25_of_match,
.dev_groups = sernum_groups,
},
.id_table = at25_spi_ids,
},
.probe = at25_probe,
};
module_spi_mem_driver(at25_driver);
MODULE_DESCRIPTION("Driver for most SPI EEPROMs");
MODULE_AUTHOR("David Brownell");
MODULE_LICENSE("GPL");