linux/drivers/media/platform/verisilicon/hantro_hevc.c
Benjamin Gaignard 5423e2d220 media: verisilicon: Add reference buffer compression feature
Reference frame compression is a feature added in the G2 decoder to
compress frame buffers so that the bandwidth of storing/loading
reference frames can be reduced, especially with high resolution decoded
streams.

The impact of compressed frames is confirmed when using perf to monitor
the number of memory accesses with or without the compression feature.
The following command:

perf stat -a -e \
imx8_ddr0/cycles/,imx8_ddr0/read-cycles/,imx8_ddr0/write-cycles/ \
gst-launch-1.0 filesrc \
location=Jockey_3840x2160_120fps_420_8bit_HEVC_RAW.hevc ! queue ! \
h265parse ! v4l2slh265dec ! video/x-raw,format=NV12 ! fakesink

Gives us these results without the compression feature:
Performance counter stats for 'system wide':

        1711300345      imx8_ddr0/cycles/
         892207924      imx8_ddr0/read-cycles/
        1291785864      imx8_ddr0/write-cycles/

      13.760048353 seconds time elapsed

With the compression feature:
Performance counter stats for 'system wide':

         274526799      imx8_ddr0/cycles/
         453120194      imx8_ddr0/read-cycles/
         833391434      imx8_ddr0/write-cycles/

      18.257831534 seconds time elapsed

As expected the number of read/write cycles are really lower when
compression is used.

Since storing the compression data requires more memory a module
parameter named 'hevc_use_compression' is used to enable/disable
this feature and, by default, compression isn't used.

Enabling the compression feature means that the output-frames of the
decoder
are stored with a specific compression pixel-format. Since this
pixel format is unknown, this patch restrains the compression feature
usage to the cases where post-processor pixel-formats (NV12 or NV15)
are selected by the applications.

The Fluster compliance HEVC test suite score is still 141/147 with this
patch.

Signed-off-by: Benjamin Gaignard <benjamin.gaignard@collabora.com>
Tested-by: Nicolas Dufresne <nicolas.dufresne@collabora.com>
Signed-off-by: Sebastian Fricke <sebastian.fricke@collabora.com>
Signed-off-by: Hans Verkuil <hverkuil-cisco@xs4all.nl>
2024-08-28 10:01:10 +02:00

287 lines
7.8 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Hantro VPU HEVC codec driver
*
* Copyright (C) 2020 Safran Passenger Innovations LLC
*/
#include <linux/types.h>
#include <media/v4l2-mem2mem.h>
#include "hantro.h"
#include "hantro_hw.h"
#define VERT_FILTER_RAM_SIZE 8 /* bytes per pixel row */
/*
* BSD control data of current picture at tile border
* 128 bits per 4x4 tile = 128/(8*4) bytes per row
*/
#define BSD_CTRL_RAM_SIZE 4 /* bytes per pixel row */
/* tile border coefficients of filter */
#define VERT_SAO_RAM_SIZE 48 /* bytes per pixel */
#define SCALING_LIST_SIZE (16 * 64)
#define MAX_TILE_COLS 20
#define MAX_TILE_ROWS 22
static bool hevc_use_compression = IS_ENABLED(CONFIG_VIDEO_HANTRO_HEVC_RFC);
module_param_named(hevc_use_compression, hevc_use_compression, bool, 0644);
MODULE_PARM_DESC(hevc_use_compression,
"Use reference frame compression for HEVC");
void hantro_hevc_ref_init(struct hantro_ctx *ctx)
{
struct hantro_hevc_dec_hw_ctx *hevc_dec = &ctx->hevc_dec;
hevc_dec->ref_bufs_used = 0;
}
dma_addr_t hantro_hevc_get_ref_buf(struct hantro_ctx *ctx,
s32 poc)
{
struct hantro_hevc_dec_hw_ctx *hevc_dec = &ctx->hevc_dec;
int i;
/* Find the reference buffer in already known ones */
for (i = 0; i < NUM_REF_PICTURES; i++) {
if (hevc_dec->ref_bufs_poc[i] == poc) {
hevc_dec->ref_bufs_used |= 1 << i;
return hevc_dec->ref_bufs[i].dma;
}
}
return 0;
}
int hantro_hevc_add_ref_buf(struct hantro_ctx *ctx, int poc, dma_addr_t addr)
{
struct hantro_hevc_dec_hw_ctx *hevc_dec = &ctx->hevc_dec;
int i;
/* Add a new reference buffer */
for (i = 0; i < NUM_REF_PICTURES; i++) {
if (!(hevc_dec->ref_bufs_used & 1 << i)) {
hevc_dec->ref_bufs_used |= 1 << i;
hevc_dec->ref_bufs_poc[i] = poc;
hevc_dec->ref_bufs[i].dma = addr;
return 0;
}
}
return -EINVAL;
}
static int tile_buffer_reallocate(struct hantro_ctx *ctx)
{
struct hantro_dev *vpu = ctx->dev;
struct hantro_hevc_dec_hw_ctx *hevc_dec = &ctx->hevc_dec;
const struct hantro_hevc_dec_ctrls *ctrls = &ctx->hevc_dec.ctrls;
const struct v4l2_ctrl_hevc_pps *pps = ctrls->pps;
const struct v4l2_ctrl_hevc_sps *sps = ctrls->sps;
unsigned int num_tile_cols = pps->num_tile_columns_minus1 + 1;
unsigned int height64 = (sps->pic_height_in_luma_samples + 63) & ~63;
unsigned int size;
if (num_tile_cols <= 1 ||
num_tile_cols <= hevc_dec->num_tile_cols_allocated)
return 0;
/* Need to reallocate due to tiles passed via PPS */
if (hevc_dec->tile_filter.cpu) {
dma_free_coherent(vpu->dev, hevc_dec->tile_filter.size,
hevc_dec->tile_filter.cpu,
hevc_dec->tile_filter.dma);
hevc_dec->tile_filter.cpu = NULL;
}
if (hevc_dec->tile_sao.cpu) {
dma_free_coherent(vpu->dev, hevc_dec->tile_sao.size,
hevc_dec->tile_sao.cpu,
hevc_dec->tile_sao.dma);
hevc_dec->tile_sao.cpu = NULL;
}
if (hevc_dec->tile_bsd.cpu) {
dma_free_coherent(vpu->dev, hevc_dec->tile_bsd.size,
hevc_dec->tile_bsd.cpu,
hevc_dec->tile_bsd.dma);
hevc_dec->tile_bsd.cpu = NULL;
}
size = (VERT_FILTER_RAM_SIZE * height64 * (num_tile_cols - 1) * ctx->bit_depth) / 8;
hevc_dec->tile_filter.cpu = dma_alloc_coherent(vpu->dev, size,
&hevc_dec->tile_filter.dma,
GFP_KERNEL);
if (!hevc_dec->tile_filter.cpu)
return -ENOMEM;
hevc_dec->tile_filter.size = size;
size = (VERT_SAO_RAM_SIZE * height64 * (num_tile_cols - 1) * ctx->bit_depth) / 8;
hevc_dec->tile_sao.cpu = dma_alloc_coherent(vpu->dev, size,
&hevc_dec->tile_sao.dma,
GFP_KERNEL);
if (!hevc_dec->tile_sao.cpu)
goto err_free_tile_buffers;
hevc_dec->tile_sao.size = size;
size = BSD_CTRL_RAM_SIZE * height64 * (num_tile_cols - 1);
hevc_dec->tile_bsd.cpu = dma_alloc_coherent(vpu->dev, size,
&hevc_dec->tile_bsd.dma,
GFP_KERNEL);
if (!hevc_dec->tile_bsd.cpu)
goto err_free_sao_buffers;
hevc_dec->tile_bsd.size = size;
hevc_dec->num_tile_cols_allocated = num_tile_cols;
return 0;
err_free_sao_buffers:
if (hevc_dec->tile_sao.cpu)
dma_free_coherent(vpu->dev, hevc_dec->tile_sao.size,
hevc_dec->tile_sao.cpu,
hevc_dec->tile_sao.dma);
hevc_dec->tile_sao.cpu = NULL;
err_free_tile_buffers:
if (hevc_dec->tile_filter.cpu)
dma_free_coherent(vpu->dev, hevc_dec->tile_filter.size,
hevc_dec->tile_filter.cpu,
hevc_dec->tile_filter.dma);
hevc_dec->tile_filter.cpu = NULL;
return -ENOMEM;
}
static int hantro_hevc_validate_sps(struct hantro_ctx *ctx, const struct v4l2_ctrl_hevc_sps *sps)
{
/*
* for tile pixel format check if the width and height match
* hardware constraints
*/
if (ctx->vpu_dst_fmt->fourcc == V4L2_PIX_FMT_NV12_4L4) {
if (ctx->dst_fmt.width !=
ALIGN(sps->pic_width_in_luma_samples, ctx->vpu_dst_fmt->frmsize.step_width))
return -EINVAL;
if (ctx->dst_fmt.height !=
ALIGN(sps->pic_height_in_luma_samples, ctx->vpu_dst_fmt->frmsize.step_height))
return -EINVAL;
}
return 0;
}
int hantro_hevc_dec_prepare_run(struct hantro_ctx *ctx)
{
struct hantro_hevc_dec_hw_ctx *hevc_ctx = &ctx->hevc_dec;
struct hantro_hevc_dec_ctrls *ctrls = &hevc_ctx->ctrls;
int ret;
hantro_start_prepare_run(ctx);
ctrls->decode_params =
hantro_get_ctrl(ctx, V4L2_CID_STATELESS_HEVC_DECODE_PARAMS);
if (WARN_ON(!ctrls->decode_params))
return -EINVAL;
ctrls->scaling =
hantro_get_ctrl(ctx, V4L2_CID_STATELESS_HEVC_SCALING_MATRIX);
if (WARN_ON(!ctrls->scaling))
return -EINVAL;
ctrls->sps =
hantro_get_ctrl(ctx, V4L2_CID_STATELESS_HEVC_SPS);
if (WARN_ON(!ctrls->sps))
return -EINVAL;
ret = hantro_hevc_validate_sps(ctx, ctrls->sps);
if (ret)
return ret;
ctrls->pps =
hantro_get_ctrl(ctx, V4L2_CID_STATELESS_HEVC_PPS);
if (WARN_ON(!ctrls->pps))
return -EINVAL;
ret = tile_buffer_reallocate(ctx);
if (ret)
return ret;
return 0;
}
void hantro_hevc_dec_exit(struct hantro_ctx *ctx)
{
struct hantro_dev *vpu = ctx->dev;
struct hantro_hevc_dec_hw_ctx *hevc_dec = &ctx->hevc_dec;
if (hevc_dec->tile_sizes.cpu)
dma_free_coherent(vpu->dev, hevc_dec->tile_sizes.size,
hevc_dec->tile_sizes.cpu,
hevc_dec->tile_sizes.dma);
hevc_dec->tile_sizes.cpu = NULL;
if (hevc_dec->scaling_lists.cpu)
dma_free_coherent(vpu->dev, hevc_dec->scaling_lists.size,
hevc_dec->scaling_lists.cpu,
hevc_dec->scaling_lists.dma);
hevc_dec->scaling_lists.cpu = NULL;
if (hevc_dec->tile_filter.cpu)
dma_free_coherent(vpu->dev, hevc_dec->tile_filter.size,
hevc_dec->tile_filter.cpu,
hevc_dec->tile_filter.dma);
hevc_dec->tile_filter.cpu = NULL;
if (hevc_dec->tile_sao.cpu)
dma_free_coherent(vpu->dev, hevc_dec->tile_sao.size,
hevc_dec->tile_sao.cpu,
hevc_dec->tile_sao.dma);
hevc_dec->tile_sao.cpu = NULL;
if (hevc_dec->tile_bsd.cpu)
dma_free_coherent(vpu->dev, hevc_dec->tile_bsd.size,
hevc_dec->tile_bsd.cpu,
hevc_dec->tile_bsd.dma);
hevc_dec->tile_bsd.cpu = NULL;
}
int hantro_hevc_dec_init(struct hantro_ctx *ctx)
{
struct hantro_dev *vpu = ctx->dev;
struct hantro_hevc_dec_hw_ctx *hevc_dec = &ctx->hevc_dec;
unsigned int size;
memset(hevc_dec, 0, sizeof(*hevc_dec));
/*
* Maximum number of tiles times width and height (2 bytes each),
* rounding up to next 16 bytes boundary + one extra 16 byte
* chunk (HW guys wanted to have this).
*/
size = round_up(MAX_TILE_COLS * MAX_TILE_ROWS * 4 * sizeof(u16) + 16, 16);
hevc_dec->tile_sizes.cpu = dma_alloc_coherent(vpu->dev, size,
&hevc_dec->tile_sizes.dma,
GFP_KERNEL);
if (!hevc_dec->tile_sizes.cpu)
return -ENOMEM;
hevc_dec->tile_sizes.size = size;
hevc_dec->scaling_lists.cpu = dma_alloc_coherent(vpu->dev, SCALING_LIST_SIZE,
&hevc_dec->scaling_lists.dma,
GFP_KERNEL);
if (!hevc_dec->scaling_lists.cpu)
return -ENOMEM;
hevc_dec->scaling_lists.size = SCALING_LIST_SIZE;
hantro_hevc_ref_init(ctx);
hevc_dec->use_compression =
hevc_use_compression & hantro_needs_postproc(ctx, ctx->vpu_dst_fmt);
return 0;
}