linux/drivers/media/i2c/vd56g3.c
Sylvain Petinot 87aa97fc31 media: i2c: Add driver for ST VD56G3 camera sensor
Add V4L2 sub-device driver for STMicroelectronics VD56G3 camera sensor.
This is a 1.5 M pixel global shutter image sensor with an active array
size of 1124 x 1364 (portrait orientation).

The driver supports Mono (VD56G3) and Color (VD66GY) variants.

Signed-off-by: Sylvain Petinot <sylvain.petinot@foss.st.com>
Signed-off-by: Sakari Ailus <sakari.ailus@linux.intel.com>
Signed-off-by: Hans Verkuil <hverkuil@xs4all.nl>
2025-05-06 09:53:52 +02:00

1586 lines
44 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* A V4L2 driver for ST VD56G3 (Mono) and VD66GY (RGB) global shutter cameras.
* Copyright (C) 2024, STMicroelectronics SA
*/
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/gpio/consumer.h>
#include <linux/i2c.h>
#include <linux/iopoll.h>
#include <linux/module.h>
#include <linux/pm_runtime.h>
#include <linux/regmap.h>
#include <linux/regulator/consumer.h>
#include <linux/unaligned.h>
#include <linux/units.h>
#include <media/mipi-csi2.h>
#include <media/v4l2-async.h>
#include <media/v4l2-cci.h>
#include <media/v4l2-ctrls.h>
#include <media/v4l2-device.h>
#include <media/v4l2-fwnode.h>
#include <media/v4l2-subdev.h>
/* Register Map */
#define VD56G3_REG_MODEL_ID CCI_REG16_LE(0x0000)
#define VD56G3_MODEL_ID 0x5603
#define VD56G3_REG_REVISION CCI_REG16_LE(0x0002)
#define VD56G3_REVISION_CUT3 0x31
#define VD56G3_REG_OPTICAL_REVISION CCI_REG8(0x001a)
#define VD56G3_OPTICAL_REVISION_MONO 0
#define VD56G3_OPTICAL_REVISION_BAYER 1
#define VD56G3_REG_SYSTEM_FSM CCI_REG8(0x0028)
#define VD56G3_SYSTEM_FSM_READY_TO_BOOT 0x01
#define VD56G3_SYSTEM_FSM_SW_STBY 0x02
#define VD56G3_SYSTEM_FSM_STREAMING 0x03
#define VD56G3_REG_APPLIED_COARSE_EXPOSURE CCI_REG16_LE(0x0064)
#define VD56G3_REG_APPLIED_ANALOG_GAIN CCI_REG8(0x0068)
#define VD56G3_REG_APPLIED_DIGITAL_GAIN CCI_REG16_LE(0x006a)
#define VD56G3_REG_BOOT CCI_REG8(0x0200)
#define VD56G3_CMD_ACK 0
#define VD56G3_CMD_BOOT 1
#define VD56G3_REG_STBY CCI_REG8(0x0201)
#define VD56G3_CMD_START_STREAM 1
#define VD56G3_REG_STREAMING CCI_REG8(0x0202)
#define VD56G3_CMD_STOP_STREAM 1
#define VD56G3_REG_EXT_CLOCK CCI_REG32_LE(0x0220)
#define VD56G3_REG_CLK_PLL_PREDIV CCI_REG8(0x0224)
#define VD56G3_REG_CLK_SYS_PLL_MULT CCI_REG8(0x0226)
#define VD56G3_REG_ORIENTATION CCI_REG8(0x0302)
#define VD56G3_REG_FORMAT_CTRL CCI_REG8(0x030a)
#define VD56G3_REG_OIF_CTRL CCI_REG16_LE(0x030c)
#define VD56G3_REG_OIF_IMG_CTRL CCI_REG8(0x030f)
#define VD56G3_REG_OIF_CSI_BITRATE CCI_REG16_LE(0x0312)
#define VD56G3_REG_DUSTER_CTRL CCI_REG8(0x0318)
#define VD56G3_DUSTER_DISABLE 0
#define VD56G3_DUSTER_ENABLE_DEF_MODULES 0x13
#define VD56G3_REG_ISL_ENABLE CCI_REG8(0x0333)
#define VD56G3_REG_DARKCAL_CTRL CCI_REG8(0x0340)
#define VD56G3_DARKCAL_ENABLE 1
#define VD56G3_DARKCAL_DISABLE_DARKAVG 2
#define VD56G3_REG_PATGEN_CTRL CCI_REG16_LE(0x0400)
#define VD56G3_PATGEN_ENABLE 1
#define VD56G3_PATGEN_TYPE_SHIFT 4
#define VD56G3_REG_AE_COLDSTART_COARSE_EXPOSURE CCI_REG16_LE(0x042a)
#define VD56G3_REG_AE_COLDSTART_ANALOG_GAIN CCI_REG8(0x042c)
#define VD56G3_REG_AE_COLDSTART_DIGITAL_GAIN CCI_REG16_LE(0x042e)
#define VD56G3_REG_AE_ROI_START_H CCI_REG16_LE(0x0432)
#define VD56G3_REG_AE_ROI_START_V CCI_REG16_LE(0x0434)
#define VD56G3_REG_AE_ROI_END_H CCI_REG16_LE(0x0436)
#define VD56G3_REG_AE_ROI_END_V CCI_REG16_LE(0x0438)
#define VD56G3_REG_AE_COMPENSATION CCI_REG16_LE(0x043a)
#define VD56G3_REG_EXP_MODE CCI_REG8(0x044c)
#define VD56G3_EXP_MODE_AUTO 0
#define VD56G3_EXP_MODE_FREEZE 1
#define VD56G3_EXP_MODE_MANUAL 2
#define VD56G3_REG_MANUAL_ANALOG_GAIN CCI_REG8(0x044d)
#define VD56G3_REG_MANUAL_COARSE_EXPOSURE CCI_REG16_LE(0x044e)
#define VD56G3_REG_MANUAL_DIGITAL_GAIN_CH0 CCI_REG16_LE(0x0450)
#define VD56G3_REG_MANUAL_DIGITAL_GAIN_CH1 CCI_REG16_LE(0x0452)
#define VD56G3_REG_MANUAL_DIGITAL_GAIN_CH2 CCI_REG16_LE(0x0454)
#define VD56G3_REG_MANUAL_DIGITAL_GAIN_CH3 CCI_REG16_LE(0x0456)
#define VD56G3_REG_FRAME_LENGTH CCI_REG16_LE(0x0458)
#define VD56G3_REG_Y_START CCI_REG16_LE(0x045a)
#define VD56G3_REG_Y_END CCI_REG16_LE(0x045c)
#define VD56G3_REG_OUT_ROI_X_START CCI_REG16_LE(0x045e)
#define VD56G3_REG_OUT_ROI_X_END CCI_REG16_LE(0x0460)
#define VD56G3_REG_OUT_ROI_Y_START CCI_REG16_LE(0x0462)
#define VD56G3_REG_OUT_ROI_Y_END CCI_REG16_LE(0x0464)
#define VD56G3_REG_GPIO_0_CTRL CCI_REG8(0x0467)
#define VD56G3_GPIOX_GPIO_IN 0x01
#define VD56G3_GPIOX_STROBE_MODE 0x02
#define VD56G3_REG_READOUT_CTRL CCI_REG8(0x047e)
#define READOUT_NORMAL 0x00
#define READOUT_DIGITAL_BINNING_X2 0x01
/* The VD56G3 is a portrait image sensor with native resolution of 1124x1364. */
#define VD56G3_NATIVE_WIDTH 1124
#define VD56G3_NATIVE_HEIGHT 1364
#define VD56G3_DEFAULT_MODE 0
/* PLL settings */
#define VD56G3_TARGET_PLL 804000000UL
#define VD56G3_VT_CLOCK_DIV 5
/* External clock must be in [6Mhz-27Mhz] */
#define VD56G3_XCLK_FREQ_MIN (6 * HZ_PER_MHZ)
#define VD56G3_XCLK_FREQ_MAX (27 * HZ_PER_MHZ)
/* Line length and Frame length (settings are for standard 10bits ADC mode) */
#define VD56G3_LINE_LENGTH_MIN 1236
#define VD56G3_VBLANK_MIN 110
#define VD56G3_FRAME_LENGTH_DEF_60FPS 2168
#define VD56G3_FRAME_LENGTH_MAX 0xffff
/* Exposure settings */
#define VD56G3_EXPOSURE_MARGIN 75
#define VD56G3_EXPOSURE_MIN 5
#define VD56G3_EXPOSURE_DEFAULT 1420
/* Output Interface settings */
#define VD56G3_MAX_CSI_DATA_LANES 2
#define VD56G3_LINK_FREQ_DEF_1LANE 750000000UL
#define VD56G3_LINK_FREQ_DEF_2LANES 402000000UL
/* GPIOs */
#define VD56G3_NB_GPIOS 8
/* regulator supplies */
static const char *const vd56g3_supply_names[] = {
"vcore",
"vddio",
"vana",
};
/* -----------------------------------------------------------------------------
* Models (VD56G3: Mono, VD66GY: Bayer RGB), Modes and formats
*/
enum vd56g3_models {
VD56G3_MODEL_VD56G3,
VD56G3_MODEL_VD66GY,
};
struct vd56g3_mode {
u32 width;
u32 height;
};
static const struct vd56g3_mode vd56g3_supported_modes[] = {
{
.width = VD56G3_NATIVE_WIDTH,
.height = VD56G3_NATIVE_HEIGHT,
},
{
.width = 1120,
.height = 1360,
},
{
.width = 1024,
.height = 1280,
},
{
.width = 1024,
.height = 768,
},
{
.width = 768,
.height = 1024,
},
{
.width = 720,
.height = 1280,
},
{
.width = 640,
.height = 480,
},
{
.width = 480,
.height = 640,
},
{
.width = 320,
.height = 240,
},
};
/*
* Sensor support 8bits and 10bits output in both variants
* - Monochrome
* - RGB (with all H/V flip variations)
*/
static const unsigned int vd56g3_mbus_codes[2][5] = {
{
MEDIA_BUS_FMT_Y8_1X8,
MEDIA_BUS_FMT_SGRBG8_1X8,
MEDIA_BUS_FMT_SRGGB8_1X8,
MEDIA_BUS_FMT_SBGGR8_1X8,
MEDIA_BUS_FMT_SGBRG8_1X8,
},
{
MEDIA_BUS_FMT_Y10_1X10,
MEDIA_BUS_FMT_SGRBG10_1X10,
MEDIA_BUS_FMT_SRGGB10_1X10,
MEDIA_BUS_FMT_SBGGR10_1X10,
MEDIA_BUS_FMT_SGBRG10_1X10,
},
};
struct vd56g3 {
struct device *dev;
struct v4l2_subdev sd;
struct media_pad pad;
struct regulator_bulk_data supplies[ARRAY_SIZE(vd56g3_supply_names)];
struct gpio_desc *reset_gpio;
struct clk *xclk;
struct regmap *regmap;
u32 xclk_freq;
u32 pll_prediv;
u32 pll_mult;
u32 pixel_clock;
u16 oif_ctrl;
u8 nb_of_lane;
u32 gpios[VD56G3_NB_GPIOS];
unsigned long ext_leds_mask;
bool is_mono;
struct v4l2_ctrl_handler ctrl_handler;
struct v4l2_ctrl *hblank_ctrl;
struct v4l2_ctrl *vblank_ctrl;
struct {
struct v4l2_ctrl *hflip_ctrl;
struct v4l2_ctrl *vflip_ctrl;
};
struct v4l2_ctrl *patgen_ctrl;
struct {
struct v4l2_ctrl *ae_ctrl;
struct v4l2_ctrl *expo_ctrl;
struct v4l2_ctrl *again_ctrl;
struct v4l2_ctrl *dgain_ctrl;
};
struct v4l2_ctrl *ae_lock_ctrl;
struct v4l2_ctrl *ae_bias_ctrl;
struct v4l2_ctrl *led_ctrl;
};
static inline struct vd56g3 *to_vd56g3(struct v4l2_subdev *sd)
{
return container_of_const(sd, struct vd56g3, sd);
}
static inline struct vd56g3 *ctrl_to_vd56g3(struct v4l2_ctrl *ctrl)
{
return container_of_const(ctrl->handler, struct vd56g3, ctrl_handler);
}
/* -----------------------------------------------------------------------------
* Additional i2c register helpers
*/
static int vd56g3_poll_reg(struct vd56g3 *sensor, u32 reg, u8 poll_val,
int *err)
{
unsigned int val = 0;
int ret;
if (err && *err)
return *err;
/*
* Timeout must be higher than longuest frame duration. With current
* blanking constraints, frame duration can take up to 504ms.
*/
ret = regmap_read_poll_timeout(sensor->regmap, CCI_REG_ADDR(reg), val,
(val == poll_val), 2000,
600 * USEC_PER_MSEC);
if (ret && err)
*err = ret;
return ret;
}
static int vd56g3_wait_state(struct vd56g3 *sensor, int state, int *err)
{
return vd56g3_poll_reg(sensor, VD56G3_REG_SYSTEM_FSM, state, err);
}
/* -----------------------------------------------------------------------------
* Controls: definitions, helpers and handlers
*/
static const char *const vd56g3_tp_menu[] = { "Disabled",
"Solid Color",
"Vertical Color Bars",
"Horizontal Gray Scale",
"Vertical Gray Scale",
"Diagonal Gray Scale",
"Pseudo Random" };
static const s64 vd56g3_ev_bias_qmenu[] = { -4000, -3500, -3000, -2500, -2000,
-1500, -1000, -500, 0, 500,
1000, 1500, 2000, 2500, 3000,
3500, 4000 };
static const s64 vd56g3_link_freq_1lane[] = { VD56G3_LINK_FREQ_DEF_1LANE };
static const s64 vd56g3_link_freq_2lanes[] = { VD56G3_LINK_FREQ_DEF_2LANES };
static u8 vd56g3_get_bpp(__u32 code)
{
switch (code) {
case MEDIA_BUS_FMT_Y8_1X8:
case MEDIA_BUS_FMT_SGRBG8_1X8:
case MEDIA_BUS_FMT_SRGGB8_1X8:
case MEDIA_BUS_FMT_SBGGR8_1X8:
case MEDIA_BUS_FMT_SGBRG8_1X8:
default:
return 8;
case MEDIA_BUS_FMT_Y10_1X10:
case MEDIA_BUS_FMT_SGRBG10_1X10:
case MEDIA_BUS_FMT_SRGGB10_1X10:
case MEDIA_BUS_FMT_SBGGR10_1X10:
case MEDIA_BUS_FMT_SGBRG10_1X10:
return 10;
}
}
static u8 vd56g3_get_datatype(__u32 code)
{
switch (code) {
case MEDIA_BUS_FMT_Y8_1X8:
case MEDIA_BUS_FMT_SGRBG8_1X8:
case MEDIA_BUS_FMT_SRGGB8_1X8:
case MEDIA_BUS_FMT_SBGGR8_1X8:
case MEDIA_BUS_FMT_SGBRG8_1X8:
default:
return MIPI_CSI2_DT_RAW8;
case MEDIA_BUS_FMT_Y10_1X10:
case MEDIA_BUS_FMT_SGRBG10_1X10:
case MEDIA_BUS_FMT_SRGGB10_1X10:
case MEDIA_BUS_FMT_SBGGR10_1X10:
case MEDIA_BUS_FMT_SGBRG10_1X10:
return MIPI_CSI2_DT_RAW10;
}
}
static int vd56g3_read_expo_cluster(struct vd56g3 *sensor, bool force_cur_val)
{
u64 exposure;
u64 again;
u64 dgain;
int ret = 0;
/*
* When 'force_cur_val' is enabled, save the ctrl value in 'cur.val'
* instead of the normal 'val', this is used during poweroff to cache
* volatile ctrls and enable coldstart.
*/
cci_read(sensor->regmap, VD56G3_REG_APPLIED_COARSE_EXPOSURE, &exposure,
&ret);
cci_read(sensor->regmap, VD56G3_REG_APPLIED_ANALOG_GAIN, &again, &ret);
cci_read(sensor->regmap, VD56G3_REG_APPLIED_DIGITAL_GAIN, &dgain, &ret);
if (ret)
return ret;
if (force_cur_val) {
sensor->expo_ctrl->cur.val = exposure;
sensor->again_ctrl->cur.val = again;
sensor->dgain_ctrl->cur.val = dgain;
} else {
sensor->expo_ctrl->val = exposure;
sensor->again_ctrl->val = again;
sensor->dgain_ctrl->val = dgain;
}
return ret;
}
static int vd56g3_update_patgen(struct vd56g3 *sensor, u32 patgen_index)
{
u32 pattern = patgen_index <= 2 ? patgen_index : patgen_index + 13;
u16 patgen = pattern << VD56G3_PATGEN_TYPE_SHIFT;
u8 duster = VD56G3_DUSTER_ENABLE_DEF_MODULES;
u8 darkcal = VD56G3_DARKCAL_ENABLE;
int ret = 0;
if (patgen_index) {
patgen |= VD56G3_PATGEN_ENABLE;
duster = VD56G3_DUSTER_DISABLE;
darkcal = VD56G3_DARKCAL_DISABLE_DARKAVG;
}
cci_write(sensor->regmap, VD56G3_REG_DUSTER_CTRL, duster, &ret);
cci_write(sensor->regmap, VD56G3_REG_DARKCAL_CTRL, darkcal, &ret);
cci_write(sensor->regmap, VD56G3_REG_PATGEN_CTRL, patgen, &ret);
return ret;
}
static int vd56g3_update_expo_cluster(struct vd56g3 *sensor, bool is_auto)
{
u8 expo_state = is_auto ? VD56G3_EXP_MODE_AUTO : VD56G3_EXP_MODE_MANUAL;
int ret = 0;
if (sensor->ae_ctrl->is_new)
cci_write(sensor->regmap, VD56G3_REG_EXP_MODE, expo_state,
&ret);
/* In Auto expo, set coldstart parameters */
if (is_auto && sensor->ae_ctrl->is_new) {
cci_write(sensor->regmap,
VD56G3_REG_AE_COLDSTART_COARSE_EXPOSURE,
sensor->expo_ctrl->val, &ret);
cci_write(sensor->regmap, VD56G3_REG_AE_COLDSTART_ANALOG_GAIN,
sensor->again_ctrl->val, &ret);
cci_write(sensor->regmap, VD56G3_REG_AE_COLDSTART_DIGITAL_GAIN,
sensor->dgain_ctrl->val, &ret);
}
/* In Manual expo, set exposure, analog and digital gains */
if (!is_auto && sensor->expo_ctrl->is_new)
cci_write(sensor->regmap, VD56G3_REG_MANUAL_COARSE_EXPOSURE,
sensor->expo_ctrl->val, &ret);
if (!is_auto && sensor->again_ctrl->is_new)
cci_write(sensor->regmap, VD56G3_REG_MANUAL_ANALOG_GAIN,
sensor->again_ctrl->val, &ret);
if (!is_auto && sensor->dgain_ctrl->is_new) {
cci_write(sensor->regmap, VD56G3_REG_MANUAL_DIGITAL_GAIN_CH0,
sensor->dgain_ctrl->val, &ret);
cci_write(sensor->regmap, VD56G3_REG_MANUAL_DIGITAL_GAIN_CH1,
sensor->dgain_ctrl->val, &ret);
cci_write(sensor->regmap, VD56G3_REG_MANUAL_DIGITAL_GAIN_CH2,
sensor->dgain_ctrl->val, &ret);
cci_write(sensor->regmap, VD56G3_REG_MANUAL_DIGITAL_GAIN_CH3,
sensor->dgain_ctrl->val, &ret);
}
return ret;
}
static int vd56g3_lock_exposure(struct vd56g3 *sensor, u32 lock_val)
{
bool ae_lock = lock_val & V4L2_LOCK_EXPOSURE;
u8 expo_state = ae_lock ? VD56G3_EXP_MODE_FREEZE : VD56G3_EXP_MODE_AUTO;
if (sensor->ae_ctrl->val == V4L2_EXPOSURE_AUTO)
return cci_write(sensor->regmap, VD56G3_REG_EXP_MODE,
expo_state, NULL);
return 0;
}
static int vd56g3_write_gpiox(struct vd56g3 *sensor, unsigned long gpio_mask)
{
unsigned long io;
u32 gpio_val;
int ret = 0;
for_each_set_bit(io, &gpio_mask, VD56G3_NB_GPIOS) {
gpio_val = sensor->gpios[io];
if (gpio_val == VD56G3_GPIOX_STROBE_MODE &&
sensor->led_ctrl->val == V4L2_FLASH_LED_MODE_NONE)
gpio_val = VD56G3_GPIOX_GPIO_IN;
cci_write(sensor->regmap, VD56G3_REG_GPIO_0_CTRL + io, gpio_val,
&ret);
}
return ret;
}
static int vd56g3_g_volatile_ctrl(struct v4l2_ctrl *ctrl)
{
struct vd56g3 *sensor = ctrl_to_vd56g3(ctrl);
int ret = 0;
/* Interact with HW only when it is powered ON */
if (!pm_runtime_get_if_in_use(sensor->dev))
return 0;
switch (ctrl->id) {
case V4L2_CID_EXPOSURE_AUTO:
ret = vd56g3_read_expo_cluster(sensor, false);
break;
default:
ret = -EINVAL;
break;
}
pm_runtime_mark_last_busy(sensor->dev);
pm_runtime_put_autosuspend(sensor->dev);
return ret;
}
static int vd56g3_s_ctrl(struct v4l2_ctrl *ctrl)
{
struct vd56g3 *sensor = ctrl_to_vd56g3(ctrl);
struct v4l2_subdev_state *state;
const struct v4l2_rect *crop;
unsigned int frame_length = 0;
unsigned int expo_max;
unsigned int ae_compensation;
bool is_auto = false;
int ret = 0;
state = v4l2_subdev_get_locked_active_state(&sensor->sd);
crop = v4l2_subdev_state_get_crop(state, 0);
if (ctrl->flags & V4L2_CTRL_FLAG_READ_ONLY)
return 0;
/* Update controls state, range, etc. whatever the state of the HW */
switch (ctrl->id) {
case V4L2_CID_VBLANK:
frame_length = crop->height + ctrl->val;
expo_max = frame_length - VD56G3_EXPOSURE_MARGIN;
ret = __v4l2_ctrl_modify_range(sensor->expo_ctrl,
VD56G3_EXPOSURE_MIN, expo_max, 1,
min(VD56G3_EXPOSURE_DEFAULT,
expo_max));
break;
case V4L2_CID_EXPOSURE_AUTO:
is_auto = (ctrl->val == V4L2_EXPOSURE_AUTO);
__v4l2_ctrl_grab(sensor->ae_lock_ctrl, !is_auto);
__v4l2_ctrl_grab(sensor->ae_bias_ctrl, !is_auto);
break;
default:
break;
}
if (ret)
return ret;
/* Interact with HW only when it is powered ON */
if (!pm_runtime_get_if_in_use(sensor->dev))
return 0;
switch (ctrl->id) {
case V4L2_CID_HFLIP:
ret = cci_write(sensor->regmap, VD56G3_REG_ORIENTATION,
sensor->hflip_ctrl->val |
(sensor->vflip_ctrl->val << 1),
NULL);
break;
case V4L2_CID_TEST_PATTERN:
ret = vd56g3_update_patgen(sensor, ctrl->val);
break;
case V4L2_CID_EXPOSURE_AUTO:
ret = vd56g3_update_expo_cluster(sensor, is_auto);
break;
case V4L2_CID_3A_LOCK:
ret = vd56g3_lock_exposure(sensor, ctrl->val);
break;
case V4L2_CID_AUTO_EXPOSURE_BIAS:
ae_compensation =
DIV_ROUND_CLOSEST((int)vd56g3_ev_bias_qmenu[ctrl->val] *
256, 1000);
ret = cci_write(sensor->regmap, VD56G3_REG_AE_COMPENSATION,
ae_compensation, NULL);
break;
case V4L2_CID_VBLANK:
ret = cci_write(sensor->regmap, VD56G3_REG_FRAME_LENGTH,
frame_length, NULL);
break;
case V4L2_CID_FLASH_LED_MODE:
ret = vd56g3_write_gpiox(sensor, sensor->ext_leds_mask);
break;
default:
ret = -EINVAL;
break;
}
pm_runtime_mark_last_busy(sensor->dev);
pm_runtime_put_autosuspend(sensor->dev);
return ret;
}
static const struct v4l2_ctrl_ops vd56g3_ctrl_ops = {
.g_volatile_ctrl = vd56g3_g_volatile_ctrl,
.s_ctrl = vd56g3_s_ctrl,
};
static int vd56g3_update_controls(struct vd56g3 *sensor)
{
struct v4l2_subdev_state *state;
const struct v4l2_rect *crop;
unsigned int hblank;
unsigned int vblank_min, vblank, vblank_max;
unsigned int frame_length;
unsigned int expo_max;
int ret;
state = v4l2_subdev_get_locked_active_state(&sensor->sd);
crop = v4l2_subdev_state_get_crop(state, 0);
hblank = VD56G3_LINE_LENGTH_MIN - crop->width;
vblank_min = VD56G3_VBLANK_MIN;
vblank = VD56G3_FRAME_LENGTH_DEF_60FPS - crop->height;
vblank_max = VD56G3_FRAME_LENGTH_MAX - crop->height;
frame_length = crop->height + vblank;
expo_max = frame_length - VD56G3_EXPOSURE_MARGIN;
/* Update blanking and exposure (ranges + values) */
ret = __v4l2_ctrl_modify_range(sensor->hblank_ctrl, hblank, hblank, 1,
hblank);
if (ret)
return ret;
ret = __v4l2_ctrl_modify_range(sensor->vblank_ctrl, vblank_min,
vblank_max, 1, vblank);
if (ret)
return ret;
ret = __v4l2_ctrl_s_ctrl(sensor->vblank_ctrl, vblank);
if (ret)
return ret;
ret = __v4l2_ctrl_modify_range(sensor->expo_ctrl, VD56G3_EXPOSURE_MIN,
expo_max, 1, VD56G3_EXPOSURE_DEFAULT);
if (ret)
return ret;
return __v4l2_ctrl_s_ctrl(sensor->expo_ctrl, VD56G3_EXPOSURE_DEFAULT);
}
static int vd56g3_init_controls(struct vd56g3 *sensor)
{
const struct v4l2_ctrl_ops *ops = &vd56g3_ctrl_ops;
struct v4l2_ctrl_handler *hdl = &sensor->ctrl_handler;
struct v4l2_fwnode_device_properties fwnode_props;
struct v4l2_ctrl *ctrl;
int ret;
v4l2_ctrl_handler_init(hdl, 25);
/* Horizontal & vertical flips modify bayer code on RGB variant */
sensor->hflip_ctrl =
v4l2_ctrl_new_std(hdl, ops, V4L2_CID_HFLIP, 0, 1, 1, 0);
if (sensor->hflip_ctrl)
sensor->hflip_ctrl->flags |= V4L2_CTRL_FLAG_MODIFY_LAYOUT;
sensor->vflip_ctrl =
v4l2_ctrl_new_std(hdl, ops, V4L2_CID_VFLIP, 0, 1, 1, 0);
if (sensor->vflip_ctrl)
sensor->vflip_ctrl->flags |= V4L2_CTRL_FLAG_MODIFY_LAYOUT;
sensor->patgen_ctrl =
v4l2_ctrl_new_std_menu_items(hdl, ops, V4L2_CID_TEST_PATTERN,
ARRAY_SIZE(vd56g3_tp_menu) - 1, 0,
0, vd56g3_tp_menu);
ctrl = v4l2_ctrl_new_int_menu(hdl, ops, V4L2_CID_LINK_FREQ,
ARRAY_SIZE(vd56g3_link_freq_1lane) - 1, 0,
(sensor->nb_of_lane == 2) ?
vd56g3_link_freq_2lanes :
vd56g3_link_freq_1lane);
if (ctrl)
ctrl->flags |= V4L2_CTRL_FLAG_READ_ONLY;
ctrl = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_PIXEL_RATE,
sensor->pixel_clock, sensor->pixel_clock, 1,
sensor->pixel_clock);
if (ctrl)
ctrl->flags |= V4L2_CTRL_FLAG_READ_ONLY;
sensor->ae_ctrl = v4l2_ctrl_new_std_menu(hdl, ops,
V4L2_CID_EXPOSURE_AUTO,
V4L2_EXPOSURE_MANUAL, 0,
V4L2_EXPOSURE_AUTO);
sensor->ae_lock_ctrl = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_3A_LOCK, 0,
GENMASK(2, 0), 0, 0);
sensor->ae_bias_ctrl =
v4l2_ctrl_new_int_menu(hdl, ops, V4L2_CID_AUTO_EXPOSURE_BIAS,
ARRAY_SIZE(vd56g3_ev_bias_qmenu) - 1,
ARRAY_SIZE(vd56g3_ev_bias_qmenu) / 2,
vd56g3_ev_bias_qmenu);
/*
* Analog gain [1, 8] is computed with the following logic :
* 32/(32 - again_reg), with again_reg in the range [0:28]
* Digital gain [1.00, 8.00] is coded as a Fixed Point 5.8
*/
sensor->again_ctrl = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_ANALOGUE_GAIN,
0, 28, 1, 0);
sensor->dgain_ctrl = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_DIGITAL_GAIN,
0x100, 0x800, 1, 0x100);
/*
* Set the exposure, horizontal and vertical blanking ctrls
* to hardcoded values, they will be updated in vd56g3_update_controls.
* Exposure being in an auto-cluster, set a significant value here.
*/
sensor->expo_ctrl = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_EXPOSURE,
VD56G3_EXPOSURE_DEFAULT,
VD56G3_EXPOSURE_DEFAULT, 1,
VD56G3_EXPOSURE_DEFAULT);
sensor->hblank_ctrl =
v4l2_ctrl_new_std(hdl, ops, V4L2_CID_HBLANK, 1, 1, 1, 1);
if (sensor->hblank_ctrl)
sensor->hblank_ctrl->flags |= V4L2_CTRL_FLAG_READ_ONLY;
sensor->vblank_ctrl =
v4l2_ctrl_new_std(hdl, ops, V4L2_CID_VBLANK, 1, 1, 1, 1);
/* Additional control based on device tree properties */
if (sensor->ext_leds_mask)
sensor->led_ctrl =
v4l2_ctrl_new_std_menu(hdl, ops,
V4L2_CID_FLASH_LED_MODE,
V4L2_FLASH_LED_MODE_FLASH, 0,
V4L2_FLASH_LED_MODE_NONE);
if (hdl->error) {
ret = hdl->error;
goto free_ctrls;
}
v4l2_ctrl_cluster(2, &sensor->hflip_ctrl);
v4l2_ctrl_auto_cluster(4, &sensor->ae_ctrl, V4L2_EXPOSURE_MANUAL, true);
/* Optional controls coming from fwnode (e.g. rotation, orientation). */
ret = v4l2_fwnode_device_parse(sensor->dev, &fwnode_props);
if (ret)
goto free_ctrls;
ret = v4l2_ctrl_new_fwnode_properties(hdl, ops, &fwnode_props);
if (ret)
goto free_ctrls;
sensor->sd.ctrl_handler = hdl;
return 0;
free_ctrls:
v4l2_ctrl_handler_free(hdl);
return ret;
}
/* -----------------------------------------------------------------------------
* Pad ops
*/
/* Media bus code is dependent of :
* - 8bits or 10bits output
* - variant : Mono or RGB
* - H/V flips parameters in case of RGB
*/
static u32 vd56g3_get_mbus_code(struct vd56g3 *sensor, u32 code)
{
unsigned int i_bpp;
unsigned int j;
for (i_bpp = 0; i_bpp < ARRAY_SIZE(vd56g3_mbus_codes); i_bpp++) {
for (j = 0; j < ARRAY_SIZE(vd56g3_mbus_codes[i_bpp]); j++) {
if (vd56g3_mbus_codes[i_bpp][j] == code)
goto endloops;
}
}
endloops:
if (i_bpp >= ARRAY_SIZE(vd56g3_mbus_codes))
i_bpp = 0;
if (sensor->is_mono)
j = 0;
else
j = 1 + (sensor->hflip_ctrl->val ? 1 : 0) +
(sensor->vflip_ctrl->val ? 2 : 0);
return vd56g3_mbus_codes[i_bpp][j];
}
static int vd56g3_enum_mbus_code(struct v4l2_subdev *sd,
struct v4l2_subdev_state *sd_state,
struct v4l2_subdev_mbus_code_enum *code)
{
struct vd56g3 *sensor = to_vd56g3(sd);
if (code->index >= ARRAY_SIZE(vd56g3_mbus_codes))
return -EINVAL;
code->code =
vd56g3_get_mbus_code(sensor, vd56g3_mbus_codes[code->index][0]);
return 0;
}
static int vd56g3_enum_frame_size(struct v4l2_subdev *sd,
struct v4l2_subdev_state *sd_state,
struct v4l2_subdev_frame_size_enum *fse)
{
if (fse->index >= ARRAY_SIZE(vd56g3_supported_modes))
return -EINVAL;
fse->min_width = vd56g3_supported_modes[fse->index].width;
fse->max_width = fse->min_width;
fse->min_height = vd56g3_supported_modes[fse->index].height;
fse->max_height = fse->min_height;
return 0;
}
static void vd56g3_update_img_pad_format(struct vd56g3 *sensor,
const struct vd56g3_mode *mode,
u32 mbus_code,
struct v4l2_mbus_framefmt *mbus_fmt)
{
mbus_fmt->width = mode->width;
mbus_fmt->height = mode->height;
mbus_fmt->code = vd56g3_get_mbus_code(sensor, mbus_code);
mbus_fmt->colorspace = V4L2_COLORSPACE_RAW;
mbus_fmt->field = V4L2_FIELD_NONE;
mbus_fmt->ycbcr_enc = V4L2_YCBCR_ENC_DEFAULT;
mbus_fmt->quantization = V4L2_QUANTIZATION_FULL_RANGE;
mbus_fmt->xfer_func = V4L2_XFER_FUNC_NONE;
}
static int vd56g3_set_pad_fmt(struct v4l2_subdev *sd,
struct v4l2_subdev_state *sd_state,
struct v4l2_subdev_format *sd_fmt)
{
struct vd56g3 *sensor = to_vd56g3(sd);
const struct vd56g3_mode *new_mode;
struct v4l2_rect pad_crop;
unsigned int binning;
new_mode = v4l2_find_nearest_size(vd56g3_supported_modes,
ARRAY_SIZE(vd56g3_supported_modes),
width, height, sd_fmt->format.width,
sd_fmt->format.height);
vd56g3_update_img_pad_format(sensor, new_mode, sd_fmt->format.code,
&sd_fmt->format);
*v4l2_subdev_state_get_format(sd_state, sd_fmt->pad) = sd_fmt->format;
/* Compute and update crop rectangle (maximized via binning) */
binning = min(VD56G3_NATIVE_WIDTH / sd_fmt->format.width,
VD56G3_NATIVE_HEIGHT / sd_fmt->format.height);
binning = min(binning, 2U);
pad_crop.width = sd_fmt->format.width * binning;
pad_crop.height = sd_fmt->format.height * binning;
pad_crop.left = (VD56G3_NATIVE_WIDTH - pad_crop.width) / 2;
pad_crop.top = (VD56G3_NATIVE_HEIGHT - pad_crop.height) / 2;
*v4l2_subdev_state_get_crop(sd_state, sd_fmt->pad) = pad_crop;
/* Update controls in case of active state */
if (sd_fmt->which == V4L2_SUBDEV_FORMAT_ACTIVE)
return vd56g3_update_controls(sensor);
return 0;
}
static int vd56g3_get_selection(struct v4l2_subdev *sd,
struct v4l2_subdev_state *sd_state,
struct v4l2_subdev_selection *sel)
{
switch (sel->target) {
case V4L2_SEL_TGT_CROP:
sel->r = *v4l2_subdev_state_get_crop(sd_state, 0);
break;
case V4L2_SEL_TGT_NATIVE_SIZE:
case V4L2_SEL_TGT_CROP_DEFAULT:
case V4L2_SEL_TGT_CROP_BOUNDS:
sel->r.top = 0;
sel->r.left = 0;
sel->r.width = VD56G3_NATIVE_WIDTH;
sel->r.height = VD56G3_NATIVE_HEIGHT;
break;
default:
return -EINVAL;
}
return 0;
}
static int vd56g3_get_frame_desc(struct v4l2_subdev *sd, unsigned int pad,
struct v4l2_mbus_frame_desc *fd)
{
struct v4l2_subdev_state *state;
const struct v4l2_mbus_framefmt *format;
state = v4l2_subdev_lock_and_get_active_state(sd);
format = v4l2_subdev_state_get_format(state, pad);
v4l2_subdev_unlock_state(state);
fd->type = V4L2_MBUS_FRAME_DESC_TYPE_CSI2;
fd->num_entries = 1;
fd->entry[0].pixelcode = format->code;
fd->entry[0].stream = 0;
fd->entry[0].bus.csi2.vc = 0;
fd->entry[0].bus.csi2.dt = vd56g3_get_datatype(format->code);
return 0;
}
static int vd56g3_enable_streams(struct v4l2_subdev *sd,
struct v4l2_subdev_state *state, u32 pad,
u64 streams_mask)
{
struct vd56g3 *sensor = to_vd56g3(sd);
const struct v4l2_mbus_framefmt *format =
v4l2_subdev_state_get_format(state, 0);
const struct v4l2_rect *crop = v4l2_subdev_state_get_crop(state, 0);
unsigned int csi_mbps = ((sensor->nb_of_lane == 2) ?
VD56G3_LINK_FREQ_DEF_2LANES :
VD56G3_LINK_FREQ_DEF_1LANE) *
2 / MEGA;
unsigned int binning;
int ret;
ret = pm_runtime_resume_and_get(sensor->dev);
if (ret < 0)
return ret;
/* configure clocks */
cci_write(sensor->regmap, VD56G3_REG_EXT_CLOCK, sensor->xclk_freq,
&ret);
cci_write(sensor->regmap, VD56G3_REG_CLK_PLL_PREDIV, sensor->pll_prediv,
&ret);
cci_write(sensor->regmap, VD56G3_REG_CLK_SYS_PLL_MULT, sensor->pll_mult,
&ret);
/* configure output */
cci_write(sensor->regmap, VD56G3_REG_FORMAT_CTRL,
vd56g3_get_bpp(format->code), &ret);
cci_write(sensor->regmap, VD56G3_REG_OIF_CTRL, sensor->oif_ctrl, &ret);
cci_write(sensor->regmap, VD56G3_REG_OIF_CSI_BITRATE, csi_mbps, &ret);
cci_write(sensor->regmap, VD56G3_REG_OIF_IMG_CTRL,
vd56g3_get_datatype(format->code), &ret);
cci_write(sensor->regmap, VD56G3_REG_ISL_ENABLE, 0, &ret);
/* configure binning mode */
switch (crop->width / format->width) {
case 1:
default:
binning = READOUT_NORMAL;
break;
case 2:
binning = READOUT_DIGITAL_BINNING_X2;
break;
}
cci_write(sensor->regmap, VD56G3_REG_READOUT_CTRL, binning, &ret);
/* configure ROIs */
cci_write(sensor->regmap, VD56G3_REG_Y_START, crop->top, &ret);
cci_write(sensor->regmap, VD56G3_REG_Y_END,
crop->top + crop->height - 1, &ret);
cci_write(sensor->regmap, VD56G3_REG_OUT_ROI_X_START, crop->left, &ret);
cci_write(sensor->regmap, VD56G3_REG_OUT_ROI_X_END,
crop->left + crop->width - 1, &ret);
cci_write(sensor->regmap, VD56G3_REG_OUT_ROI_Y_START, 0, &ret);
cci_write(sensor->regmap, VD56G3_REG_OUT_ROI_Y_END, crop->height - 1,
&ret);
cci_write(sensor->regmap, VD56G3_REG_AE_ROI_START_H, crop->left, &ret);
cci_write(sensor->regmap, VD56G3_REG_AE_ROI_END_H,
crop->left + crop->width - 1, &ret);
cci_write(sensor->regmap, VD56G3_REG_AE_ROI_START_V, 0, &ret);
cci_write(sensor->regmap, VD56G3_REG_AE_ROI_END_V, crop->height - 1,
&ret);
if (ret)
goto rpm_put;
/* Setup default GPIO values; could be overridden by V4L2 ctrl setup */
ret = vd56g3_write_gpiox(sensor, GENMASK(VD56G3_NB_GPIOS - 1, 0));
if (ret)
goto rpm_put;
/* Apply settings from V4L2 ctrls */
ret = __v4l2_ctrl_handler_setup(&sensor->ctrl_handler);
if (ret)
goto rpm_put;
/* start streaming */
cci_write(sensor->regmap, VD56G3_REG_STBY, VD56G3_CMD_START_STREAM,
&ret);
vd56g3_poll_reg(sensor, VD56G3_REG_STBY, VD56G3_CMD_ACK, &ret);
vd56g3_wait_state(sensor, VD56G3_SYSTEM_FSM_STREAMING, &ret);
if (ret)
goto rpm_put;
/* some controls are locked during streaming */
__v4l2_ctrl_grab(sensor->hflip_ctrl, true);
__v4l2_ctrl_grab(sensor->vflip_ctrl, true);
__v4l2_ctrl_grab(sensor->patgen_ctrl, true);
return ret;
rpm_put:
dev_err(sensor->dev, "Failed to start streaming\n");
pm_runtime_put_sync(sensor->dev);
return ret;
}
static int vd56g3_disable_streams(struct v4l2_subdev *sd,
struct v4l2_subdev_state *state, u32 pad,
u64 streams_mask)
{
struct vd56g3 *sensor = to_vd56g3(sd);
int ret;
/* Retrieve Expo cluster to enable coldstart of AE */
ret = vd56g3_read_expo_cluster(sensor, true);
cci_write(sensor->regmap, VD56G3_REG_STREAMING, VD56G3_CMD_STOP_STREAM,
&ret);
vd56g3_poll_reg(sensor, VD56G3_REG_STREAMING, VD56G3_CMD_ACK, &ret);
vd56g3_wait_state(sensor, VD56G3_SYSTEM_FSM_SW_STBY, &ret);
/* locked controls must be unlocked */
__v4l2_ctrl_grab(sensor->hflip_ctrl, false);
__v4l2_ctrl_grab(sensor->vflip_ctrl, false);
__v4l2_ctrl_grab(sensor->patgen_ctrl, false);
pm_runtime_mark_last_busy(sensor->dev);
pm_runtime_put_autosuspend(sensor->dev);
return ret;
}
static int vd56g3_init_state(struct v4l2_subdev *sd,
struct v4l2_subdev_state *sd_state)
{
unsigned int def_mode = VD56G3_DEFAULT_MODE;
struct v4l2_subdev_format fmt = {
.which = V4L2_SUBDEV_FORMAT_TRY,
.pad = 0,
.format = {
.code = vd56g3_mbus_codes[0][0],
.width = vd56g3_supported_modes[def_mode].width,
.height = vd56g3_supported_modes[def_mode].height,
},
};
return vd56g3_set_pad_fmt(sd, sd_state, &fmt);
}
static const struct v4l2_subdev_video_ops vd56g3_video_ops = {
.s_stream = v4l2_subdev_s_stream_helper,
};
static const struct v4l2_subdev_pad_ops vd56g3_pad_ops = {
.enum_mbus_code = vd56g3_enum_mbus_code,
.enum_frame_size = vd56g3_enum_frame_size,
.get_fmt = v4l2_subdev_get_fmt,
.set_fmt = vd56g3_set_pad_fmt,
.get_selection = vd56g3_get_selection,
.get_frame_desc = vd56g3_get_frame_desc,
.enable_streams = vd56g3_enable_streams,
.disable_streams = vd56g3_disable_streams,
};
static const struct v4l2_subdev_ops vd56g3_subdev_ops = {
.video = &vd56g3_video_ops,
.pad = &vd56g3_pad_ops,
};
static const struct media_entity_operations vd56g3_subdev_entity_ops = {
.link_validate = v4l2_subdev_link_validate,
};
static const struct v4l2_subdev_internal_ops vd56g3_internal_ops = {
.init_state = vd56g3_init_state,
};
/* -----------------------------------------------------------------------------
* Power management
*/
static int vd56g3_power_on(struct device *dev)
{
struct v4l2_subdev *sd = dev_get_drvdata(dev);
struct vd56g3 *sensor = to_vd56g3(sd);
int ret;
/* power on */
ret = regulator_bulk_enable(ARRAY_SIZE(sensor->supplies),
sensor->supplies);
if (ret) {
dev_err(dev, "Failed to enable regulators: %d\n", ret);
return ret;
}
ret = clk_prepare_enable(sensor->xclk);
if (ret) {
dev_err(dev, "Failed to enable clock: %d\n", ret);
goto disable_reg;
}
gpiod_set_value_cansleep(sensor->reset_gpio, 0);
usleep_range(3500, 4000);
ret = vd56g3_wait_state(sensor, VD56G3_SYSTEM_FSM_READY_TO_BOOT, NULL);
if (ret) {
dev_err(dev, "Sensor reset failed: %d\n", ret);
goto disable_clock;
}
/* boot sensor */
cci_write(sensor->regmap, VD56G3_REG_BOOT, VD56G3_CMD_BOOT, &ret);
vd56g3_poll_reg(sensor, VD56G3_REG_BOOT, VD56G3_CMD_ACK, &ret);
vd56g3_wait_state(sensor, VD56G3_SYSTEM_FSM_SW_STBY, &ret);
if (ret) {
dev_err(dev, "Sensor boot failed: %d\n", ret);
goto disable_clock;
}
return 0;
disable_clock:
gpiod_set_value_cansleep(sensor->reset_gpio, 1);
clk_disable_unprepare(sensor->xclk);
disable_reg:
regulator_bulk_disable(ARRAY_SIZE(sensor->supplies), sensor->supplies);
return ret;
}
static int vd56g3_power_off(struct device *dev)
{
struct v4l2_subdev *sd = dev_get_drvdata(dev);
struct vd56g3 *sensor = to_vd56g3(sd);
gpiod_set_value_cansleep(sensor->reset_gpio, 1);
clk_disable_unprepare(sensor->xclk);
regulator_bulk_disable(ARRAY_SIZE(sensor->supplies), sensor->supplies);
return 0;
}
static const struct dev_pm_ops vd56g3_pm_ops = {
SET_RUNTIME_PM_OPS(vd56g3_power_off, vd56g3_power_on, NULL)
};
/* -----------------------------------------------------------------------------
* Probe and initialization
*/
static int vd56g3_check_csi_conf(struct vd56g3 *sensor,
struct fwnode_handle *endpoint)
{
struct v4l2_fwnode_endpoint ep = { .bus_type = V4L2_MBUS_CSI2_DPHY };
u32 phy_data_lanes[VD56G3_MAX_CSI_DATA_LANES] = { ~0, ~0 };
u8 n_lanes;
u64 frequency;
int p, l;
int ret = 0;
ret = v4l2_fwnode_endpoint_alloc_parse(endpoint, &ep);
if (ret)
return -EINVAL;
/* Check lanes number */
n_lanes = ep.bus.mipi_csi2.num_data_lanes;
if (n_lanes != 1 && n_lanes != 2) {
dev_err(sensor->dev, "Invalid data lane number: %d\n", n_lanes);
ret = -EINVAL;
goto done;
}
sensor->nb_of_lane = n_lanes;
/* Clock lane must be first */
if (ep.bus.mipi_csi2.clock_lane != 0) {
dev_err(sensor->dev, "Clock lane must be mapped to lane 0\n");
ret = -EINVAL;
goto done;
}
/*
* Prepare Output Interface conf based on lane settings
* logical to physical lane conversion (+ pad remaining slots)
*/
for (l = 0; l < n_lanes; l++)
phy_data_lanes[ep.bus.mipi_csi2.data_lanes[l] - 1] = l;
for (p = 0; p < VD56G3_MAX_CSI_DATA_LANES; p++) {
if (phy_data_lanes[p] != ~0)
continue;
phy_data_lanes[p] = l;
l++;
}
sensor->oif_ctrl = n_lanes |
(ep.bus.mipi_csi2.lane_polarities[0] << 3) |
((phy_data_lanes[0]) << 4) |
(ep.bus.mipi_csi2.lane_polarities[1] << 6) |
((phy_data_lanes[1]) << 7) |
(ep.bus.mipi_csi2.lane_polarities[2] << 9);
/* Check link frequency */
if (!ep.nr_of_link_frequencies) {
dev_err(sensor->dev, "link-frequency not found in DT\n");
ret = -EINVAL;
goto done;
}
frequency = (n_lanes == 2) ? VD56G3_LINK_FREQ_DEF_2LANES :
VD56G3_LINK_FREQ_DEF_1LANE;
if (ep.nr_of_link_frequencies != 1 ||
ep.link_frequencies[0] != frequency) {
dev_err(sensor->dev, "Link frequency not supported: %lld\n",
ep.link_frequencies[0]);
ret = -EINVAL;
goto done;
}
done:
v4l2_fwnode_endpoint_free(&ep);
return ret;
}
static int vd56g3_parse_dt_gpios_array(struct vd56g3 *sensor, char *prop_name,
u32 *array, unsigned int *nb)
{
struct device *dev = sensor->dev;
unsigned int i;
int ret;
if (!device_property_present(dev, prop_name)) {
*nb = 0;
return 0;
}
ret = device_property_count_u32(dev, prop_name);
if (ret < 0) {
dev_err(dev, "Failed to read %s count\n", prop_name);
return ret;
}
*nb = ret;
ret = device_property_read_u32_array(dev, prop_name, array, *nb);
if (ret) {
dev_err(dev, "Failed to read %s prop\n", prop_name);
return ret;
}
for (i = 0; i < *nb; i++) {
if (array[i] >= VD56G3_NB_GPIOS) {
dev_err(dev, "Invalid GPIO: %d\n", array[i]);
return -EINVAL;
}
}
return 0;
}
static int vd56g3_parse_dt_gpios(struct vd56g3 *sensor)
{
u32 led_gpios[VD56G3_NB_GPIOS];
unsigned int nb_gpios_leds;
unsigned int i;
int ret;
/* Initialize GPIOs to default */
for (i = 0; i < VD56G3_NB_GPIOS; i++)
sensor->gpios[i] = VD56G3_GPIOX_GPIO_IN;
sensor->ext_leds_mask = 0;
/* Take into account optional 'st,leds' output for GPIOs */
ret = vd56g3_parse_dt_gpios_array(sensor, "st,leds", led_gpios,
&nb_gpios_leds);
if (ret)
return ret;
for (i = 0; i < nb_gpios_leds; i++) {
sensor->gpios[led_gpios[i]] = VD56G3_GPIOX_STROBE_MODE;
set_bit(led_gpios[i], &sensor->ext_leds_mask);
}
return 0;
}
static int vd56g3_parse_dt(struct vd56g3 *sensor)
{
struct fwnode_handle *endpoint;
int ret;
endpoint = fwnode_graph_get_endpoint_by_id(dev_fwnode(sensor->dev), 0,
0, 0);
if (!endpoint) {
dev_err(sensor->dev, "Endpoint node not found\n");
return -EINVAL;
}
ret = vd56g3_check_csi_conf(sensor, endpoint);
fwnode_handle_put(endpoint);
if (ret)
return ret;
return vd56g3_parse_dt_gpios(sensor);
}
static int vd56g3_get_regulators(struct vd56g3 *sensor)
{
unsigned int i;
for (i = 0; i < ARRAY_SIZE(sensor->supplies); i++)
sensor->supplies[i].supply = vd56g3_supply_names[i];
return devm_regulator_bulk_get(sensor->dev,
ARRAY_SIZE(sensor->supplies),
sensor->supplies);
}
static int vd56g3_prepare_clock_tree(struct vd56g3 *sensor)
{
const unsigned int predivs[] = { 1, 2, 4 };
u32 pll_out;
int i;
/* External clock must be in [6Mhz-27Mhz] */
if (sensor->xclk_freq < VD56G3_XCLK_FREQ_MIN ||
sensor->xclk_freq > VD56G3_XCLK_FREQ_MAX) {
dev_err(sensor->dev,
"Only 6Mhz-27Mhz clock range supported. Provided %lu MHz\n",
sensor->xclk_freq / HZ_PER_MHZ);
return -EINVAL;
}
/* PLL input should be in [6Mhz-12Mhz[ */
for (i = 0; i < ARRAY_SIZE(predivs); i++) {
sensor->pll_prediv = predivs[i];
if (sensor->xclk_freq / sensor->pll_prediv < 12 * HZ_PER_MHZ)
break;
}
/* PLL output clock must be as close as possible to 804Mhz */
sensor->pll_mult = (VD56G3_TARGET_PLL * sensor->pll_prediv +
sensor->xclk_freq / 2) /
sensor->xclk_freq;
pll_out = sensor->xclk_freq * sensor->pll_mult / sensor->pll_prediv;
/* Target Pixel Clock for standard 10bit ADC mode : 160.8Mhz */
sensor->pixel_clock = pll_out / VD56G3_VT_CLOCK_DIV;
return 0;
}
static int vd56g3_detect(struct vd56g3 *sensor)
{
struct device *dev = sensor->dev;
unsigned int model;
u64 model_id;
u64 device_revision;
u64 optical_revision;
int ret = 0;
model = (uintptr_t)device_get_match_data(dev);
ret = cci_read(sensor->regmap, VD56G3_REG_MODEL_ID, &model_id, NULL);
if (ret)
return ret;
if (model_id != VD56G3_MODEL_ID) {
dev_err(dev, "Unsupported sensor id: %x\n", (u16)model_id);
return -ENODEV;
}
ret = cci_read(sensor->regmap, VD56G3_REG_REVISION, &device_revision,
NULL);
if (ret)
return ret;
if ((device_revision >> 8) != VD56G3_REVISION_CUT3) {
dev_err(dev, "Unsupported version: %x\n", (u16)device_revision);
return -ENODEV;
}
ret = cci_read(sensor->regmap, VD56G3_REG_OPTICAL_REVISION,
&optical_revision, NULL);
if (ret)
return ret;
sensor->is_mono =
((optical_revision & 1) == VD56G3_OPTICAL_REVISION_MONO);
if ((sensor->is_mono && model == VD56G3_MODEL_VD66GY) ||
(!sensor->is_mono && model == VD56G3_MODEL_VD56G3)) {
dev_err(dev, "Found %s sensor, while %s model is defined in DT\n",
(sensor->is_mono) ? "Mono" : "Bayer",
(model == VD56G3_MODEL_VD56G3) ? "vd56g3" : "vd66gy");
return -ENODEV;
}
return 0;
}
static int vd56g3_subdev_init(struct vd56g3 *sensor)
{
struct v4l2_subdev_state *state;
int ret;
/* Init remaining sub device ops */
sensor->sd.internal_ops = &vd56g3_internal_ops;
sensor->sd.flags |= V4L2_SUBDEV_FL_HAS_DEVNODE;
sensor->sd.entity.ops = &vd56g3_subdev_entity_ops;
/* Init source pad */
sensor->pad.flags = MEDIA_PAD_FL_SOURCE;
sensor->sd.entity.function = MEDIA_ENT_F_CAM_SENSOR;
ret = media_entity_pads_init(&sensor->sd.entity, 1, &sensor->pad);
if (ret) {
dev_err(sensor->dev, "Failed to init media entity: %d\n", ret);
return ret;
}
/* Init controls */
ret = vd56g3_init_controls(sensor);
if (ret) {
dev_err(sensor->dev, "Controls initialization failed: %d\n",
ret);
goto err_media;
}
/* Init vd56g3 struct : default resolution + raw8 */
sensor->sd.state_lock = sensor->ctrl_handler.lock;
ret = v4l2_subdev_init_finalize(&sensor->sd);
if (ret) {
dev_err(sensor->dev, "Subdev init failed: %d\n", ret);
goto err_ctrls;
}
/* Update controls according to the resolution set */
state = v4l2_subdev_lock_and_get_active_state(&sensor->sd);
ret = vd56g3_update_controls(sensor);
v4l2_subdev_unlock_state(state);
if (ret) {
dev_err(sensor->dev, "Controls update failed: %d\n", ret);
goto err_ctrls;
}
return 0;
err_ctrls:
v4l2_ctrl_handler_free(sensor->sd.ctrl_handler);
err_media:
media_entity_cleanup(&sensor->sd.entity);
return ret;
}
static void vd56g3_subdev_cleanup(struct vd56g3 *sensor)
{
v4l2_async_unregister_subdev(&sensor->sd);
v4l2_subdev_cleanup(&sensor->sd);
media_entity_cleanup(&sensor->sd.entity);
v4l2_ctrl_handler_free(sensor->sd.ctrl_handler);
}
static int vd56g3_probe(struct i2c_client *client)
{
struct device *dev = &client->dev;
struct vd56g3 *sensor;
int ret;
sensor = devm_kzalloc(dev, sizeof(*sensor), GFP_KERNEL);
if (!sensor)
return -ENOMEM;
v4l2_i2c_subdev_init(&sensor->sd, client, &vd56g3_subdev_ops);
sensor->dev = dev;
ret = vd56g3_parse_dt(sensor);
if (ret)
return dev_err_probe(dev, ret, "Failed to parse Device Tree\n");
/* Get (and check) resources : power regs, ext clock, reset gpio */
ret = vd56g3_get_regulators(sensor);
if (ret)
return dev_err_probe(dev, ret, "Failed to get regulators\n");
sensor->xclk = devm_clk_get(dev, NULL);
if (IS_ERR(sensor->xclk))
return dev_err_probe(dev, PTR_ERR(sensor->xclk),
"Failed to get xclk\n");
sensor->xclk_freq = clk_get_rate(sensor->xclk);
ret = vd56g3_prepare_clock_tree(sensor);
if (ret)
return ret;
sensor->reset_gpio = devm_gpiod_get_optional(dev, "reset",
GPIOD_OUT_HIGH);
if (IS_ERR(sensor->reset_gpio))
return dev_err_probe(dev, PTR_ERR(sensor->reset_gpio),
"Failed to get reset gpio\n");
sensor->regmap = devm_cci_regmap_init_i2c(client, 16);
if (IS_ERR(sensor->regmap))
return dev_err_probe(dev, PTR_ERR(sensor->regmap),
"Failed to init regmap\n");
/* Power ON */
ret = vd56g3_power_on(dev);
if (ret)
return dev_err_probe(dev, ret, "Sensor power on failed\n");
/* Enable PM runtime with autosuspend (sensor being ON, set active) */
pm_runtime_set_active(dev);
pm_runtime_get_noresume(dev);
pm_runtime_enable(dev);
pm_runtime_set_autosuspend_delay(dev, 1000);
pm_runtime_use_autosuspend(dev);
/* Check HW model/version */
ret = vd56g3_detect(sensor);
if (ret) {
dev_err(dev, "Sensor detect failed: %d\n", ret);
goto err_power_off;
}
/* Initialize & register subdev (v4l2_i2c subdev already initialized) */
ret = vd56g3_subdev_init(sensor);
if (ret) {
dev_err(dev, "V4l2 init failed: %d\n", ret);
goto err_power_off;
}
ret = v4l2_async_register_subdev(&sensor->sd);
if (ret) {
dev_err(dev, "Async subdev register failed: %d\n", ret);
goto err_subdev;
}
/* Sensor could now be powered off (after the autosuspend delay) */
pm_runtime_mark_last_busy(dev);
pm_runtime_put_autosuspend(dev);
dev_dbg(dev, "Successfully probe %s sensor\n",
(sensor->is_mono) ? "vd56g3" : "vd66gy");
return 0;
err_subdev:
vd56g3_subdev_cleanup(sensor);
err_power_off:
pm_runtime_disable(dev);
pm_runtime_put_noidle(dev);
pm_runtime_dont_use_autosuspend(dev);
vd56g3_power_off(dev);
return ret;
}
static void vd56g3_remove(struct i2c_client *client)
{
struct v4l2_subdev *sd = i2c_get_clientdata(client);
struct vd56g3 *sensor = to_vd56g3(sd);
vd56g3_subdev_cleanup(sensor);
pm_runtime_disable(sensor->dev);
if (!pm_runtime_status_suspended(sensor->dev))
vd56g3_power_off(sensor->dev);
pm_runtime_set_suspended(sensor->dev);
pm_runtime_dont_use_autosuspend(sensor->dev);
}
static const struct of_device_id vd56g3_dt_ids[] = {
{ .compatible = "st,vd56g3", .data = (void *)VD56G3_MODEL_VD56G3 },
{ .compatible = "st,vd66gy", .data = (void *)VD56G3_MODEL_VD66GY },
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, vd56g3_dt_ids);
static struct i2c_driver vd56g3_i2c_driver = {
.driver = {
.name = "vd56g3",
.of_match_table = vd56g3_dt_ids,
.pm = &vd56g3_pm_ops,
},
.probe = vd56g3_probe,
.remove = vd56g3_remove,
};
module_i2c_driver(vd56g3_i2c_driver);
MODULE_AUTHOR("Benjamin Mugnier <benjamin.mugnier@foss.st.com>");
MODULE_AUTHOR("Mickael Guene <mickael.guene@st.com>");
MODULE_AUTHOR("Sylvain Petinot <sylvain.petinot@foss.st.com>");
MODULE_DESCRIPTION("ST VD56G3 sensor driver");
MODULE_LICENSE("GPL");