linux/drivers/media/i2c/ov02c10.c
Sakari Ailus 9c210a24b1 media: ov02c10: Use div_u64 to divide a 64-bit number
The ov02c10 driver divides a 64-bit number but reply relies on division
operator to do that. Use div_u64() so this will compile everywhere.

Signed-off-by: Sakari Ailus <sakari.ailus@linux.intel.com>
Reviewed-by: Stanislaw Gruszka <stanislaw.gruszka@linux.intel.com>
Signed-off-by: Hans Verkuil <hverkuil@xs4all.nl>
2025-05-09 11:55:09 +02:00

1013 lines
25 KiB
C

// SPDX-License-Identifier: GPL-2.0
// Copyright (c) 2022 Intel Corporation.
#include <linux/acpi.h>
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/gpio/consumer.h>
#include <linux/i2c.h>
#include <linux/module.h>
#include <linux/pm_runtime.h>
#include <linux/regmap.h>
#include <linux/version.h>
#include <media/v4l2-cci.h>
#include <media/v4l2-ctrls.h>
#include <media/v4l2-device.h>
#include <media/v4l2-fwnode.h>
#define OV02C10_LINK_FREQ_400MHZ 400000000ULL
#define OV02C10_MCLK 19200000
#define OV02C10_RGB_DEPTH 10
#define OV02C10_REG_CHIP_ID CCI_REG16(0x300a)
#define OV02C10_CHIP_ID 0x5602
#define OV02C10_REG_STREAM_CONTROL CCI_REG8(0x0100)
#define OV02C10_REG_HTS CCI_REG16(0x380c)
/* vertical-timings from sensor */
#define OV02C10_REG_VTS CCI_REG16(0x380e)
#define OV02C10_VTS_MAX 0xffff
/* Exposure controls from sensor */
#define OV02C10_REG_EXPOSURE CCI_REG16(0x3501)
#define OV02C10_EXPOSURE_MIN 4
#define OV02C10_EXPOSURE_MAX_MARGIN 8
#define OV02C10_EXPOSURE_STEP 1
/* Analog gain controls from sensor */
#define OV02C10_REG_ANALOG_GAIN CCI_REG16(0x3508)
#define OV02C10_ANAL_GAIN_MIN 0x10
#define OV02C10_ANAL_GAIN_MAX 0xf8
#define OV02C10_ANAL_GAIN_STEP 1
#define OV02C10_ANAL_GAIN_DEFAULT 0x10
/* Digital gain controls from sensor */
#define OV02C10_REG_DIGITAL_GAIN CCI_REG24(0x350a)
#define OV02C10_DGTL_GAIN_MIN 0x0400
#define OV02C10_DGTL_GAIN_MAX 0x3fff
#define OV02C10_DGTL_GAIN_STEP 1
#define OV02C10_DGTL_GAIN_DEFAULT 0x0400
/* Rotate */
#define OV02C10_ROTATE_CONTROL CCI_REG8(0x3820)
#define OV02C10_ISP_X_WIN_CONTROL CCI_REG16(0x3810)
#define OV02C10_ISP_Y_WIN_CONTROL CCI_REG16(0x3812)
#define OV02C10_CONFIG_ROTATE 0x18
/* Test Pattern Control */
#define OV02C10_REG_TEST_PATTERN CCI_REG8(0x4503)
#define OV02C10_TEST_PATTERN_ENABLE BIT(7)
struct ov02c10_mode {
/* Frame width in pixels */
u32 width;
/* Frame height in pixels */
u32 height;
/* Horizontal timining size */
u32 hts;
/* Min vertical timining size */
u32 vts_min;
/* Sensor register settings for this resolution */
const struct reg_sequence *reg_sequence;
const int sequence_length;
/* Sensor register settings for 1 or 2 lane config */
const struct reg_sequence *lane_settings[2];
const int lane_settings_length[2];
};
static const struct reg_sequence sensor_1928x1092_30fps_setting[] = {
{0x0301, 0x08},
{0x0303, 0x06},
{0x0304, 0x01},
{0x0305, 0xe0},
{0x0313, 0x40},
{0x031c, 0x4f},
{0x3020, 0x97},
{0x3022, 0x01},
{0x3026, 0xb4},
{0x303b, 0x00},
{0x303c, 0x4f},
{0x303d, 0xe6},
{0x303e, 0x00},
{0x303f, 0x03},
{0x3021, 0x23},
{0x3501, 0x04},
{0x3502, 0x6c},
{0x3504, 0x0c},
{0x3507, 0x00},
{0x3508, 0x08},
{0x3509, 0x00},
{0x350a, 0x01},
{0x350b, 0x00},
{0x350c, 0x41},
{0x3600, 0x84},
{0x3603, 0x08},
{0x3610, 0x57},
{0x3611, 0x1b},
{0x3613, 0x78},
{0x3623, 0x00},
{0x3632, 0xa0},
{0x3642, 0xe8},
{0x364c, 0x70},
{0x365f, 0x0f},
{0x3708, 0x30},
{0x3714, 0x24},
{0x3725, 0x02},
{0x3737, 0x08},
{0x3739, 0x28},
{0x3749, 0x32},
{0x374a, 0x32},
{0x374b, 0x32},
{0x374c, 0x32},
{0x374d, 0x81},
{0x374e, 0x81},
{0x374f, 0x81},
{0x3752, 0x36},
{0x3753, 0x36},
{0x3754, 0x36},
{0x3761, 0x00},
{0x376c, 0x81},
{0x3774, 0x18},
{0x3776, 0x08},
{0x377c, 0x81},
{0x377d, 0x81},
{0x377e, 0x81},
{0x37a0, 0x44},
{0x37a6, 0x44},
{0x37aa, 0x0d},
{0x37ae, 0x00},
{0x37cb, 0x03},
{0x37cc, 0x01},
{0x37d8, 0x02},
{0x37d9, 0x10},
{0x37e1, 0x10},
{0x37e2, 0x18},
{0x37e3, 0x08},
{0x37e4, 0x08},
{0x37e5, 0x02},
{0x37e6, 0x08},
/* 1928x1092 */
{0x3800, 0x00},
{0x3801, 0x00},
{0x3802, 0x00},
{0x3803, 0x00},
{0x3804, 0x07},
{0x3805, 0x8f},
{0x3806, 0x04},
{0x3807, 0x47},
{0x3808, 0x07},
{0x3809, 0x88},
{0x380a, 0x04},
{0x380b, 0x44},
{0x3810, 0x00},
{0x3811, 0x02},
{0x3812, 0x00},
{0x3813, 0x02},
{0x3814, 0x01},
{0x3815, 0x01},
{0x3816, 0x01},
{0x3817, 0x01},
{0x3820, 0xb0},
{0x3821, 0x00},
{0x3822, 0x80},
{0x3823, 0x08},
{0x3824, 0x00},
{0x3825, 0x20},
{0x3826, 0x00},
{0x3827, 0x08},
{0x382a, 0x00},
{0x382b, 0x08},
{0x382d, 0x00},
{0x382e, 0x00},
{0x382f, 0x23},
{0x3834, 0x00},
{0x3839, 0x00},
{0x383a, 0xd1},
{0x383e, 0x03},
{0x393d, 0x29},
{0x393f, 0x6e},
{0x394b, 0x06},
{0x394c, 0x06},
{0x394d, 0x08},
{0x394f, 0x01},
{0x3950, 0x01},
{0x3951, 0x01},
{0x3952, 0x01},
{0x3953, 0x01},
{0x3954, 0x01},
{0x3955, 0x01},
{0x3956, 0x01},
{0x3957, 0x0e},
{0x3958, 0x08},
{0x3959, 0x08},
{0x395a, 0x08},
{0x395b, 0x13},
{0x395c, 0x09},
{0x395d, 0x05},
{0x395e, 0x02},
{0x395f, 0x00},
{0x395f, 0x00},
{0x3960, 0x00},
{0x3961, 0x00},
{0x3962, 0x00},
{0x3963, 0x00},
{0x3964, 0x00},
{0x3965, 0x00},
{0x3966, 0x00},
{0x3967, 0x00},
{0x3968, 0x01},
{0x3969, 0x01},
{0x396a, 0x01},
{0x396b, 0x01},
{0x396c, 0x10},
{0x396d, 0xf0},
{0x396e, 0x11},
{0x396f, 0x00},
{0x3970, 0x37},
{0x3971, 0x37},
{0x3972, 0x37},
{0x3973, 0x37},
{0x3974, 0x00},
{0x3975, 0x3c},
{0x3976, 0x3c},
{0x3977, 0x3c},
{0x3978, 0x3c},
{0x3c00, 0x0f},
{0x3c20, 0x01},
{0x3c21, 0x08},
{0x3f00, 0x8b},
{0x3f02, 0x0f},
{0x4000, 0xc3},
{0x4001, 0xe0},
{0x4002, 0x00},
{0x4003, 0x40},
{0x4008, 0x04},
{0x4009, 0x23},
{0x400a, 0x04},
{0x400b, 0x01},
{0x4077, 0x06},
{0x4078, 0x00},
{0x4079, 0x1a},
{0x407a, 0x7f},
{0x407b, 0x01},
{0x4080, 0x03},
{0x4081, 0x84},
{0x4308, 0x03},
{0x4309, 0xff},
{0x430d, 0x00},
{0x4806, 0x00},
{0x4813, 0x00},
{0x4837, 0x10},
{0x4857, 0x05},
{0x4500, 0x07},
{0x4501, 0x00},
{0x4503, 0x00},
{0x450a, 0x04},
{0x450e, 0x00},
{0x450f, 0x00},
{0x4900, 0x00},
{0x4901, 0x00},
{0x4902, 0x01},
{0x5001, 0x50},
{0x5006, 0x00},
{0x5080, 0x40},
{0x5181, 0x2b},
{0x5202, 0xa3},
{0x5206, 0x01},
{0x5207, 0x00},
{0x520a, 0x01},
{0x520b, 0x00},
{0x365d, 0x00},
{0x4815, 0x40},
{0x4816, 0x12},
{0x4f00, 0x01},
};
static const struct reg_sequence sensor_1928x1092_30fps_1lane_setting[] = {
{0x301b, 0xd2},
{0x3027, 0xe1},
{0x380c, 0x08},
{0x380d, 0xe8},
{0x380e, 0x04},
{0x380f, 0x8c},
{0x394e, 0x0b},
{0x4800, 0x24},
{0x5000, 0xf5},
/* plls */
{0x0303, 0x05},
{0x0305, 0x90},
{0x0316, 0x90},
{0x3016, 0x12},
};
static const struct reg_sequence sensor_1928x1092_30fps_2lane_setting[] = {
{0x301b, 0xf0},
{0x3027, 0xf1},
{0x380c, 0x04},
{0x380d, 0x74},
{0x380e, 0x09},
{0x380f, 0x18},
{0x394e, 0x0a},
{0x4041, 0x20},
{0x4884, 0x04},
{0x4800, 0x64},
{0x4d00, 0x03},
{0x4d01, 0xd8},
{0x4d02, 0xba},
{0x4d03, 0xa0},
{0x4d04, 0xb7},
{0x4d05, 0x34},
{0x4d0d, 0x00},
{0x5000, 0xfd},
{0x481f, 0x30},
/* plls */
{0x0303, 0x05},
{0x0305, 0x90},
{0x0316, 0x90},
{0x3016, 0x32},
};
static const char * const ov02c10_test_pattern_menu[] = {
"Disabled",
"Color Bar",
"Top-Bottom Darker Color Bar",
"Right-Left Darker Color Bar",
"Color Bar type 4",
};
static const s64 link_freq_menu_items[] = {
OV02C10_LINK_FREQ_400MHZ,
};
static const struct ov02c10_mode supported_modes[] = {
{
.width = 1928,
.height = 1092,
.hts = 2280,
.vts_min = 1164,
.reg_sequence = sensor_1928x1092_30fps_setting,
.sequence_length = ARRAY_SIZE(sensor_1928x1092_30fps_setting),
.lane_settings = {
sensor_1928x1092_30fps_1lane_setting,
sensor_1928x1092_30fps_2lane_setting
},
.lane_settings_length = {
ARRAY_SIZE(sensor_1928x1092_30fps_1lane_setting),
ARRAY_SIZE(sensor_1928x1092_30fps_2lane_setting),
},
},
};
static const char * const ov02c10_supply_names[] = {
"dovdd", /* Digital I/O power */
"avdd", /* Analog power */
"dvdd", /* Digital core power */
};
struct ov02c10 {
struct v4l2_subdev sd;
struct media_pad pad;
struct v4l2_ctrl_handler ctrl_handler;
struct regmap *regmap;
/* V4L2 Controls */
struct v4l2_ctrl *link_freq;
struct v4l2_ctrl *pixel_rate;
struct v4l2_ctrl *vblank;
struct v4l2_ctrl *hblank;
struct v4l2_ctrl *exposure;
struct clk *img_clk;
struct gpio_desc *reset;
struct regulator_bulk_data supplies[ARRAY_SIZE(ov02c10_supply_names)];
/* MIPI lane info */
u32 link_freq_index;
u8 mipi_lanes;
};
static inline struct ov02c10 *to_ov02c10(struct v4l2_subdev *subdev)
{
return container_of(subdev, struct ov02c10, sd);
}
static int ov02c10_test_pattern(struct ov02c10 *ov02c10, int pattern)
{
int ret = 0;
if (!pattern)
return cci_update_bits(ov02c10->regmap, OV02C10_REG_TEST_PATTERN,
BIT(7), 0, NULL);
cci_update_bits(ov02c10->regmap, OV02C10_REG_TEST_PATTERN,
0x03, pattern - 1, &ret);
cci_update_bits(ov02c10->regmap, OV02C10_REG_TEST_PATTERN,
BIT(7), OV02C10_TEST_PATTERN_ENABLE, &ret);
return ret;
}
static int ov02c10_set_ctrl(struct v4l2_ctrl *ctrl)
{
struct ov02c10 *ov02c10 = container_of(ctrl->handler,
struct ov02c10, ctrl_handler);
struct i2c_client *client = v4l2_get_subdevdata(&ov02c10->sd);
const u32 height = supported_modes[0].height;
s64 exposure_max;
int ret = 0;
/* Propagate change of current control to all related controls */
if (ctrl->id == V4L2_CID_VBLANK) {
/* Update max exposure while meeting expected vblanking */
exposure_max = height + ctrl->val - OV02C10_EXPOSURE_MAX_MARGIN;
__v4l2_ctrl_modify_range(ov02c10->exposure,
ov02c10->exposure->minimum,
exposure_max, ov02c10->exposure->step,
exposure_max);
}
/* V4L2 controls values will be applied only when power is already up */
if (!pm_runtime_get_if_in_use(&client->dev))
return 0;
switch (ctrl->id) {
case V4L2_CID_ANALOGUE_GAIN:
cci_write(ov02c10->regmap, OV02C10_REG_ANALOG_GAIN,
ctrl->val << 4, &ret);
break;
case V4L2_CID_DIGITAL_GAIN:
cci_write(ov02c10->regmap, OV02C10_REG_DIGITAL_GAIN,
ctrl->val << 6, &ret);
break;
case V4L2_CID_EXPOSURE:
cci_write(ov02c10->regmap, OV02C10_REG_EXPOSURE,
ctrl->val, &ret);
break;
case V4L2_CID_VBLANK:
cci_write(ov02c10->regmap, OV02C10_REG_VTS, height + ctrl->val,
&ret);
break;
case V4L2_CID_TEST_PATTERN:
ret = ov02c10_test_pattern(ov02c10, ctrl->val);
break;
default:
ret = -EINVAL;
break;
}
pm_runtime_put(&client->dev);
return ret;
}
static const struct v4l2_ctrl_ops ov02c10_ctrl_ops = {
.s_ctrl = ov02c10_set_ctrl,
};
static int ov02c10_init_controls(struct ov02c10 *ov02c10)
{
struct i2c_client *client = v4l2_get_subdevdata(&ov02c10->sd);
struct v4l2_ctrl_handler *ctrl_hdlr = &ov02c10->ctrl_handler;
const struct ov02c10_mode *mode = &supported_modes[0];
u32 vblank_min, vblank_max, vblank_default, vts_def;
struct v4l2_fwnode_device_properties props;
s64 exposure_max, h_blank, pixel_rate;
int ret;
v4l2_ctrl_handler_init(ctrl_hdlr, 10);
ov02c10->link_freq = v4l2_ctrl_new_int_menu(ctrl_hdlr,
&ov02c10_ctrl_ops,
V4L2_CID_LINK_FREQ,
ov02c10->link_freq_index, 0,
link_freq_menu_items);
if (ov02c10->link_freq)
ov02c10->link_freq->flags |= V4L2_CTRL_FLAG_READ_ONLY;
/* MIPI lanes are DDR -> use link-freq * 2 */
pixel_rate = div_u64(link_freq_menu_items[ov02c10->link_freq_index] *
2 * ov02c10->mipi_lanes, OV02C10_RGB_DEPTH);
ov02c10->pixel_rate = v4l2_ctrl_new_std(ctrl_hdlr, &ov02c10_ctrl_ops,
V4L2_CID_PIXEL_RATE, 0,
pixel_rate, 1, pixel_rate);
/*
* For default multiple min by number of lanes to keep the default
* FPS the same indepenedent of the lane count.
*/
vts_def = mode->vts_min * ov02c10->mipi_lanes;
vblank_min = mode->vts_min - mode->height;
vblank_max = OV02C10_VTS_MAX - mode->height;
vblank_default = vts_def - mode->height;
ov02c10->vblank = v4l2_ctrl_new_std(ctrl_hdlr, &ov02c10_ctrl_ops,
V4L2_CID_VBLANK, vblank_min,
vblank_max, 1, vblank_default);
h_blank = mode->hts - mode->width;
ov02c10->hblank = v4l2_ctrl_new_std(ctrl_hdlr, &ov02c10_ctrl_ops,
V4L2_CID_HBLANK, h_blank, h_blank,
1, h_blank);
if (ov02c10->hblank)
ov02c10->hblank->flags |= V4L2_CTRL_FLAG_READ_ONLY;
v4l2_ctrl_new_std(ctrl_hdlr, &ov02c10_ctrl_ops, V4L2_CID_ANALOGUE_GAIN,
OV02C10_ANAL_GAIN_MIN, OV02C10_ANAL_GAIN_MAX,
OV02C10_ANAL_GAIN_STEP, OV02C10_ANAL_GAIN_DEFAULT);
v4l2_ctrl_new_std(ctrl_hdlr, &ov02c10_ctrl_ops, V4L2_CID_DIGITAL_GAIN,
OV02C10_DGTL_GAIN_MIN, OV02C10_DGTL_GAIN_MAX,
OV02C10_DGTL_GAIN_STEP, OV02C10_DGTL_GAIN_DEFAULT);
exposure_max = vts_def - OV02C10_EXPOSURE_MAX_MARGIN;
ov02c10->exposure = v4l2_ctrl_new_std(ctrl_hdlr, &ov02c10_ctrl_ops,
V4L2_CID_EXPOSURE,
OV02C10_EXPOSURE_MIN,
exposure_max,
OV02C10_EXPOSURE_STEP,
exposure_max);
v4l2_ctrl_new_std_menu_items(ctrl_hdlr, &ov02c10_ctrl_ops,
V4L2_CID_TEST_PATTERN,
ARRAY_SIZE(ov02c10_test_pattern_menu) - 1,
0, 0, ov02c10_test_pattern_menu);
ret = v4l2_fwnode_device_parse(&client->dev, &props);
if (ret)
return ret;
v4l2_ctrl_new_fwnode_properties(ctrl_hdlr, &ov02c10_ctrl_ops, &props);
if (ctrl_hdlr->error)
return ctrl_hdlr->error;
ov02c10->sd.ctrl_handler = ctrl_hdlr;
return 0;
}
static void ov02c10_update_pad_format(const struct ov02c10_mode *mode,
struct v4l2_mbus_framefmt *fmt)
{
fmt->width = mode->width;
fmt->height = mode->height;
fmt->code = MEDIA_BUS_FMT_SGRBG10_1X10;
fmt->field = V4L2_FIELD_NONE;
}
static int ov02c10_enable_streams(struct v4l2_subdev *sd,
struct v4l2_subdev_state *state,
u32 pad, u64 streams_mask)
{
const struct ov02c10_mode *mode = &supported_modes[0];
struct i2c_client *client = v4l2_get_subdevdata(sd);
struct ov02c10 *ov02c10 = to_ov02c10(sd);
const struct reg_sequence *reg_sequence;
int ret, sequence_length;
ret = pm_runtime_resume_and_get(&client->dev);
if (ret)
return ret;
reg_sequence = mode->reg_sequence;
sequence_length = mode->sequence_length;
ret = regmap_multi_reg_write(ov02c10->regmap,
reg_sequence, sequence_length);
if (ret) {
dev_err(&client->dev, "failed to set mode\n");
goto out;
}
reg_sequence = mode->lane_settings[ov02c10->mipi_lanes - 1];
sequence_length = mode->lane_settings_length[ov02c10->mipi_lanes - 1];
ret = regmap_multi_reg_write(ov02c10->regmap,
reg_sequence, sequence_length);
if (ret) {
dev_err(&client->dev, "failed to write lane settings\n");
goto out;
}
ret = __v4l2_ctrl_handler_setup(ov02c10->sd.ctrl_handler);
if (ret)
goto out;
ret = cci_write(ov02c10->regmap, OV02C10_REG_STREAM_CONTROL, 1, NULL);
out:
if (ret)
pm_runtime_put(&client->dev);
return ret;
}
static int ov02c10_disable_streams(struct v4l2_subdev *sd,
struct v4l2_subdev_state *state,
u32 pad, u64 streams_mask)
{
struct i2c_client *client = v4l2_get_subdevdata(sd);
struct ov02c10 *ov02c10 = to_ov02c10(sd);
cci_write(ov02c10->regmap, OV02C10_REG_STREAM_CONTROL, 0, NULL);
pm_runtime_put(&client->dev);
return 0;
}
/* This function tries to get power control resources */
static int ov02c10_get_pm_resources(struct device *dev)
{
struct v4l2_subdev *sd = dev_get_drvdata(dev);
struct ov02c10 *ov02c10 = to_ov02c10(sd);
int i;
ov02c10->reset = devm_gpiod_get_optional(dev, "reset", GPIOD_OUT_HIGH);
if (IS_ERR(ov02c10->reset))
return dev_err_probe(dev, PTR_ERR(ov02c10->reset),
"failed to get reset gpio\n");
for (i = 0; i < ARRAY_SIZE(ov02c10_supply_names); i++)
ov02c10->supplies[i].supply = ov02c10_supply_names[i];
return devm_regulator_bulk_get(dev, ARRAY_SIZE(ov02c10_supply_names),
ov02c10->supplies);
}
static int ov02c10_power_off(struct device *dev)
{
struct v4l2_subdev *sd = dev_get_drvdata(dev);
struct ov02c10 *ov02c10 = to_ov02c10(sd);
gpiod_set_value_cansleep(ov02c10->reset, 1);
regulator_bulk_disable(ARRAY_SIZE(ov02c10_supply_names),
ov02c10->supplies);
clk_disable_unprepare(ov02c10->img_clk);
return 0;
}
static int ov02c10_power_on(struct device *dev)
{
struct v4l2_subdev *sd = dev_get_drvdata(dev);
struct ov02c10 *ov02c10 = to_ov02c10(sd);
int ret;
ret = clk_prepare_enable(ov02c10->img_clk);
if (ret < 0) {
dev_err(dev, "failed to enable imaging clock: %d", ret);
return ret;
}
ret = regulator_bulk_enable(ARRAY_SIZE(ov02c10_supply_names),
ov02c10->supplies);
if (ret < 0) {
dev_err(dev, "failed to enable regulators: %d", ret);
clk_disable_unprepare(ov02c10->img_clk);
return ret;
}
if (ov02c10->reset) {
/* Assert reset for at least 2ms on back to back off-on */
usleep_range(2000, 2200);
gpiod_set_value_cansleep(ov02c10->reset, 0);
usleep_range(5000, 5100);
}
return 0;
}
static int ov02c10_set_format(struct v4l2_subdev *sd,
struct v4l2_subdev_state *sd_state,
struct v4l2_subdev_format *fmt)
{
const struct ov02c10_mode *mode = &supported_modes[0];
struct ov02c10 *ov02c10 = to_ov02c10(sd);
s32 vblank_def, h_blank;
ov02c10_update_pad_format(mode, &fmt->format);
*v4l2_subdev_state_get_format(sd_state, fmt->pad) = fmt->format;
if (fmt->which == V4L2_SUBDEV_FORMAT_TRY)
return 0;
/* Update limits and set FPS to default */
vblank_def = mode->vts_min * ov02c10->mipi_lanes - mode->height;
__v4l2_ctrl_modify_range(ov02c10->vblank, mode->vts_min - mode->height,
OV02C10_VTS_MAX - mode->height, 1, vblank_def);
__v4l2_ctrl_s_ctrl(ov02c10->vblank, vblank_def);
h_blank = mode->hts - mode->width;
__v4l2_ctrl_modify_range(ov02c10->hblank, h_blank, h_blank, 1, h_blank);
return 0;
}
static int ov02c10_enum_mbus_code(struct v4l2_subdev *sd,
struct v4l2_subdev_state *sd_state,
struct v4l2_subdev_mbus_code_enum *code)
{
if (code->index > 0)
return -EINVAL;
code->code = MEDIA_BUS_FMT_SGRBG10_1X10;
return 0;
}
static int ov02c10_enum_frame_size(struct v4l2_subdev *sd,
struct v4l2_subdev_state *sd_state,
struct v4l2_subdev_frame_size_enum *fse)
{
if (fse->index >= ARRAY_SIZE(supported_modes))
return -EINVAL;
if (fse->code != MEDIA_BUS_FMT_SGRBG10_1X10)
return -EINVAL;
fse->min_width = supported_modes[fse->index].width;
fse->max_width = fse->min_width;
fse->min_height = supported_modes[fse->index].height;
fse->max_height = fse->min_height;
return 0;
}
static int ov02c10_init_state(struct v4l2_subdev *sd,
struct v4l2_subdev_state *sd_state)
{
ov02c10_update_pad_format(&supported_modes[0],
v4l2_subdev_state_get_format(sd_state, 0));
return 0;
}
static const struct v4l2_subdev_video_ops ov02c10_video_ops = {
.s_stream = v4l2_subdev_s_stream_helper,
};
static const struct v4l2_subdev_pad_ops ov02c10_pad_ops = {
.set_fmt = ov02c10_set_format,
.get_fmt = v4l2_subdev_get_fmt,
.enum_mbus_code = ov02c10_enum_mbus_code,
.enum_frame_size = ov02c10_enum_frame_size,
.enable_streams = ov02c10_enable_streams,
.disable_streams = ov02c10_disable_streams,
};
static const struct v4l2_subdev_ops ov02c10_subdev_ops = {
.video = &ov02c10_video_ops,
.pad = &ov02c10_pad_ops,
};
static const struct media_entity_operations ov02c10_subdev_entity_ops = {
.link_validate = v4l2_subdev_link_validate,
};
static const struct v4l2_subdev_internal_ops ov02c10_internal_ops = {
.init_state = ov02c10_init_state,
};
static int ov02c10_identify_module(struct ov02c10 *ov02c10)
{
struct i2c_client *client = v4l2_get_subdevdata(&ov02c10->sd);
u64 chip_id;
int ret;
ret = cci_read(ov02c10->regmap, OV02C10_REG_CHIP_ID, &chip_id, NULL);
if (ret)
return ret;
if (chip_id != OV02C10_CHIP_ID) {
dev_err(&client->dev, "chip id mismatch: %x!=%llx",
OV02C10_CHIP_ID, chip_id);
return -ENXIO;
}
return 0;
}
static int ov02c10_check_hwcfg(struct device *dev, struct ov02c10 *ov02c10)
{
struct v4l2_fwnode_endpoint bus_cfg = {
.bus_type = V4L2_MBUS_CSI2_DPHY
};
struct fwnode_handle *ep, *fwnode = dev_fwnode(dev);
unsigned long link_freq_bitmap;
u32 mclk;
int ret;
/*
* Sometimes the fwnode graph is initialized by the bridge driver,
* wait for this.
*/
ep = fwnode_graph_get_endpoint_by_id(fwnode, 0, 0, 0);
if (!ep)
return dev_err_probe(dev, -EPROBE_DEFER,
"waiting for fwnode graph endpoint\n");
ov02c10->img_clk = devm_clk_get_optional(dev, NULL);
if (IS_ERR(ov02c10->img_clk)) {
fwnode_handle_put(ep);
return dev_err_probe(dev, PTR_ERR(ov02c10->img_clk),
"failed to get imaging clock\n");
}
if (ov02c10->img_clk) {
mclk = clk_get_rate(ov02c10->img_clk);
} else {
ret = fwnode_property_read_u32(fwnode, "clock-frequency", &mclk);
if (ret) {
fwnode_handle_put(ep);
return dev_err_probe(dev, ret,
"reading clock-frequency property\n");
}
}
if (mclk != OV02C10_MCLK) {
fwnode_handle_put(ep);
return dev_err_probe(dev, -EINVAL,
"external clock %u is not supported\n",
mclk);
}
ret = v4l2_fwnode_endpoint_alloc_parse(ep, &bus_cfg);
fwnode_handle_put(ep);
if (ret)
return dev_err_probe(dev, ret, "parsing endpoint failed\n");
ret = v4l2_link_freq_to_bitmap(dev, bus_cfg.link_frequencies,
bus_cfg.nr_of_link_frequencies,
link_freq_menu_items,
ARRAY_SIZE(link_freq_menu_items),
&link_freq_bitmap);
if (ret)
goto check_hwcfg_error;
/* v4l2_link_freq_to_bitmap() guarantees at least 1 bit is set */
ov02c10->link_freq_index = ffs(link_freq_bitmap) - 1;
if (bus_cfg.bus.mipi_csi2.num_data_lanes != 1 &&
bus_cfg.bus.mipi_csi2.num_data_lanes != 2) {
ret = dev_err_probe(dev, -EINVAL,
"number of CSI2 data lanes %u is not supported\n",
bus_cfg.bus.mipi_csi2.num_data_lanes);
goto check_hwcfg_error;
}
ov02c10->mipi_lanes = bus_cfg.bus.mipi_csi2.num_data_lanes;
check_hwcfg_error:
v4l2_fwnode_endpoint_free(&bus_cfg);
return ret;
}
static void ov02c10_remove(struct i2c_client *client)
{
struct v4l2_subdev *sd = i2c_get_clientdata(client);
v4l2_async_unregister_subdev(sd);
v4l2_subdev_cleanup(sd);
media_entity_cleanup(&sd->entity);
v4l2_ctrl_handler_free(sd->ctrl_handler);
pm_runtime_disable(&client->dev);
if (!pm_runtime_status_suspended(&client->dev)) {
ov02c10_power_off(&client->dev);
pm_runtime_set_suspended(&client->dev);
}
}
static int ov02c10_probe(struct i2c_client *client)
{
struct ov02c10 *ov02c10;
int ret;
ov02c10 = devm_kzalloc(&client->dev, sizeof(*ov02c10), GFP_KERNEL);
if (!ov02c10)
return -ENOMEM;
v4l2_i2c_subdev_init(&ov02c10->sd, client, &ov02c10_subdev_ops);
/* Check HW config */
ret = ov02c10_check_hwcfg(&client->dev, ov02c10);
if (ret)
return ret;
ret = ov02c10_get_pm_resources(&client->dev);
if (ret)
return ret;
ov02c10->regmap = devm_cci_regmap_init_i2c(client, 16);
if (IS_ERR(ov02c10->regmap))
return PTR_ERR(ov02c10->regmap);
ret = ov02c10_power_on(&client->dev);
if (ret) {
dev_err_probe(&client->dev, ret, "failed to power on\n");
return ret;
}
ret = ov02c10_identify_module(ov02c10);
if (ret) {
dev_err(&client->dev, "failed to find sensor: %d", ret);
goto probe_error_power_off;
}
ret = ov02c10_init_controls(ov02c10);
if (ret) {
dev_err(&client->dev, "failed to init controls: %d", ret);
goto probe_error_v4l2_ctrl_handler_free;
}
ov02c10->sd.internal_ops = &ov02c10_internal_ops;
ov02c10->sd.flags |= V4L2_SUBDEV_FL_HAS_DEVNODE;
ov02c10->sd.entity.ops = &ov02c10_subdev_entity_ops;
ov02c10->sd.entity.function = MEDIA_ENT_F_CAM_SENSOR;
ov02c10->pad.flags = MEDIA_PAD_FL_SOURCE;
ret = media_entity_pads_init(&ov02c10->sd.entity, 1, &ov02c10->pad);
if (ret) {
dev_err(&client->dev, "failed to init entity pads: %d", ret);
goto probe_error_v4l2_ctrl_handler_free;
}
ov02c10->sd.state_lock = ov02c10->ctrl_handler.lock;
ret = v4l2_subdev_init_finalize(&ov02c10->sd);
if (ret < 0) {
dev_err(&client->dev, "failed to init subdev: %d", ret);
goto probe_error_media_entity_cleanup;
}
pm_runtime_set_active(&client->dev);
pm_runtime_enable(&client->dev);
ret = v4l2_async_register_subdev_sensor(&ov02c10->sd);
if (ret < 0) {
dev_err(&client->dev, "failed to register V4L2 subdev: %d",
ret);
goto probe_error_v4l2_subdev_cleanup;
}
pm_runtime_idle(&client->dev);
return 0;
probe_error_v4l2_subdev_cleanup:
pm_runtime_disable(&client->dev);
pm_runtime_set_suspended(&client->dev);
v4l2_subdev_cleanup(&ov02c10->sd);
probe_error_media_entity_cleanup:
media_entity_cleanup(&ov02c10->sd.entity);
probe_error_v4l2_ctrl_handler_free:
v4l2_ctrl_handler_free(ov02c10->sd.ctrl_handler);
probe_error_power_off:
ov02c10_power_off(&client->dev);
return ret;
}
static DEFINE_RUNTIME_DEV_PM_OPS(ov02c10_pm_ops, ov02c10_power_off,
ov02c10_power_on, NULL);
#ifdef CONFIG_ACPI
static const struct acpi_device_id ov02c10_acpi_ids[] = {
{ "OVTI02C1" },
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(acpi, ov02c10_acpi_ids);
#endif
static const struct of_device_id ov02c10_of_match[] = {
{ .compatible = "ovti,ov02c10" },
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, ov02c10_of_match);
static struct i2c_driver ov02c10_i2c_driver = {
.driver = {
.name = "ov02c10",
.pm = pm_sleep_ptr(&ov02c10_pm_ops),
.acpi_match_table = ACPI_PTR(ov02c10_acpi_ids),
.of_match_table = ov02c10_of_match,
},
.probe = ov02c10_probe,
.remove = ov02c10_remove,
};
module_i2c_driver(ov02c10_i2c_driver);
MODULE_AUTHOR("Hao Yao <hao.yao@intel.com>");
MODULE_AUTHOR("Heimir Thor Sverrisson <heimir.sverrisson@gmail.com>");
MODULE_AUTHOR("Hans de Goede <hansg@kernel.org>");
MODULE_DESCRIPTION("OmniVision OV02C10 sensor driver");
MODULE_LICENSE("GPL");