linux/drivers/memory/stm32_omm.c
Krzysztof Kozlowski 6d8b18ae64 memory: stm32_omm: Use syscon_regmap_lookup_by_phandle_args
Use syscon_regmap_lookup_by_phandle_args() which is a wrapper over
syscon_regmap_lookup_by_phandle() combined with getting the syscon
argument.  Except simpler code this annotates within one line that given
phandle has arguments, so grepping for code would be easier.

Reviewed-by: Patrice Chotard <patrice.chotard@foss.st.com>
Link: https://lore.kernel.org/r/20250525191300.50873-2-krzysztof.kozlowski@linaro.org
Signed-off-by: Krzysztof Kozlowski <krzysztof.kozlowski@linaro.org>
2025-06-10 10:13:27 +02:00

470 lines
11 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (C) STMicroelectronics 2025 - All Rights Reserved
* Author(s): Patrice Chotard <patrice.chotard@foss.st.com> for STMicroelectronics.
*/
#include <linux/bitfield.h>
#include <linux/bus/stm32_firewall_device.h>
#include <linux/clk.h>
#include <linux/err.h>
#include <linux/mfd/syscon.h>
#include <linux/mod_devicetable.h>
#include <linux/module.h>
#include <linux/of_address.h>
#include <linux/of_platform.h>
#include <linux/pinctrl/consumer.h>
#include <linux/pm_runtime.h>
#include <linux/regmap.h>
#include <linux/reset.h>
#define OMM_CR 0
#define CR_MUXEN BIT(0)
#define CR_MUXENMODE_MASK GENMASK(1, 0)
#define CR_CSSEL_OVR_EN BIT(4)
#define CR_CSSEL_OVR_MASK GENMASK(6, 5)
#define CR_REQ2ACK_MASK GENMASK(23, 16)
#define OMM_CHILD_NB 2
#define OMM_CLK_NB 3
struct stm32_omm {
struct resource *mm_res;
struct clk_bulk_data clk_bulk[OMM_CLK_NB];
struct reset_control *child_reset[OMM_CHILD_NB];
void __iomem *io_base;
u32 cr;
u8 nb_child;
bool restore_omm;
};
static int stm32_omm_set_amcr(struct device *dev, bool set)
{
struct stm32_omm *omm = dev_get_drvdata(dev);
resource_size_t mm_ospi2_size = 0;
static const char * const mm_name[] = { "ospi1", "ospi2" };
struct regmap *syscfg_regmap;
struct device_node *node;
struct resource res, res1;
unsigned int syscon_args[2];
int ret, idx;
unsigned int i, amcr, read_amcr;
for (i = 0; i < omm->nb_child; i++) {
idx = of_property_match_string(dev->of_node,
"memory-region-names",
mm_name[i]);
if (idx < 0)
continue;
/* res1 only used on second loop iteration */
res1.start = res.start;
res1.end = res.end;
node = of_parse_phandle(dev->of_node, "memory-region", idx);
if (!node)
continue;
ret = of_address_to_resource(node, 0, &res);
if (ret) {
of_node_put(node);
dev_err(dev, "unable to resolve memory region\n");
return ret;
}
/* check that memory region fits inside OMM memory map area */
if (!resource_contains(omm->mm_res, &res)) {
dev_err(dev, "%s doesn't fit inside OMM memory map area\n",
mm_name[i]);
dev_err(dev, "%pR doesn't fit inside %pR\n", &res, omm->mm_res);
of_node_put(node);
return -EFAULT;
}
if (i == 1) {
mm_ospi2_size = resource_size(&res);
/* check that OMM memory region 1 doesn't overlap memory region 2 */
if (resource_overlaps(&res, &res1)) {
dev_err(dev, "OMM memory-region %s overlaps memory region %s\n",
mm_name[0], mm_name[1]);
dev_err(dev, "%pR overlaps %pR\n", &res1, &res);
of_node_put(node);
return -EFAULT;
}
}
of_node_put(node);
}
syscfg_regmap = syscon_regmap_lookup_by_phandle_args(dev->of_node, "st,syscfg-amcr",
2, syscon_args);
if (IS_ERR(syscfg_regmap))
return dev_err_probe(dev, PTR_ERR(syscfg_regmap),
"Failed to get st,syscfg-amcr property\n");
amcr = mm_ospi2_size / SZ_64M;
if (set)
regmap_update_bits(syscfg_regmap, syscon_args[0], syscon_args[1], amcr);
/* read AMCR and check coherency with memory-map areas defined in DT */
regmap_read(syscfg_regmap, syscon_args[0], &read_amcr);
read_amcr = read_amcr >> (ffs(syscon_args[1]) - 1);
if (amcr != read_amcr) {
dev_err(dev, "AMCR value not coherent with DT memory-map areas\n");
ret = -EINVAL;
}
return ret;
}
static int stm32_omm_toggle_child_clock(struct device *dev, bool enable)
{
struct stm32_omm *omm = dev_get_drvdata(dev);
int i, ret;
for (i = 0; i < omm->nb_child; i++) {
if (enable) {
ret = clk_prepare_enable(omm->clk_bulk[i + 1].clk);
if (ret) {
dev_err(dev, "Can not enable clock\n");
goto clk_error;
}
} else {
clk_disable_unprepare(omm->clk_bulk[i + 1].clk);
}
}
return 0;
clk_error:
while (i--)
clk_disable_unprepare(omm->clk_bulk[i + 1].clk);
return ret;
}
static int stm32_omm_disable_child(struct device *dev)
{
struct stm32_omm *omm = dev_get_drvdata(dev);
struct reset_control *reset;
int ret;
u8 i;
ret = stm32_omm_toggle_child_clock(dev, true);
if (ret)
return ret;
for (i = 0; i < omm->nb_child; i++) {
/* reset OSPI to ensure CR_EN bit is set to 0 */
reset = omm->child_reset[i];
ret = reset_control_acquire(reset);
if (ret) {
stm32_omm_toggle_child_clock(dev, false);
dev_err(dev, "Can not acquire reset %d\n", ret);
return ret;
}
reset_control_assert(reset);
udelay(2);
reset_control_deassert(reset);
reset_control_release(reset);
}
return stm32_omm_toggle_child_clock(dev, false);
}
static int stm32_omm_configure(struct device *dev)
{
static const char * const clocks_name[] = {"omm", "ospi1", "ospi2"};
struct stm32_omm *omm = dev_get_drvdata(dev);
unsigned long clk_rate_max = 0;
u32 mux = 0;
u32 cssel_ovr = 0;
u32 req2ack = 0;
struct reset_control *rstc;
unsigned long clk_rate;
int ret;
u8 i;
for (i = 0; i < OMM_CLK_NB; i++)
omm->clk_bulk[i].id = clocks_name[i];
/* retrieve OMM, OSPI1 and OSPI2 clocks */
ret = devm_clk_bulk_get(dev, OMM_CLK_NB, omm->clk_bulk);
if (ret)
return dev_err_probe(dev, ret, "Failed to get OMM/OSPI's clocks\n");
/* Ensure both OSPI instance are disabled before configuring OMM */
ret = stm32_omm_disable_child(dev);
if (ret)
return ret;
ret = pm_runtime_resume_and_get(dev);
if (ret < 0)
return ret;
/* parse children's clock */
for (i = 1; i <= omm->nb_child; i++) {
clk_rate = clk_get_rate(omm->clk_bulk[i].clk);
if (!clk_rate) {
dev_err(dev, "Invalid clock rate\n");
ret = -EINVAL;
goto error;
}
if (clk_rate > clk_rate_max)
clk_rate_max = clk_rate;
}
rstc = devm_reset_control_get_exclusive(dev, "omm");
if (IS_ERR(rstc)) {
ret = dev_err_probe(dev, PTR_ERR(rstc), "reset get failed\n");
goto error;
}
reset_control_assert(rstc);
udelay(2);
reset_control_deassert(rstc);
omm->cr = readl_relaxed(omm->io_base + OMM_CR);
/* optional */
ret = of_property_read_u32(dev->of_node, "st,omm-mux", &mux);
if (!ret) {
if (mux & CR_MUXEN) {
ret = of_property_read_u32(dev->of_node, "st,omm-req2ack-ns",
&req2ack);
if (!ret && !req2ack) {
req2ack = DIV_ROUND_UP(req2ack, NSEC_PER_SEC / clk_rate_max) - 1;
if (req2ack > 256)
req2ack = 256;
}
req2ack = FIELD_PREP(CR_REQ2ACK_MASK, req2ack);
omm->cr &= ~CR_REQ2ACK_MASK;
omm->cr |= FIELD_PREP(CR_REQ2ACK_MASK, req2ack);
/*
* If the mux is enabled, the 2 OSPI clocks have to be
* always enabled
*/
ret = stm32_omm_toggle_child_clock(dev, true);
if (ret)
goto error;
}
omm->cr &= ~CR_MUXENMODE_MASK;
omm->cr |= FIELD_PREP(CR_MUXENMODE_MASK, mux);
}
/* optional */
ret = of_property_read_u32(dev->of_node, "st,omm-cssel-ovr", &cssel_ovr);
if (!ret) {
omm->cr &= ~CR_CSSEL_OVR_MASK;
omm->cr |= FIELD_PREP(CR_CSSEL_OVR_MASK, cssel_ovr);
omm->cr |= CR_CSSEL_OVR_EN;
}
omm->restore_omm = true;
writel_relaxed(omm->cr, omm->io_base + OMM_CR);
ret = stm32_omm_set_amcr(dev, true);
error:
pm_runtime_put_sync_suspend(dev);
return ret;
}
static int stm32_omm_check_access(struct device_node *np)
{
struct stm32_firewall firewall;
int ret;
ret = stm32_firewall_get_firewall(np, &firewall, 1);
if (ret)
return ret;
return stm32_firewall_grant_access(&firewall);
}
static int stm32_omm_probe(struct platform_device *pdev)
{
static const char * const resets_name[] = {"ospi1", "ospi2"};
struct device *dev = &pdev->dev;
u8 child_access_granted = 0;
struct stm32_omm *omm;
int i, ret;
omm = devm_kzalloc(dev, sizeof(*omm), GFP_KERNEL);
if (!omm)
return -ENOMEM;
omm->io_base = devm_platform_ioremap_resource_byname(pdev, "regs");
if (IS_ERR(omm->io_base))
return PTR_ERR(omm->io_base);
omm->mm_res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "memory_map");
if (!omm->mm_res)
return -ENODEV;
/* check child's access */
for_each_child_of_node_scoped(dev->of_node, child) {
if (omm->nb_child >= OMM_CHILD_NB) {
dev_err(dev, "Bad DT, found too much children\n");
return -E2BIG;
}
ret = stm32_omm_check_access(child);
if (ret < 0 && ret != -EACCES)
return ret;
if (!ret)
child_access_granted++;
omm->nb_child++;
}
if (omm->nb_child != OMM_CHILD_NB)
return -EINVAL;
platform_set_drvdata(pdev, omm);
devm_pm_runtime_enable(dev);
/* check if OMM's resource access is granted */
ret = stm32_omm_check_access(dev->of_node);
if (ret < 0 && ret != -EACCES)
return ret;
for (i = 0; i < omm->nb_child; i++) {
omm->child_reset[i] = devm_reset_control_get_exclusive_released(dev,
resets_name[i]);
if (IS_ERR(omm->child_reset[i]))
return dev_err_probe(dev, PTR_ERR(omm->child_reset[i]),
"Can't get %s reset\n", resets_name[i]);
}
if (!ret && child_access_granted == OMM_CHILD_NB) {
ret = stm32_omm_configure(dev);
if (ret)
return ret;
} else {
dev_dbg(dev, "Octo Memory Manager resource's access not granted\n");
/*
* AMCR can't be set, so check if current value is coherent
* with memory-map areas defined in DT
*/
ret = stm32_omm_set_amcr(dev, false);
if (ret)
return ret;
}
ret = devm_of_platform_populate(dev);
if (ret) {
if (omm->cr & CR_MUXEN)
stm32_omm_toggle_child_clock(&pdev->dev, false);
return dev_err_probe(dev, ret, "Failed to create Octo Memory Manager child\n");
}
return 0;
}
static void stm32_omm_remove(struct platform_device *pdev)
{
struct stm32_omm *omm = platform_get_drvdata(pdev);
if (omm->cr & CR_MUXEN)
stm32_omm_toggle_child_clock(&pdev->dev, false);
}
static const struct of_device_id stm32_omm_of_match[] = {
{ .compatible = "st,stm32mp25-omm", },
{}
};
MODULE_DEVICE_TABLE(of, stm32_omm_of_match);
static int __maybe_unused stm32_omm_runtime_suspend(struct device *dev)
{
struct stm32_omm *omm = dev_get_drvdata(dev);
clk_disable_unprepare(omm->clk_bulk[0].clk);
return 0;
}
static int __maybe_unused stm32_omm_runtime_resume(struct device *dev)
{
struct stm32_omm *omm = dev_get_drvdata(dev);
return clk_prepare_enable(omm->clk_bulk[0].clk);
}
static int __maybe_unused stm32_omm_suspend(struct device *dev)
{
struct stm32_omm *omm = dev_get_drvdata(dev);
if (omm->restore_omm && omm->cr & CR_MUXEN)
stm32_omm_toggle_child_clock(dev, false);
return pinctrl_pm_select_sleep_state(dev);
}
static int __maybe_unused stm32_omm_resume(struct device *dev)
{
struct stm32_omm *omm = dev_get_drvdata(dev);
int ret;
pinctrl_pm_select_default_state(dev);
if (!omm->restore_omm)
return 0;
/* Ensure both OSPI instance are disabled before configuring OMM */
ret = stm32_omm_disable_child(dev);
if (ret)
return ret;
ret = pm_runtime_resume_and_get(dev);
if (ret < 0)
return ret;
writel_relaxed(omm->cr, omm->io_base + OMM_CR);
ret = stm32_omm_set_amcr(dev, true);
pm_runtime_put_sync_suspend(dev);
if (ret)
return ret;
if (omm->cr & CR_MUXEN)
ret = stm32_omm_toggle_child_clock(dev, true);
return ret;
}
static const struct dev_pm_ops stm32_omm_pm_ops = {
SET_RUNTIME_PM_OPS(stm32_omm_runtime_suspend,
stm32_omm_runtime_resume, NULL)
SET_SYSTEM_SLEEP_PM_OPS(stm32_omm_suspend, stm32_omm_resume)
};
static struct platform_driver stm32_omm_driver = {
.probe = stm32_omm_probe,
.remove = stm32_omm_remove,
.driver = {
.name = "stm32-omm",
.of_match_table = stm32_omm_of_match,
.pm = &stm32_omm_pm_ops,
},
};
module_platform_driver(stm32_omm_driver);
MODULE_DESCRIPTION("STMicroelectronics Octo Memory Manager driver");
MODULE_LICENSE("GPL");