linux/drivers/media/platform/st/stm32/stm32-csi.c
Sakari Ailus e7bad98c20 media: v4l: Convert the users of v4l2_get_link_freq to call it on a pad
Call v4l2_get_link_freq() on a pad, instead of a control handler. This way
we can soon convert v4l2_get_link_freq() to be callable only on a pad and
remove the compatibility code.

Signed-off-by: Sakari Ailus <sakari.ailus@linux.intel.com>
Acked-by: Naushir Patuck <naush@raspberrypi.com> # rp1-cfe
Acked-by: Benjamin Mugnier <benjamin.mugnier@foss.st.com> # st-mipid02
Reviewed-by: Tomi Valkeinen <tomi.valkeinen@ideasonboard.com>
Signed-off-by: Hans Verkuil <hverkuil@xs4all.nl>
2025-02-15 15:22:58 +01:00

1141 lines
34 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Driver for STM32 Camera Serial Interface
*
* Copyright (C) STMicroelectronics SA 2024
* Author: Alain Volmat <alain.volmat@foss.st.com>
* for STMicroelectronics.
*/
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/io.h>
#include <linux/iopoll.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/reset.h>
#include <linux/slab.h>
#include <media/mipi-csi2.h>
#include <media/v4l2-fwnode.h>
#include <media/v4l2-subdev.h>
#define STM32_CSI_CR 0x0000
#define STM32_CSI_CR_CSIEN BIT(0)
#define STM32_CSI_CR_VCXSTART(x) BIT(2 + ((x) * 4))
#define STM32_CSI_CR_VCXSTOP(x) BIT(3 + ((x) * 4))
#define STM32_CSI_PCR 0x0004
#define STM32_CSI_PCR_DL1EN BIT(3)
#define STM32_CSI_PCR_DL0EN BIT(2)
#define STM32_CSI_PCR_CLEN BIT(1)
#define STM32_CSI_PCR_PWRDOWN BIT(0)
#define STM32_CSI_VCXCFGR1(x) ((((x) + 1) * 0x0010) + 0x0)
#define STM32_CSI_VCXCFGR1_ALLDT BIT(0)
#define STM32_CSI_VCXCFGR1_DT0EN BIT(1)
#define STM32_CSI_VCXCFGR1_DT1EN BIT(2)
#define STM32_CSI_VCXCFGR1_CDTFT_SHIFT 8
#define STM32_CSI_VCXCFGR1_DT0_SHIFT 16
#define STM32_CSI_VCXCFGR1_DT0FT_SHIFT 24
#define STM32_CSI_VCXCFGR2(x) ((((x) + 1) * 0x0010) + 0x4)
#define STM32_CSI_VCXCFGR2_DT1_SHIFT 0
#define STM32_CSI_VCXCFGR2_DT1FT_SHIFT 8
#define STM32_CSI_INPUT_BPP8 2
#define STM32_CSI_INPUT_BPP10 3
#define STM32_CSI_INPUT_BPP12 4
#define STM32_CSI_INPUT_BPP14 5
#define STM32_CSI_LMCFGR 0x0070
#define STM32_CSI_LMCFGR_LANENB_SHIFT 8
#define STM32_CSI_LMCFGR_DLMAP_SHIFT 16
#define STM32_CSI_IER0 0x0080
#define STM32_CSI_IER1 0x0084
#define STM32_CSI_SR0 0x0090
#define STM32_CSI_SR0_SYNCERRF BIT(30)
#define STM32_CSI_SR0_SPKTERRF BIT(28)
#define STM32_CSI_SR0_IDERRF BIT(27)
#define STM32_CSI_SR0_CECCERRF BIT(26)
#define STM32_CSI_SR0_ECCERRF BIT(25)
#define STM32_CSI_SR0_CRCERRF BIT(24)
#define STM32_CSI_SR0_CCFIFOFF BIT(21)
#define STM32_CSI_SR0_VCXSTATEF(x) BIT(17 + (x))
#define STM32_CSI_SR1 0x0094
#define STM32_CSI_SR1_ECTRLDL1F BIT(12)
#define STM32_CSI_SR1_ESYNCESCDL1F BIT(11)
#define STM32_CSI_SR1_EESCDL1F BIT(10)
#define STM32_CSI_SR1_ESOTSYNCDL1F BIT(9)
#define STM32_CSI_SR1_ESOTDL1F BIT(8)
#define STM32_CSI_SR1_ECTRLDL0F BIT(4)
#define STM32_CSI_SR1_ESYNCESCDL0F BIT(3)
#define STM32_CSI_SR1_EESCDL0F BIT(2)
#define STM32_CSI_SR1_ESOTSYNCDL0F BIT(1)
#define STM32_CSI_SR1_ESOTDL0F BIT(0)
#define STM32_CSI_FCR0 0x0100
#define STM32_CSI_FCR1 0x0104
#define STM32_CSI_SPDFR 0x0110
#define STM32_CSI_DT_MASK 0x3f
#define STM32_CSI_VC_MASK 0x03
#define STM32_CSI_ERR1 0x0114
#define STM32_CSI_ERR1_IDVCERR_SHIFT 22
#define STM32_CSI_ERR1_IDDTERR_SHIFT 16
#define STM32_CSI_ERR1_CECCVCERR_SHIFT 14
#define STM32_CSI_ERR1_CECCDTERR_SHIFT 8
#define STM32_CSI_ERR1_CRCVCERR_SHIFT 6
#define STM32_CSI_ERR1_CRCDTERR_SHIFT 0
#define STM32_CSI_ERR2 0x0118
#define STM32_CSI_ERR2_SYNCVCERR_SHIFT 18
#define STM32_CSI_ERR2_SPKTVCERR_SHIFT 6
#define STM32_CSI_ERR2_SPKTDTERR_SHIFT 0
#define STM32_CSI_PRCR 0x1000
#define STM32_CSI_PRCR_PEN BIT(1)
#define STM32_CSI_PMCR 0x1004
#define STM32_CSI_PFCR 0x1008
#define STM32_CSI_PFCR_CCFR_MASK GENMASK(5, 0)
#define STM32_CSI_PFCR_CCFR_SHIFT 0
#define STM32_CSI_PFCR_HSFR_MASK GENMASK(14, 8)
#define STM32_CSI_PFCR_HSFR_SHIFT 8
#define STM32_CSI_PFCR_DLD BIT(16)
#define STM32_CSI_PTCR0 0x1010
#define STM32_CSI_PTCR0_TCKEN BIT(0)
#define STM32_CSI_PTCR1 0x1014
#define STM32_CSI_PTCR1_TWM BIT(16)
#define STM32_CSI_PTCR1_TDI_MASK GENMASK(7, 0)
#define STM32_CSI_PTCR1_TDI_SHIFT 0
#define STM32_CSI_PTSR 0x1018
#define STM32_CSI_LANES_MAX 2
#define STM32_CSI_SR0_ERRORS (STM32_CSI_SR0_SYNCERRF | STM32_CSI_SR0_SPKTERRF |\
STM32_CSI_SR0_IDERRF | STM32_CSI_SR0_CECCERRF |\
STM32_CSI_SR0_ECCERRF | STM32_CSI_SR0_CRCERRF |\
STM32_CSI_SR0_CCFIFOFF)
#define STM32_CSI_SR1_DL0_ERRORS (STM32_CSI_SR1_ECTRLDL0F | STM32_CSI_SR1_ESYNCESCDL0F |\
STM32_CSI_SR1_EESCDL0F | STM32_CSI_SR1_ESOTSYNCDL0F |\
STM32_CSI_SR1_ESOTDL0F)
#define STM32_CSI_SR1_DL1_ERRORS (STM32_CSI_SR1_ECTRLDL1F | STM32_CSI_SR1_ESYNCESCDL1F |\
STM32_CSI_SR1_EESCDL1F | STM32_CSI_SR1_ESOTSYNCDL1F |\
STM32_CSI_SR1_ESOTDL1F)
#define STM32_CSI_SR1_ERRORS (STM32_CSI_SR1_DL0_ERRORS | STM32_CSI_SR1_DL1_ERRORS)
enum stm32_csi_pads {
STM32_CSI_PAD_SINK,
STM32_CSI_PAD_SOURCE,
STM32_CSI_PAD_MAX,
};
struct stm32_csi_event {
u32 mask;
const char * const name;
};
static const struct stm32_csi_event stm32_csi_events_sr0[] = {
{STM32_CSI_SR0_SYNCERRF, "Synchronization error"},
{STM32_CSI_SR0_SPKTERRF, "Short packet error"},
{STM32_CSI_SR0_IDERRF, "Data type ID error"},
{STM32_CSI_SR0_CECCERRF, "Corrected ECC error"},
{STM32_CSI_SR0_ECCERRF, "ECC error"},
{STM32_CSI_SR0_CRCERRF, "CRC error"},
{STM32_CSI_SR0_CCFIFOFF, "Clk changer FIFO full error"},
};
#define STM32_CSI_NUM_SR0_EVENTS ARRAY_SIZE(stm32_csi_events_sr0)
static const struct stm32_csi_event stm32_csi_events_sr1[] = {
{STM32_CSI_SR1_ECTRLDL1F, "L1: D-PHY control error"},
{STM32_CSI_SR1_ESYNCESCDL1F,
"L1: D-PHY low power data transmission synchro error"},
{STM32_CSI_SR1_EESCDL1F, "L1: D-PHY escape entry error"},
{STM32_CSI_SR1_ESOTSYNCDL1F,
"L1: Start of transmission synchro error"},
{STM32_CSI_SR1_ESOTDL1F, "L1: Start of transmission error"},
{STM32_CSI_SR1_ECTRLDL0F, "L0: D-PHY control error"},
{STM32_CSI_SR1_ESYNCESCDL0F,
"L0: D-PHY low power data transmission synchro error"},
{STM32_CSI_SR1_EESCDL0F, "L0: D-PHY escape entry error"},
{STM32_CSI_SR1_ESOTSYNCDL0F,
"L0: Start of transmission synchro error"},
{STM32_CSI_SR1_ESOTDL0F, "L0: Start of transmission error"},
};
#define STM32_CSI_NUM_SR1_EVENTS ARRAY_SIZE(stm32_csi_events_sr1)
enum stm32_csi_clk {
STM32_CSI_CLK_PCLK,
STM32_CSI_CLK_TXESC,
STM32_CSI_CLK_CSI2PHY,
STM32_CSI_CLK_NB,
};
static const char * const stm32_csi_clks_id[] = {
"pclk",
"txesc",
"csi2phy",
};
struct stm32_csi_dev {
struct device *dev;
void __iomem *base;
struct clk_bulk_data clks[STM32_CSI_CLK_NB];
struct regulator_bulk_data supplies[2];
u8 lanes[STM32_CSI_LANES_MAX];
u8 num_lanes;
/*
* spinlock slock is used to protect to srX_counters tables being
* accessed from log_status and interrupt context
*/
spinlock_t slock;
u32 sr0_counters[STM32_CSI_NUM_SR0_EVENTS];
u32 sr1_counters[STM32_CSI_NUM_SR1_EVENTS];
struct v4l2_subdev sd;
struct v4l2_async_notifier notifier;
struct media_pad pads[STM32_CSI_PAD_MAX];
/* Remote source */
struct v4l2_subdev *s_subdev;
u32 s_subdev_pad_nb;
};
struct stm32_csi_fmts {
u32 code;
u32 datatype;
u32 input_fmt;
u8 bpp;
};
#define FMT_MBUS_DT_DTFMT_BPP(mbus, dt, input, byteperpixel) \
{ \
.code = MEDIA_BUS_FMT_##mbus, \
.datatype = MIPI_CSI2_DT_##dt, \
.input_fmt = STM32_CSI_INPUT_##input, \
.bpp = byteperpixel, \
}
static const struct stm32_csi_fmts stm32_csi_formats[] = {
/* YUV 422 8 bit */
FMT_MBUS_DT_DTFMT_BPP(UYVY8_1X16, YUV422_8B, BPP8, 8),
FMT_MBUS_DT_DTFMT_BPP(YUYV8_1X16, YUV422_8B, BPP8, 8),
FMT_MBUS_DT_DTFMT_BPP(YVYU8_1X16, YUV422_8B, BPP8, 8),
FMT_MBUS_DT_DTFMT_BPP(VYUY8_1X16, YUV422_8B, BPP8, 8),
/* Raw Bayer */
/* 8 bit */
FMT_MBUS_DT_DTFMT_BPP(SBGGR8_1X8, RAW8, BPP8, 8),
FMT_MBUS_DT_DTFMT_BPP(SGBRG8_1X8, RAW8, BPP8, 8),
FMT_MBUS_DT_DTFMT_BPP(SGRBG8_1X8, RAW8, BPP8, 8),
FMT_MBUS_DT_DTFMT_BPP(SRGGB8_1X8, RAW8, BPP8, 8),
/* 10 bit */
FMT_MBUS_DT_DTFMT_BPP(SRGGB10_1X10, RAW10, BPP10, 10),
FMT_MBUS_DT_DTFMT_BPP(SGBRG10_1X10, RAW10, BPP10, 10),
FMT_MBUS_DT_DTFMT_BPP(SGRBG10_1X10, RAW10, BPP10, 10),
FMT_MBUS_DT_DTFMT_BPP(SRGGB10_1X10, RAW10, BPP10, 10),
/* 12 bit */
FMT_MBUS_DT_DTFMT_BPP(SRGGB12_1X12, RAW12, BPP12, 12),
FMT_MBUS_DT_DTFMT_BPP(SGBRG12_1X12, RAW12, BPP12, 12),
FMT_MBUS_DT_DTFMT_BPP(SGRBG12_1X12, RAW12, BPP12, 12),
FMT_MBUS_DT_DTFMT_BPP(SRGGB12_1X12, RAW12, BPP12, 12),
/* 14 bit */
FMT_MBUS_DT_DTFMT_BPP(SRGGB14_1X14, RAW14, BPP14, 14),
FMT_MBUS_DT_DTFMT_BPP(SGBRG14_1X14, RAW14, BPP14, 14),
FMT_MBUS_DT_DTFMT_BPP(SGRBG14_1X14, RAW14, BPP14, 14),
FMT_MBUS_DT_DTFMT_BPP(SRGGB14_1X14, RAW14, BPP14, 14),
/* RGB 565 */
FMT_MBUS_DT_DTFMT_BPP(RGB565_1X16, RGB565, BPP8, 8),
/* JPEG (datatype isn't used) */
FMT_MBUS_DT_DTFMT_BPP(JPEG_1X8, NULL, BPP8, 8),
};
struct stm32_csi_mbps_phy_reg {
unsigned int mbps;
unsigned int hsfreqrange;
unsigned int osc_freq_target;
};
/*
* Table describing configuration of the PHY depending on the
* intended Bit Rate. From table 5-8 Frequency Ranges and Defaults
* of the Synopsis DWC MIPI PHY databook
*/
static const struct stm32_csi_mbps_phy_reg snps_stm32mp25[] = {
{ .mbps = 80, .hsfreqrange = 0x00, .osc_freq_target = 460 },
{ .mbps = 90, .hsfreqrange = 0x10, .osc_freq_target = 460 },
{ .mbps = 100, .hsfreqrange = 0x20, .osc_freq_target = 460 },
{ .mbps = 110, .hsfreqrange = 0x30, .osc_freq_target = 460 },
{ .mbps = 120, .hsfreqrange = 0x01, .osc_freq_target = 460 },
{ .mbps = 130, .hsfreqrange = 0x11, .osc_freq_target = 460 },
{ .mbps = 140, .hsfreqrange = 0x21, .osc_freq_target = 460 },
{ .mbps = 150, .hsfreqrange = 0x31, .osc_freq_target = 460 },
{ .mbps = 160, .hsfreqrange = 0x02, .osc_freq_target = 460 },
{ .mbps = 170, .hsfreqrange = 0x12, .osc_freq_target = 460 },
{ .mbps = 180, .hsfreqrange = 0x22, .osc_freq_target = 460 },
{ .mbps = 190, .hsfreqrange = 0x32, .osc_freq_target = 460 },
{ .mbps = 205, .hsfreqrange = 0x03, .osc_freq_target = 460 },
{ .mbps = 220, .hsfreqrange = 0x13, .osc_freq_target = 460 },
{ .mbps = 235, .hsfreqrange = 0x23, .osc_freq_target = 460 },
{ .mbps = 250, .hsfreqrange = 0x33, .osc_freq_target = 460 },
{ .mbps = 275, .hsfreqrange = 0x04, .osc_freq_target = 460 },
{ .mbps = 300, .hsfreqrange = 0x14, .osc_freq_target = 460 },
{ .mbps = 325, .hsfreqrange = 0x25, .osc_freq_target = 460 },
{ .mbps = 350, .hsfreqrange = 0x35, .osc_freq_target = 460 },
{ .mbps = 400, .hsfreqrange = 0x05, .osc_freq_target = 460 },
{ .mbps = 450, .hsfreqrange = 0x16, .osc_freq_target = 460 },
{ .mbps = 500, .hsfreqrange = 0x26, .osc_freq_target = 460 },
{ .mbps = 550, .hsfreqrange = 0x37, .osc_freq_target = 460 },
{ .mbps = 600, .hsfreqrange = 0x07, .osc_freq_target = 460 },
{ .mbps = 650, .hsfreqrange = 0x18, .osc_freq_target = 460 },
{ .mbps = 700, .hsfreqrange = 0x28, .osc_freq_target = 460 },
{ .mbps = 750, .hsfreqrange = 0x39, .osc_freq_target = 460 },
{ .mbps = 800, .hsfreqrange = 0x09, .osc_freq_target = 460 },
{ .mbps = 850, .hsfreqrange = 0x19, .osc_freq_target = 460 },
{ .mbps = 900, .hsfreqrange = 0x29, .osc_freq_target = 460 },
{ .mbps = 950, .hsfreqrange = 0x3a, .osc_freq_target = 460 },
{ .mbps = 1000, .hsfreqrange = 0x0a, .osc_freq_target = 460 },
{ .mbps = 1050, .hsfreqrange = 0x1a, .osc_freq_target = 460 },
{ .mbps = 1100, .hsfreqrange = 0x2a, .osc_freq_target = 460 },
{ .mbps = 1150, .hsfreqrange = 0x3b, .osc_freq_target = 460 },
{ .mbps = 1200, .hsfreqrange = 0x0b, .osc_freq_target = 460 },
{ .mbps = 1250, .hsfreqrange = 0x1b, .osc_freq_target = 460 },
{ .mbps = 1300, .hsfreqrange = 0x2b, .osc_freq_target = 460 },
{ .mbps = 1350, .hsfreqrange = 0x3c, .osc_freq_target = 460 },
{ .mbps = 1400, .hsfreqrange = 0x0c, .osc_freq_target = 460 },
{ .mbps = 1450, .hsfreqrange = 0x1c, .osc_freq_target = 460 },
{ .mbps = 1500, .hsfreqrange = 0x2c, .osc_freq_target = 460 },
{ .mbps = 1550, .hsfreqrange = 0x3d, .osc_freq_target = 285 },
{ .mbps = 1600, .hsfreqrange = 0x0d, .osc_freq_target = 295 },
{ .mbps = 1650, .hsfreqrange = 0x1d, .osc_freq_target = 304 },
{ .mbps = 1700, .hsfreqrange = 0x2e, .osc_freq_target = 313 },
{ .mbps = 1750, .hsfreqrange = 0x3e, .osc_freq_target = 322 },
{ .mbps = 1800, .hsfreqrange = 0x0e, .osc_freq_target = 331 },
{ .mbps = 1850, .hsfreqrange = 0x1e, .osc_freq_target = 341 },
{ .mbps = 1900, .hsfreqrange = 0x2f, .osc_freq_target = 350 },
{ .mbps = 1950, .hsfreqrange = 0x3f, .osc_freq_target = 359 },
{ .mbps = 2000, .hsfreqrange = 0x0f, .osc_freq_target = 368 },
{ .mbps = 2050, .hsfreqrange = 0x40, .osc_freq_target = 377 },
{ .mbps = 2100, .hsfreqrange = 0x41, .osc_freq_target = 387 },
{ .mbps = 2150, .hsfreqrange = 0x42, .osc_freq_target = 396 },
{ .mbps = 2200, .hsfreqrange = 0x43, .osc_freq_target = 405 },
{ .mbps = 2250, .hsfreqrange = 0x44, .osc_freq_target = 414 },
{ .mbps = 2300, .hsfreqrange = 0x45, .osc_freq_target = 423 },
{ .mbps = 2350, .hsfreqrange = 0x46, .osc_freq_target = 432 },
{ .mbps = 2400, .hsfreqrange = 0x47, .osc_freq_target = 442 },
{ .mbps = 2450, .hsfreqrange = 0x48, .osc_freq_target = 451 },
{ .mbps = 2500, .hsfreqrange = 0x49, .osc_freq_target = 460 },
};
static const struct v4l2_mbus_framefmt fmt_default = {
.width = 640,
.height = 480,
.code = MEDIA_BUS_FMT_RGB565_1X16,
.field = V4L2_FIELD_NONE,
.colorspace = V4L2_COLORSPACE_REC709,
.ycbcr_enc = V4L2_YCBCR_ENC_DEFAULT,
.quantization = V4L2_QUANTIZATION_DEFAULT,
.xfer_func = V4L2_XFER_FUNC_DEFAULT,
};
static const struct stm32_csi_fmts *stm32_csi_code_to_fmt(unsigned int code)
{
unsigned int i;
for (i = 0; i < ARRAY_SIZE(stm32_csi_formats); i++)
if (stm32_csi_formats[i].code == code)
return &stm32_csi_formats[i];
return NULL;
}
static inline struct stm32_csi_dev *to_csidev(struct v4l2_subdev *sd)
{
return container_of(sd, struct stm32_csi_dev, sd);
}
static int stm32_csi_setup_lane_merger(struct stm32_csi_dev *csidev)
{
u32 lmcfgr = 0;
unsigned int i;
for (i = 0; i < csidev->num_lanes; i++) {
if (!csidev->lanes[i] || csidev->lanes[i] > STM32_CSI_LANES_MAX) {
dev_err(csidev->dev, "Invalid lane id (%d)\n", csidev->lanes[i]);
return -EINVAL;
}
lmcfgr |= (csidev->lanes[i] << ((i * 4) + STM32_CSI_LMCFGR_DLMAP_SHIFT));
}
lmcfgr |= (csidev->num_lanes << STM32_CSI_LMCFGR_LANENB_SHIFT);
writel_relaxed(lmcfgr, csidev->base + STM32_CSI_LMCFGR);
return 0;
}
static void stm32_csi_phy_reg_write(struct stm32_csi_dev *csidev,
u32 addr, u32 val)
{
/* Based on sequence described at section 5.2.3.2 of DesignWave document */
/* For writing the 4-bit testcode MSBs */
/* Set testen to high */
writel_relaxed(STM32_CSI_PTCR1_TWM, csidev->base + STM32_CSI_PTCR1);
/* Set testclk to high */
writel_relaxed(STM32_CSI_PTCR0_TCKEN, csidev->base + STM32_CSI_PTCR0);
/* Place 0x00 in testdin */
writel_relaxed(STM32_CSI_PTCR1_TWM, csidev->base + STM32_CSI_PTCR1);
/*
* Set testclk to low (with the falling edge on testclk, the testdin
* signal content is latched internally)
*/
writel_relaxed(0, csidev->base + STM32_CSI_PTCR0);
/* Set testen to low */
writel_relaxed(0, csidev->base + STM32_CSI_PTCR1);
/* Place the 8-bit word corresponding to the testcode MSBs in testdin */
writel_relaxed(((addr >> 8) & STM32_CSI_PTCR1_TDI_MASK) << STM32_CSI_PTCR1_TDI_SHIFT,
csidev->base + STM32_CSI_PTCR1);
/* Set testclk to high */
writel_relaxed(STM32_CSI_PTCR0_TCKEN, csidev->base + STM32_CSI_PTCR0);
/* For writing the 8-bit testcode LSBs */
/* Set testclk to low */
writel_relaxed(0, csidev->base + STM32_CSI_PTCR0);
/* Set testen to high */
writel_relaxed(STM32_CSI_PTCR1_TWM, csidev->base + STM32_CSI_PTCR1);
/* Set testclk to high */
writel_relaxed(STM32_CSI_PTCR0_TCKEN, csidev->base + STM32_CSI_PTCR0);
/* Place the 8-bit word test data in testdin */
writel_relaxed((addr & STM32_CSI_PTCR1_TDI_MASK) <<
STM32_CSI_PTCR1_TDI_SHIFT | STM32_CSI_PTCR1_TWM,
csidev->base + STM32_CSI_PTCR1);
/*
* Set testclk to low (with the falling edge on testclk, the testdin
* signal content is latched internally)
*/
writel_relaxed(0, csidev->base + STM32_CSI_PTCR0);
/* Set testen to low */
writel_relaxed(0, csidev->base + STM32_CSI_PTCR1);
/* For writing the data */
/* Place the 8-bit word corresponding to the page offset in testdin */
writel_relaxed((val & STM32_CSI_PTCR1_TDI_MASK) << STM32_CSI_PTCR1_TDI_SHIFT,
csidev->base + STM32_CSI_PTCR1);
/* Set testclk to high (test data is programmed internally */
writel_relaxed(STM32_CSI_PTCR0_TCKEN, csidev->base + STM32_CSI_PTCR0);
/* Finish by setting testclk to low */
writel_relaxed(0, csidev->base + STM32_CSI_PTCR0);
}
static int stm32_csi_start(struct stm32_csi_dev *csidev,
struct v4l2_subdev_state *state)
{
struct media_pad *src_pad =
&csidev->s_subdev->entity.pads[csidev->s_subdev_pad_nb];
const struct stm32_csi_mbps_phy_reg *phy_regs = NULL;
struct v4l2_mbus_framefmt *sink_fmt;
const struct stm32_csi_fmts *fmt;
unsigned long phy_clk_frate;
u32 lanes_ie, lanes_en;
unsigned int mbps;
unsigned int i;
s64 link_freq;
int ret;
u32 ccfr;
dev_dbg(csidev->dev, "Starting the CSI2\n");
/* Get the bpp value on pad0 (input of CSI) */
sink_fmt = v4l2_subdev_state_get_format(state, STM32_CSI_PAD_SINK);
fmt = stm32_csi_code_to_fmt(sink_fmt->code);
/* Get the remote sensor link frequency */
if (!csidev->s_subdev)
return -EIO;
link_freq = v4l2_get_link_freq(src_pad,
fmt->bpp, 2 * csidev->num_lanes);
if (link_freq < 0)
return link_freq;
/* MBPS is expressed in Mbps, hence link_freq / 100000 * 2 */
mbps = div_s64(link_freq, 500000);
dev_dbg(csidev->dev, "Computed Mbps: %u\n", mbps);
for (i = 0; i < ARRAY_SIZE(snps_stm32mp25); i++) {
if (snps_stm32mp25[i].mbps >= mbps) {
phy_regs = &snps_stm32mp25[i];
break;
}
}
if (!phy_regs) {
dev_err(csidev->dev, "Unsupported PHY speed (%u Mbps)", mbps);
return -ERANGE;
}
dev_dbg(csidev->dev, "PHY settings: (%u Mbps, %u HS FRange, %u OSC Freq)\n",
phy_regs->mbps, phy_regs->hsfreqrange,
phy_regs->osc_freq_target);
/* Prepare lanes related configuration bits */
lanes_ie = STM32_CSI_SR1_DL0_ERRORS;
lanes_en = STM32_CSI_PCR_DL0EN;
if (csidev->num_lanes == 2) {
lanes_ie |= STM32_CSI_SR1_DL1_ERRORS;
lanes_en |= STM32_CSI_PCR_DL1EN;
}
ret = pm_runtime_get_sync(csidev->dev);
if (ret < 0)
goto error_put;
/* Retrieve CSI2PHY clock rate to compute CCFR value */
phy_clk_frate = clk_get_rate(csidev->clks[STM32_CSI_CLK_CSI2PHY].clk);
if (!phy_clk_frate) {
dev_err(csidev->dev, "CSI2PHY clock rate invalid (0)\n");
ret = -EINVAL;
goto error_put;
}
ret = stm32_csi_setup_lane_merger(csidev);
if (ret)
goto error_put;
/* Enable the CSI */
writel_relaxed(STM32_CSI_CR_CSIEN, csidev->base + STM32_CSI_CR);
/* Enable some global CSI related interrupts - bits are same as SR0 */
writel_relaxed(STM32_CSI_SR0_ERRORS, csidev->base + STM32_CSI_IER0);
/* Enable lanes related error interrupts */
writel_relaxed(lanes_ie, csidev->base + STM32_CSI_IER1);
/* Initialization of the D-PHY */
/* Stop the D-PHY */
writel_relaxed(0, csidev->base + STM32_CSI_PRCR);
/* Keep the D-PHY in power down state */
writel_relaxed(0, csidev->base + STM32_CSI_PCR);
/* Enable testclr clock during 15ns */
writel_relaxed(STM32_CSI_PTCR0_TCKEN, csidev->base + STM32_CSI_PTCR0);
udelay(1);
writel_relaxed(0, csidev->base + STM32_CSI_PTCR0);
/* Set hsfreqrange */
phy_clk_frate /= 1000000;
ccfr = (phy_clk_frate - 17) * 4;
writel_relaxed((ccfr << STM32_CSI_PFCR_CCFR_SHIFT) |
(phy_regs->hsfreqrange << STM32_CSI_PFCR_HSFR_SHIFT),
csidev->base + STM32_CSI_PFCR);
/* set reg @08 deskew_polarity_rw 1'b1 */
stm32_csi_phy_reg_write(csidev, 0x08, 0x38);
/* set reg @0xE4 counter_for_des_en_config_if_rx 0x10 + DLL prog EN */
/* This is because 13<= cfgclkfreqrange[5:0]<=38 */
stm32_csi_phy_reg_write(csidev, 0xe4, 0x11);
/* set reg @0xe2 & reg @0xe3 value DLL target oscilation freq */
/* Based on the table page 77, osc_freq_target */
stm32_csi_phy_reg_write(csidev, 0xe2, phy_regs->osc_freq_target & 0xFF);
stm32_csi_phy_reg_write(csidev, 0xe3, (phy_regs->osc_freq_target >> 8) & 0x0F);
writel_relaxed(STM32_CSI_PFCR_DLD | readl_relaxed(csidev->base + STM32_CSI_PFCR),
csidev->base + STM32_CSI_PFCR);
/* Enable Lanes */
writel_relaxed(lanes_en | STM32_CSI_PCR_CLEN, csidev->base + STM32_CSI_PCR);
writel_relaxed(lanes_en | STM32_CSI_PCR_CLEN | STM32_CSI_PCR_PWRDOWN,
csidev->base + STM32_CSI_PCR);
writel_relaxed(STM32_CSI_PRCR_PEN, csidev->base + STM32_CSI_PRCR);
/* Remove the force */
writel_relaxed(0, csidev->base + STM32_CSI_PMCR);
return ret;
error_put:
pm_runtime_put(csidev->dev);
return ret;
}
static void stm32_csi_stop(struct stm32_csi_dev *csidev)
{
dev_dbg(csidev->dev, "Stopping the CSI2\n");
/* Disable the D-PHY */
writel_relaxed(0, csidev->base + STM32_CSI_PCR);
/* Disable ITs */
writel_relaxed(0, csidev->base + STM32_CSI_IER0);
writel_relaxed(0, csidev->base + STM32_CSI_IER1);
/* Disable the CSI */
writel_relaxed(0, csidev->base + STM32_CSI_CR);
pm_runtime_put(csidev->dev);
}
static int stm32_csi_start_vc(struct stm32_csi_dev *csidev,
struct v4l2_subdev_state *state, u32 vc)
{
struct v4l2_mbus_framefmt *mbus_fmt;
const struct stm32_csi_fmts *fmt;
u32 status;
u32 cfgr1;
int ret;
mbus_fmt = v4l2_subdev_state_get_format(state, STM32_CSI_PAD_SOURCE);
fmt = stm32_csi_code_to_fmt(mbus_fmt->code);
/* If the mbus code is JPEG, don't enable filtering */
if (mbus_fmt->code == MEDIA_BUS_FMT_JPEG_1X8) {
cfgr1 = STM32_CSI_VCXCFGR1_ALLDT;
cfgr1 |= fmt->input_fmt << STM32_CSI_VCXCFGR1_CDTFT_SHIFT;
dev_dbg(csidev->dev, "VC%d: enable AllDT mode\n", vc);
} else {
cfgr1 = fmt->datatype << STM32_CSI_VCXCFGR1_DT0_SHIFT;
cfgr1 |= fmt->input_fmt << STM32_CSI_VCXCFGR1_DT0FT_SHIFT;
cfgr1 |= STM32_CSI_VCXCFGR1_DT0EN;
dev_dbg(csidev->dev, "VC%d: enable DT0(0x%x)/DT0FT(0x%x)\n",
vc, fmt->datatype, fmt->input_fmt);
}
writel_relaxed(cfgr1, csidev->base + STM32_CSI_VCXCFGR1(vc));
/* Enable processing of the virtual-channel and wait for its status */
writel_relaxed(STM32_CSI_CR_VCXSTART(vc) | STM32_CSI_CR_CSIEN,
csidev->base + STM32_CSI_CR);
ret = readl_relaxed_poll_timeout(csidev->base + STM32_CSI_SR0,
status,
status & STM32_CSI_SR0_VCXSTATEF(vc),
1000, 1000000);
if (ret) {
dev_err(csidev->dev, "failed to start VC(%d)\n", vc);
return ret;
}
return 0;
}
static int stm32_csi_stop_vc(struct stm32_csi_dev *csidev, u32 vc)
{
u32 status;
int ret;
/* Stop the Virtual Channel */
writel_relaxed(STM32_CSI_CR_VCXSTOP(vc) | STM32_CSI_CR_CSIEN,
csidev->base + STM32_CSI_CR);
ret = readl_relaxed_poll_timeout(csidev->base + STM32_CSI_SR0,
status,
!(status & STM32_CSI_SR0_VCXSTATEF(vc)),
1000, 1000000);
if (ret) {
dev_err(csidev->dev, "failed to stop VC(%d)\n", vc);
return ret;
}
/* Disable all DTs */
writel_relaxed(0, csidev->base + STM32_CSI_VCXCFGR1(vc));
writel_relaxed(0, csidev->base + STM32_CSI_VCXCFGR2(vc));
return 0;
}
static int stm32_csi_disable_streams(struct v4l2_subdev *sd,
struct v4l2_subdev_state *state, u32 pad,
u64 streams_mask)
{
struct stm32_csi_dev *csidev = to_csidev(sd);
int ret;
ret = v4l2_subdev_disable_streams(csidev->s_subdev,
csidev->s_subdev_pad_nb, BIT_ULL(0));
if (ret)
return ret;
/* Stop the VC0 */
ret = stm32_csi_stop_vc(csidev, 0);
if (ret)
dev_err(csidev->dev, "Failed to stop VC0\n");
stm32_csi_stop(csidev);
return 0;
}
static int stm32_csi_enable_streams(struct v4l2_subdev *sd,
struct v4l2_subdev_state *state, u32 pad,
u64 streams_mask)
{
struct stm32_csi_dev *csidev = to_csidev(sd);
int ret;
ret = stm32_csi_start(csidev, state);
if (ret)
return ret;
/* Configure & start the VC0 */
ret = stm32_csi_start_vc(csidev, state, 0);
if (ret) {
dev_err(csidev->dev, "Failed to start VC0\n");
goto failed_start_vc;
}
ret = v4l2_subdev_enable_streams(csidev->s_subdev,
csidev->s_subdev_pad_nb, BIT_ULL(0));
if (ret)
goto failed_enable_streams;
return 0;
failed_enable_streams:
stm32_csi_stop_vc(csidev, 0);
failed_start_vc:
stm32_csi_stop(csidev);
return ret;
}
static int stm32_csi_init_state(struct v4l2_subdev *sd,
struct v4l2_subdev_state *state)
{
unsigned int i;
for (i = 0; i < sd->entity.num_pads; i++)
*v4l2_subdev_state_get_format(state, i) = fmt_default;
return 0;
}
static int stm32_csi_enum_mbus_code(struct v4l2_subdev *sd,
struct v4l2_subdev_state *state,
struct v4l2_subdev_mbus_code_enum *code)
{
if (code->index >= ARRAY_SIZE(stm32_csi_formats))
return -EINVAL;
code->code = stm32_csi_formats[code->index].code;
return 0;
}
static int stm32_csi_set_pad_format(struct v4l2_subdev *sd,
struct v4l2_subdev_state *state,
struct v4l2_subdev_format *format)
{
struct stm32_csi_dev *csidev = to_csidev(sd);
struct v4l2_mbus_framefmt *framefmt;
const struct stm32_csi_fmts *fmt;
fmt = stm32_csi_code_to_fmt(format->format.code);
if (!fmt) {
dev_dbg(csidev->dev, "Unsupported code %d, use default\n",
format->format.code);
format->format.code = fmt_default.code;
}
framefmt = v4l2_subdev_state_get_format(state, STM32_CSI_PAD_SINK);
if (format->pad == STM32_CSI_PAD_SOURCE)
format->format = *framefmt;
else
*framefmt = format->format;
framefmt = v4l2_subdev_state_get_format(state, STM32_CSI_PAD_SOURCE);
*framefmt = format->format;
return 0;
}
static int stm32_csi_log_status(struct v4l2_subdev *sd)
{
struct stm32_csi_dev *csidev = to_csidev(sd);
unsigned long flags;
unsigned int i;
spin_lock_irqsave(&csidev->slock, flags);
for (i = 0; i < STM32_CSI_NUM_SR0_EVENTS; i++) {
if (csidev->sr0_counters[i])
dev_info(csidev->dev, "%s events: %d\n",
stm32_csi_events_sr0[i].name,
csidev->sr0_counters[i]);
}
for (i = 0; i < STM32_CSI_NUM_SR1_EVENTS; i++) {
if (csidev->sr1_counters[i])
dev_info(csidev->dev, "%s events: %d\n",
stm32_csi_events_sr1[i].name,
csidev->sr1_counters[i]);
}
spin_unlock_irqrestore(&csidev->slock, flags);
return 0;
}
static const struct v4l2_subdev_core_ops stm32_csi_core_ops = {
.log_status = stm32_csi_log_status,
};
static const struct v4l2_subdev_video_ops stm32_csi_video_ops = {
.s_stream = v4l2_subdev_s_stream_helper,
};
static const struct v4l2_subdev_pad_ops stm32_csi_pad_ops = {
.enum_mbus_code = stm32_csi_enum_mbus_code,
.set_fmt = stm32_csi_set_pad_format,
.get_fmt = v4l2_subdev_get_fmt,
.enable_streams = stm32_csi_enable_streams,
.disable_streams = stm32_csi_disable_streams,
};
static const struct v4l2_subdev_ops stm32_csi_subdev_ops = {
.core = &stm32_csi_core_ops,
.pad = &stm32_csi_pad_ops,
.video = &stm32_csi_video_ops,
};
static const struct v4l2_subdev_internal_ops stm32_csi_subdev_internal_ops = {
.init_state = stm32_csi_init_state,
};
static int stm32_csi_async_bound(struct v4l2_async_notifier *notifier,
struct v4l2_subdev *s_subdev,
struct v4l2_async_connection *asd)
{
struct v4l2_subdev *sd = notifier->sd;
struct stm32_csi_dev *csidev = to_csidev(sd);
int remote_pad;
remote_pad = media_entity_get_fwnode_pad(&s_subdev->entity,
s_subdev->fwnode,
MEDIA_PAD_FL_SOURCE);
if (remote_pad < 0) {
dev_err(csidev->dev, "Couldn't find output pad for subdev %s\n",
s_subdev->name);
return remote_pad;
}
csidev->s_subdev = s_subdev;
csidev->s_subdev_pad_nb = remote_pad;
return media_create_pad_link(&csidev->s_subdev->entity,
remote_pad, &csidev->sd.entity,
STM32_CSI_PAD_SINK,
MEDIA_LNK_FL_ENABLED |
MEDIA_LNK_FL_IMMUTABLE);
}
static const struct v4l2_async_notifier_operations stm32_csi_notifier_ops = {
.bound = stm32_csi_async_bound,
};
static irqreturn_t stm32_csi_irq_thread(int irq, void *arg)
{
struct stm32_csi_dev *csidev = arg;
unsigned long flags;
u32 sr0, sr1;
int i;
sr0 = readl_relaxed(csidev->base + STM32_CSI_SR0);
sr1 = readl_relaxed(csidev->base + STM32_CSI_SR1);
/* Clear interrupt */
writel_relaxed(sr0 & STM32_CSI_SR0_ERRORS,
csidev->base + STM32_CSI_FCR0);
writel_relaxed(sr1 & STM32_CSI_SR1_ERRORS,
csidev->base + STM32_CSI_FCR1);
spin_lock_irqsave(&csidev->slock, flags);
for (i = 0; i < STM32_CSI_NUM_SR0_EVENTS; i++)
if (sr0 & stm32_csi_events_sr0[i].mask)
csidev->sr0_counters[i]++;
for (i = 0; i < STM32_CSI_NUM_SR1_EVENTS; i++)
if (sr1 & stm32_csi_events_sr1[i].mask)
csidev->sr1_counters[i]++;
spin_unlock_irqrestore(&csidev->slock, flags);
return IRQ_HANDLED;
}
static int stm32_csi_get_resources(struct stm32_csi_dev *csidev,
struct platform_device *pdev)
{
unsigned int i;
int irq, ret;
csidev->base = devm_platform_get_and_ioremap_resource(pdev, 0, NULL);
if (IS_ERR(csidev->base))
return dev_err_probe(&pdev->dev, PTR_ERR(csidev->base),
"Failed to ioremap resource\n");
for (i = 0; i < STM32_CSI_CLK_NB; i++)
csidev->clks[i].id = stm32_csi_clks_id[i];
ret = devm_clk_bulk_get(&pdev->dev, STM32_CSI_CLK_NB,
csidev->clks);
if (ret < 0)
return dev_err_probe(&pdev->dev, ret, "Couldn't get clks\n");
csidev->supplies[0].supply = "vdd";
csidev->supplies[1].supply = "vdda18";
ret = devm_regulator_bulk_get(&pdev->dev, ARRAY_SIZE(csidev->supplies),
csidev->supplies);
if (ret)
return dev_err_probe(&pdev->dev, ret,
"Failed to request regulator vdd\n");
irq = platform_get_irq(pdev, 0);
if (irq < 0)
return irq;
ret = devm_request_threaded_irq(&pdev->dev, irq, NULL,
stm32_csi_irq_thread, IRQF_ONESHOT,
dev_name(&pdev->dev), csidev);
if (ret)
return dev_err_probe(&pdev->dev, ret,
"Unable to request irq");
return 0;
}
static int stm32_csi_parse_dt(struct stm32_csi_dev *csidev)
{
struct v4l2_fwnode_endpoint v4l2_ep = { .bus_type = V4L2_MBUS_CSI2_DPHY };
struct v4l2_async_connection *asd;
struct fwnode_handle *ep;
int ret;
/* Get bus characteristics from devicetree */
ep = fwnode_graph_get_endpoint_by_id(dev_fwnode(csidev->dev), 0, 0,
FWNODE_GRAPH_ENDPOINT_NEXT);
if (!ep) {
dev_err(csidev->dev, "Could not find the endpoint\n");
return -ENODEV;
}
ret = v4l2_fwnode_endpoint_parse(ep, &v4l2_ep);
if (ret) {
dev_err(csidev->dev, "Could not parse v4l2 endpoint\n");
goto out;
}
csidev->num_lanes = v4l2_ep.bus.mipi_csi2.num_data_lanes;
if (csidev->num_lanes > STM32_CSI_LANES_MAX) {
dev_err(csidev->dev, "Unsupported number of data-lanes: %d\n",
csidev->num_lanes);
ret = -EINVAL;
goto out;
}
memcpy(csidev->lanes, v4l2_ep.bus.mipi_csi2.data_lanes,
sizeof(csidev->lanes));
v4l2_async_subdev_nf_init(&csidev->notifier, &csidev->sd);
asd = v4l2_async_nf_add_fwnode_remote(&csidev->notifier, ep,
struct v4l2_async_connection);
if (IS_ERR(asd)) {
dev_err(csidev->dev, "Failed to add fwnode remote subdev\n");
ret = PTR_ERR(asd);
goto out;
}
csidev->notifier.ops = &stm32_csi_notifier_ops;
ret = v4l2_async_nf_register(&csidev->notifier);
if (ret) {
dev_err(csidev->dev, "Failed to register notifier\n");
v4l2_async_nf_cleanup(&csidev->notifier);
goto out;
}
out:
fwnode_handle_put(ep);
return ret;
}
static int stm32_csi_probe(struct platform_device *pdev)
{
struct stm32_csi_dev *csidev;
struct reset_control *rstc;
int ret;
csidev = devm_kzalloc(&pdev->dev, sizeof(*csidev), GFP_KERNEL);
if (!csidev)
return -ENOMEM;
platform_set_drvdata(pdev, csidev);
csidev->dev = &pdev->dev;
spin_lock_init(&csidev->slock);
ret = stm32_csi_get_resources(csidev, pdev);
if (ret)
return ret;
ret = stm32_csi_parse_dt(csidev);
if (ret)
return ret;
csidev->sd.owner = THIS_MODULE;
csidev->sd.dev = &pdev->dev;
csidev->sd.internal_ops = &stm32_csi_subdev_internal_ops;
v4l2_subdev_init(&csidev->sd, &stm32_csi_subdev_ops);
v4l2_set_subdevdata(&csidev->sd, &pdev->dev);
snprintf(csidev->sd.name, sizeof(csidev->sd.name), "%s",
dev_name(&pdev->dev));
/* Create our media pads */
csidev->sd.entity.function = MEDIA_ENT_F_VID_IF_BRIDGE;
csidev->sd.flags |= V4L2_SUBDEV_FL_HAS_DEVNODE;
csidev->pads[STM32_CSI_PAD_SINK].flags = MEDIA_PAD_FL_SINK;
csidev->pads[STM32_CSI_PAD_SOURCE].flags = MEDIA_PAD_FL_SOURCE;
ret = media_entity_pads_init(&csidev->sd.entity, STM32_CSI_PAD_MAX,
csidev->pads);
if (ret)
goto err_cleanup;
ret = v4l2_subdev_init_finalize(&csidev->sd);
if (ret < 0)
goto err_cleanup;
/* Reset device */
rstc = devm_reset_control_get_exclusive(&pdev->dev, NULL);
if (IS_ERR(rstc)) {
ret = dev_err_probe(&pdev->dev, PTR_ERR(rstc),
"Couldn't get reset control\n");
goto err_cleanup;
}
ret = reset_control_assert(rstc);
if (ret) {
ret = dev_err_probe(&pdev->dev, ret,
"Failed to assert the reset line\n");
goto err_cleanup;
}
usleep_range(3000, 5000);
ret = reset_control_deassert(rstc);
if (ret) {
ret = dev_err_probe(&pdev->dev, ret,
"Failed to deassert the reset line\n");
goto err_cleanup;
}
pm_runtime_enable(&pdev->dev);
ret = v4l2_async_register_subdev(&csidev->sd);
if (ret < 0)
goto err_cleanup;
dev_info(&pdev->dev,
"Probed CSI with %u lanes\n", csidev->num_lanes);
return 0;
err_cleanup:
v4l2_async_nf_cleanup(&csidev->notifier);
return ret;
}
static void stm32_csi_remove(struct platform_device *pdev)
{
struct stm32_csi_dev *csidev = platform_get_drvdata(pdev);
v4l2_async_unregister_subdev(&csidev->sd);
pm_runtime_disable(&pdev->dev);
}
static int stm32_csi_runtime_suspend(struct device *dev)
{
struct stm32_csi_dev *csidev = dev_get_drvdata(dev);
int ret;
clk_bulk_disable_unprepare(STM32_CSI_CLK_NB, csidev->clks);
ret = regulator_bulk_disable(ARRAY_SIZE(csidev->supplies),
csidev->supplies);
if (ret < 0)
dev_err(dev, "cannot disable regulators %d\n", ret);
return 0;
}
static int stm32_csi_runtime_resume(struct device *dev)
{
struct stm32_csi_dev *csidev = dev_get_drvdata(dev);
int ret;
ret = regulator_bulk_enable(ARRAY_SIZE(csidev->supplies),
csidev->supplies);
if (ret)
goto error_out;
ret = clk_bulk_prepare_enable(STM32_CSI_CLK_NB, csidev->clks);
if (ret)
goto error_disable_supplies;
return 0;
error_disable_supplies:
ret = regulator_bulk_disable(ARRAY_SIZE(csidev->supplies), csidev->supplies);
if (ret < 0)
dev_err(dev, "cannot disable regulators %d\n", ret);
error_out:
dev_err(csidev->dev, "Failed to resume: %d\n", ret);
return ret;
}
static const struct of_device_id stm32_csi_of_table[] = {
{ .compatible = "st,stm32mp25-csi", },
{ /* end node */ },
};
MODULE_DEVICE_TABLE(of, stm32_csi_of_table);
static const struct dev_pm_ops stm32_csi_pm_ops = {
RUNTIME_PM_OPS(stm32_csi_runtime_suspend,
stm32_csi_runtime_resume, NULL)
};
static struct platform_driver stm32_csi_driver = {
.driver = {
.name = "stm32-csi",
.of_match_table = stm32_csi_of_table,
.pm = pm_ptr(&stm32_csi_pm_ops),
},
.probe = stm32_csi_probe,
.remove = stm32_csi_remove,
};
module_platform_driver(stm32_csi_driver);
MODULE_AUTHOR("Alain Volmat <alain.volmat@foss.st.com>");
MODULE_DESCRIPTION("STM32 CSI controller");
MODULE_LICENSE("GPL");