linux/drivers/media/platform/qcom/camss/camss-csid-680.c
Bryan O'Donoghue 253314b204 media: qcom: camss: Add CSID 680 support
Add CSI Decoder (CSID) 680 support to CAMSS. This version of CSID has been
shipped with SM8450 and x1e chips.

References work from Vladimir Zapolskiy <vladimir.zapolskiy@linaro.org>

Signed-off-by: Bryan O'Donoghue <bryan.odonoghue@linaro.org>
Signed-off-by: Bryan O'Donoghue <bod@kernel.org>
Signed-off-by: Hans Verkuil <hverkuil@xs4all.nl>
2025-04-11 13:29:06 +02:00

422 lines
13 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Qualcomm MSM Camera Subsystem - CSID (CSI Decoder) Module
*
* Copyright (C) 2020-2025 Linaro Ltd.
*/
#include <linux/completion.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/kernel.h>
#include "camss.h"
#include "camss-csid.h"
#include "camss-csid-gen2.h"
#define CSID_TOP_IO_PATH_CFG0(csid) (0x4 * (csid))
#define CSID_TOP_IO_PATH_CFG0_INTERNAL_CSID BIT(0)
#define CSID_TOP_IO_PATH_CFG0_SFE_0 BIT(1)
#define CSID_TOP_IO_PATH_CFG0_SFE_1 GENMASK(1, 0)
#define CSID_TOP_IO_PATH_CFG0_SBI_0 BIT(4)
#define CSID_TOP_IO_PATH_CFG0_SBI_1 GENMASK(3, 0)
#define CSID_TOP_IO_PATH_CFG0_SBI_2 GENMASK(3, 1)
#define CSID_TOP_IO_PATH_CFG0_OUTPUT_IFE_EN BIT(8)
#define CSID_TOP_IO_PATH_CFG0_SFE_OFFLINE_EN BIT(12)
#define CSID_RESET_CMD 0x10
#define CSID_RESET_CMD_HW_RESET BIT(0)
#define CSID_RESET_CMD_SW_RESET BIT(1)
#define CSID_RESET_CMD_IRQ_CTRL BIT(2)
#define CSID_IRQ_CMD 0x14
#define CSID_IRQ_CMD_CLEAR BIT(0)
#define CSID_IRQ_CMD_SET BIT(4)
#define CSID_REG_UPDATE_CMD 0x18
#define CSID_CSI2_RDIN_IRQ_STATUS(rdi) (0xec + 0x10 * (rdi))
#define CSID_CSI2_RDIN_CCIF_VIOLATION BIT(29)
#define CSID_CSI2_RDIN_SENSOR_SWITCH_OUT_OF_SYNC_FRAME_DROP BIT(28)
#define CSID_CSI2_RDIN_ERROR_REC_WIDTH_VIOLATION BIT(27)
#define CSID_CSI2_RDIN_ERROR_REC_HEIGHT_VIOLATION BIT(26)
#define CSID_CSI2_RDIN_BATCH_END_MISSING_VIOLATION BIT(25)
#define CSID_CSI2_RDIN_ILLEGAL_BATCH_ID_IRQ BIT(24)
#define CSID_CSI2_RDIN_RUP_DONE BIT(23)
#define CSID_CSI2_RDIN_CAMIF_EPOCH_1_IRQ BIT(22)
#define CSID_CSI2_RDIN_CAMIF_EPOCH_0_IRQ BIT(21)
#define CSID_CSI2_RDIN_ERROR_REC_OVERFLOW_IRQ BIT(19)
#define CSID_CSI2_RDIN_ERROR_REC_FRAME_DROP BIT(18)
#define CSID_CSI2_RDIN_VCDT_GRP_CHANG BIT(17)
#define CSID_CSI2_RDIN_VCDT_GRP_0_SEL BIT(16)
#define CSID_CSI2_RDIN_VCDT_GRP_1_SEL BIT(15)
#define CSID_CSI2_RDIN_ERROR_LINE_COUNT BIT(14)
#define CSID_CSI2_RDIN_ERROR_PIX_COUNT BIT(13)
#define CSID_CSI2_RDIN_INFO_INPUT_SOF BIT(12)
#define CSID_CSI2_RDIN_INFO_INPUT_SOL BIT(11)
#define CSID_CSI2_RDIN_INFO_INPUT_EOL BIT(10)
#define CSID_CSI2_RDIN_INFO_INPUT_EOF BIT(9)
#define CSID_CSI2_RDIN_INFO_FRAME_DROP_SOF BIT(8)
#define CSID_CSI2_RDIN_INFO_FRAME_DROP_SOL BIT(7)
#define CSID_CSI2_RDIN_INFO_FRAME_DROP_EOL BIT(6)
#define CSID_CSI2_RDIN_INFO_FRAME_DROP_EOF BIT(5)
#define CSID_CSI2_RDIN_INFO_CAMIF_SOF BIT(4)
#define CSID_CSI2_RDIN_INFO_CAMIF_EOF BIT(3)
#define CSID_CSI2_RDIN_INFO_FIFO_OVERFLOW BIT(2)
#define CSID_CSI2_RDIN_RES1 BIT(1)
#define CSID_CSI2_RDIN_RES0 BIT(0)
#define CSID_CSI2_RDIN_IRQ_MASK(rdi) (0xf0 + 0x10 * (rdi))
#define CSID_CSI2_RDIN_IRQ_CLEAR(rdi) (0xf4 + 0x10 * (rdi))
#define CSID_CSI2_RDIN_IRQ_SET(rdi) (0xf8 + 0x10 * (rdi))
#define CSID_TOP_IRQ_STATUS 0x7c
#define CSID_TOP_IRQ_MASK 0x80
#define CSID_TOP_IRQ_CLEAR 0x84
#define CSID_TOP_IRQ_RESET BIT(0)
#define CSID_TOP_IRQ_RX BIT(2)
#define CSID_TOP_IRQ_LONG_PKT(rdi) (BIT(8) << (rdi))
#define CSID_TOP_IRQ_BUF_DONE BIT(13)
#define CSID_BUF_DONE_IRQ_STATUS 0x8c
#define BUF_DONE_IRQ_STATUS_RDI_OFFSET (csid_is_lite(csid) ? 1 : 14)
#define CSID_BUF_DONE_IRQ_MASK 0x90
#define CSID_BUF_DONE_IRQ_CLEAR 0x94
#define CSID_CSI2_RX_IRQ_STATUS 0x9c
#define CSID_CSI2_RX_IRQ_MASK 0xa0
#define CSID_CSI2_RX_IRQ_CLEAR 0xa4
#define CSID_RESET_CFG 0xc
#define CSID_RESET_CFG_MODE_IMMEDIATE BIT(0)
#define CSID_RESET_CFG_LOCATION_COMPLETE BIT(4)
#define CSID_CSI2_RDI_IRQ_STATUS(rdi) (0xec + 0x10 * (rdi))
#define CSID_CSI2_RDI_IRQ_MASK(rdi) (0xf0 + 0x10 * (rdi))
#define CSID_CSI2_RDI_IRQ_CLEAR(rdi) (0xf4 + 0x10 * (rdi))
#define CSID_CSI2_RX_CFG0 0x200
#define CSI2_RX_CFG0_NUM_ACTIVE_LANES 0
#define CSI2_RX_CFG0_DL0_INPUT_SEL 4
#define CSI2_RX_CFG0_DL1_INPUT_SEL 8
#define CSI2_RX_CFG0_DL2_INPUT_SEL 12
#define CSI2_RX_CFG0_DL3_INPUT_SEL 16
#define CSI2_RX_CFG0_PHY_NUM_SEL 20
#define CSI2_RX_CFG0_PHY_SEL_BASE_IDX 1
#define CSI2_RX_CFG0_PHY_TYPE_SEL 24
#define CSID_CSI2_RX_CFG1 0x204
#define CSI2_RX_CFG1_PACKET_ECC_CORRECTION_EN BIT(0)
#define CSI2_RX_CFG1_DE_SCRAMBLE_EN BIT(1)
#define CSI2_RX_CFG1_VC_MODE BIT(2)
#define CSI2_RX_CFG1_COMPLETE_STREAM_EN BIT(4)
#define CSI2_RX_CFG1_COMPLETE_STREAM_FRAME_TIMING BIT(5)
#define CSI2_RX_CFG1_MISR_EN BIT(6)
#define CSI2_RX_CFG1_CGC_MODE BIT(7)
#define CSID_CSI2_RX_CAPTURE_CTRL 0x208
#define CSI2_RX_CAPTURE_CTRL_LONG_PKT_EN BIT(0)
#define CSI2_RX_CAPTURE_CTRL_SHORT_PKT_EN BIT(1)
#define CSI2_RX_CAPTURE_CTRL_CPHY_PKT_EN BIT(2)
#define CSI2_RX_CAPTURE_CTRL_LONG_PKT_DT GENMASK(9, 4)
#define CSI2_RX_CAPTURE_CTRL_LONG_PKT_VC GENMASK(14, 10)
#define CSI2_RX_CAPTURE_CTRL_SHORT_PKT_VC GENMASK(19, 15)
#define CSI2_RX_CAPTURE_CTRL_CPHY_PKT_DT GENMASK(20, 25)
#define CSI2_RX_CAPTURE_CTRL_CPHY_PKT_VC GENMASK(30, 26)
#define CSID_CSI2_RX_TOTAL_PKTS_RCVD 0x240
#define CSID_CSI2_RX_STATS_ECC 0x244
#define CSID_CSI2_RX_CRC_ERRORS 0x248
#define CSID_RDI_CFG0(rdi) (0x500 + 0x100 * (rdi))
#define RDI_CFG0_DECODE_FORMAT 12
#define RDI_CFG0_DATA_TYPE 16
#define RDI_CFG0_VIRTUAL_CHANNEL 22
#define RDI_CFG0_DT_ID 27
#define RDI_CFG0_ENABLE BIT(31)
#define CSID_RDI_CTRL(rdi) (0x504 + 0x100 * (rdi))
#define CSID_RDI_CTRL_HALT_CMD_HALT_AT_FRAME_BOUNDARY 0
#define CSID_RDI_CTRL_HALT_CMD_RESUME_AT_FRAME_BOUNDARY 1
#define CSID_RDI_CFG1(rdi) (0x510 + 0x100 * (rdi))
#define RDI_CFG1_TIMESTAMP_STB_FRAME BIT(0)
#define RDI_CFG1_TIMESTAMP_STB_IRQ BIT(1)
#define RDI_CFG1_BYTE_CNTR_EN BIT(2)
#define RDI_CFG1_TIMESTAMP_EN BIT(4)
#define RDI_CFG1_DROP_H_EN BIT(5)
#define RDI_CFG1_DROP_V_EN BIT(6)
#define RDI_CFG1_CROP_H_EN BIT(7)
#define RDI_CFG1_CROP_V_EN BIT(8)
#define RDI_CFG1_MISR_EN BIT(9)
#define RDI_CFG1_PLAIN_ALIGN_MSB BIT(11)
#define RDI_CFG1_EARLY_EOF_EN BIT(14)
#define RDI_CFG1_PACKING_MIPI BIT(15)
#define CSID_RDI_ERR_RECOVERY_CFG0(rdi) (0x514 + 0x100 * (rdi))
#define CSID_RDI_EPOCH_IRQ_CFG(rdi) (0x52c + 0x100 * (rdi))
#define CSID_RDI_FRM_DROP_PATTERN(rdi) (0x540 + 0x100 * (rdi))
#define CSID_RDI_FRM_DROP_PERIOD(rdi) (0x544 + 0x100 * (rdi))
#define CSID_RDI_IRQ_SUBSAMPLE_PATTERN(rdi) (0x548 + 0x100 * (rdi))
#define CSID_RDI_IRQ_SUBSAMPLE_PERIOD(rdi) (0x54c + 0x100 * (rdi))
#define CSID_RDI_PIX_DROP_PATTERN(rdi) (0x558 + 0x100 * (rdi))
#define CSID_RDI_PIX_DROP_PERIOD(rdi) (0x55c + 0x100 * (rdi))
#define CSID_RDI_LINE_DROP_PATTERN(rdi) (0x560 + 0x100 * (rdi))
#define CSID_RDI_LINE_DROP_PERIOD(rdi) (0x564 + 0x100 * (rdi))
static inline int reg_update_rdi(struct csid_device *csid, int n)
{
return BIT(4 + n) + BIT(20 + n);
}
static void csid_reg_update(struct csid_device *csid, int port_id)
{
csid->reg_update |= reg_update_rdi(csid, port_id);
writel(csid->reg_update, csid->base + CSID_REG_UPDATE_CMD);
}
static inline void csid_reg_update_clear(struct csid_device *csid,
int port_id)
{
csid->reg_update &= ~reg_update_rdi(csid, port_id);
writel(csid->reg_update, csid->base + CSID_REG_UPDATE_CMD);
}
static void __csid_configure_rx(struct csid_device *csid,
struct csid_phy_config *phy, int vc)
{
u32 val;
val = (phy->lane_cnt - 1) << CSI2_RX_CFG0_NUM_ACTIVE_LANES;
val |= phy->lane_assign << CSI2_RX_CFG0_DL0_INPUT_SEL;
val |= (phy->csiphy_id + CSI2_RX_CFG0_PHY_SEL_BASE_IDX) << CSI2_RX_CFG0_PHY_NUM_SEL;
writel(val, csid->base + CSID_CSI2_RX_CFG0);
val = CSI2_RX_CFG1_PACKET_ECC_CORRECTION_EN;
if (vc > 3)
val |= CSI2_RX_CFG1_VC_MODE;
writel(val, csid->base + CSID_CSI2_RX_CFG1);
}
static void __csid_ctrl_rdi(struct csid_device *csid, int enable, u8 rdi)
{
u32 val;
if (enable)
val = CSID_RDI_CTRL_HALT_CMD_RESUME_AT_FRAME_BOUNDARY;
else
val = CSID_RDI_CTRL_HALT_CMD_HALT_AT_FRAME_BOUNDARY;
writel(val, csid->base + CSID_RDI_CTRL(rdi));
}
static void __csid_configure_top(struct csid_device *csid)
{
u32 val;
val = CSID_TOP_IO_PATH_CFG0_OUTPUT_IFE_EN | CSID_TOP_IO_PATH_CFG0_INTERNAL_CSID;
writel(val, csid->camss->csid_wrapper_base +
CSID_TOP_IO_PATH_CFG0(csid->id));
}
static void __csid_configure_rdi_stream(struct csid_device *csid, u8 enable, u8 vc)
{
struct v4l2_mbus_framefmt *input_format = &csid->fmt[MSM_CSID_PAD_FIRST_SRC + vc];
const struct csid_format_info *format = csid_get_fmt_entry(csid->res->formats->formats,
csid->res->formats->nformats,
input_format->code);
u8 lane_cnt = csid->phy.lane_cnt;
u8 dt_id;
u32 val;
if (!lane_cnt)
lane_cnt = 4;
val = 0;
writel(val, csid->base + CSID_RDI_FRM_DROP_PERIOD(vc));
/*
* DT_ID is a two bit bitfield that is concatenated with
* the four least significant bits of the five bit VC
* bitfield to generate an internal CID value.
*
* CSID_RDI_CFG0(vc)
* DT_ID : 28:27
* VC : 26:22
* DT : 21:16
*
* CID : VC 3:0 << 2 | DT_ID 1:0
*/
dt_id = vc & 0x03;
/* note: for non-RDI path, this should be format->decode_format */
val |= DECODE_FORMAT_PAYLOAD_ONLY << RDI_CFG0_DECODE_FORMAT;
val |= format->data_type << RDI_CFG0_DATA_TYPE;
val |= vc << RDI_CFG0_VIRTUAL_CHANNEL;
val |= dt_id << RDI_CFG0_DT_ID;
writel(val, csid->base + CSID_RDI_CFG0(vc));
val = RDI_CFG1_TIMESTAMP_STB_FRAME;
val |= RDI_CFG1_BYTE_CNTR_EN;
val |= RDI_CFG1_TIMESTAMP_EN;
val |= RDI_CFG1_DROP_H_EN;
val |= RDI_CFG1_DROP_V_EN;
val |= RDI_CFG1_CROP_H_EN;
val |= RDI_CFG1_CROP_V_EN;
val |= RDI_CFG1_PACKING_MIPI;
writel(val, csid->base + CSID_RDI_CFG1(vc));
val = 0;
writel(val, csid->base + CSID_RDI_IRQ_SUBSAMPLE_PERIOD(vc));
val = 1;
writel(val, csid->base + CSID_RDI_IRQ_SUBSAMPLE_PATTERN(vc));
val = 0;
writel(val, csid->base + CSID_RDI_CTRL(vc));
val = readl(csid->base + CSID_RDI_CFG0(vc));
if (enable)
val |= RDI_CFG0_ENABLE;
else
val &= ~RDI_CFG0_ENABLE;
writel(val, csid->base + CSID_RDI_CFG0(vc));
}
static void csid_configure_stream(struct csid_device *csid, u8 enable)
{
int i;
__csid_configure_top(csid);
/* Loop through all enabled VCs and configure stream for each */
for (i = 0; i < MSM_CSID_MAX_SRC_STREAMS; i++) {
if (csid->phy.en_vc & BIT(i)) {
__csid_configure_rdi_stream(csid, enable, i);
__csid_configure_rx(csid, &csid->phy, i);
__csid_ctrl_rdi(csid, enable, i);
}
}
}
/*
* csid_reset - Trigger reset on CSID module and wait to complete
* @csid: CSID device
*
* Return 0 on success or a negative error code otherwise
*/
static int csid_reset(struct csid_device *csid)
{
unsigned long time;
u32 val;
int i;
reinit_completion(&csid->reset_complete);
writel(CSID_IRQ_CMD_CLEAR, csid->base + CSID_IRQ_CMD);
/* preserve registers */
val = CSID_RESET_CFG_MODE_IMMEDIATE | CSID_RESET_CFG_LOCATION_COMPLETE;
writel(val, csid->base + CSID_RESET_CFG);
val = CSID_RESET_CMD_HW_RESET | CSID_RESET_CMD_SW_RESET;
writel(val, csid->base + CSID_RESET_CMD);
time = wait_for_completion_timeout(&csid->reset_complete,
msecs_to_jiffies(CSID_RESET_TIMEOUT_MS));
if (!time) {
dev_err(csid->camss->dev, "CSID reset timeout\n");
return -EIO;
}
for (i = 0; i < MSM_CSID_MAX_SRC_STREAMS; i++) {
/* Enable RUP done for the client port */
writel(CSID_CSI2_RDIN_RUP_DONE, csid->base + CSID_CSI2_RDIN_IRQ_MASK(i));
}
/* Clear RDI status */
writel(~0u, csid->base + CSID_BUF_DONE_IRQ_CLEAR);
/* Enable BUF_DONE bit for all write-master client ports */
writel(~0u, csid->base + CSID_BUF_DONE_IRQ_MASK);
/* Unmask all TOP interrupts */
writel(~0u, csid->base + CSID_TOP_IRQ_MASK);
return 0;
}
static void csid_rup_complete(struct csid_device *csid, int rdi)
{
csid_reg_update_clear(csid, rdi);
}
/*
* csid_isr - CSID module interrupt service routine
* @irq: Interrupt line
* @dev: CSID device
*
* Return IRQ_HANDLED on success
*/
static irqreturn_t csid_isr(int irq, void *dev)
{
struct csid_device *csid = dev;
u32 buf_done_val, val, val_top;
int i;
/* Latch and clear TOP status */
val_top = readl(csid->base + CSID_TOP_IRQ_STATUS);
writel(val_top, csid->base + CSID_TOP_IRQ_CLEAR);
/* Latch and clear CSID_CSI2 status */
val = readl(csid->base + CSID_CSI2_RX_IRQ_STATUS);
writel(val, csid->base + CSID_CSI2_RX_IRQ_CLEAR);
/* Latch and clear top level BUF_DONE status */
buf_done_val = readl(csid->base + CSID_BUF_DONE_IRQ_STATUS);
writel(buf_done_val, csid->base + CSID_BUF_DONE_IRQ_CLEAR);
/* Process state for each RDI channel */
for (i = 0; i < MSM_CSID_MAX_SRC_STREAMS; i++) {
val = readl(csid->base + CSID_CSI2_RDIN_IRQ_STATUS(i));
if (val)
writel(val, csid->base + CSID_CSI2_RDIN_IRQ_CLEAR(i));
if (val & CSID_CSI2_RDIN_RUP_DONE)
csid_rup_complete(csid, i);
if (buf_done_val & BIT(BUF_DONE_IRQ_STATUS_RDI_OFFSET + i))
camss_buf_done(csid->camss, csid->id, i);
}
/* Issue clear command */
writel(CSID_IRQ_CMD_CLEAR, csid->base + CSID_IRQ_CMD);
/* Reset complete */
if (val_top & CSID_TOP_IRQ_RESET)
complete(&csid->reset_complete);
return IRQ_HANDLED;
}
static void csid_subdev_reg_update(struct csid_device *csid, int port_id, bool is_clear)
{
if (is_clear)
csid_reg_update_clear(csid, port_id);
else
csid_reg_update(csid, port_id);
}
static void csid_subdev_init(struct csid_device *csid) {}
const struct csid_hw_ops csid_ops_680 = {
.configure_testgen_pattern = NULL,
.configure_stream = csid_configure_stream,
.hw_version = csid_hw_version,
.isr = csid_isr,
.reset = csid_reset,
.src_pad_code = csid_src_pad_code,
.subdev_init = csid_subdev_init,
.reg_update = csid_subdev_reg_update,
};