linux/drivers/md/dm-vdo/indexer/volume.c
Matthew Sakai 3da732687d dm vdo indexer: don't read request structure after enqueuing
The function get_volume_page_protected may place a request on
a queue for another thread to process asynchronously. When this
happens, the volume should not read the request from the original
thread. This can not currently cause problems, due to the way
request processing is handled, but it is not safe in general.

Reviewed-by: Ken Raeburn <raeburn@redhat.com>
Signed-off-by: Matthew Sakai <msakai@redhat.com>
Signed-off-by: Mikulas Patocka <mpatocka@redhat.com>
2025-05-15 15:54:47 +02:00

1695 lines
54 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright 2023 Red Hat
*/
#include "volume.h"
#include <linux/atomic.h>
#include <linux/dm-bufio.h>
#include <linux/err.h>
#include "errors.h"
#include "logger.h"
#include "memory-alloc.h"
#include "permassert.h"
#include "string-utils.h"
#include "thread-utils.h"
#include "chapter-index.h"
#include "config.h"
#include "geometry.h"
#include "hash-utils.h"
#include "index.h"
#include "sparse-cache.h"
/*
* The first block of the volume layout is reserved for the volume header, which is no longer used.
* The remainder of the volume is divided into chapters consisting of several pages of records, and
* several pages of static index to use to find those records. The index pages are recorded first,
* followed by the record pages. The chapters are written in order as they are filled, so the
* volume storage acts as a circular log of the most recent chapters, with each new chapter
* overwriting the oldest saved one.
*
* When a new chapter is filled and closed, the records from that chapter are sorted and
* interleaved in approximate temporal order, and assigned to record pages. Then a static delta
* index is generated to store which record page contains each record. The in-memory index page map
* is also updated to indicate which delta lists fall on each chapter index page. This means that
* when a record is read, the volume only has to load a single index page and a single record page,
* rather than search the entire chapter. These index and record pages are written to storage, and
* the index pages are transferred to the page cache under the theory that the most recently
* written chapter is likely to be accessed again soon.
*
* When reading a record, the volume index will indicate which chapter should contain it. The
* volume uses the index page map to determine which chapter index page needs to be loaded, and
* then reads the relevant record page number from the chapter index. Both index and record pages
* are stored in a page cache when read for the common case that subsequent records need the same
* pages. The page cache evicts the least recently accessed entries when caching new pages. In
* addition, the volume uses dm-bufio to manage access to the storage, which may allow for
* additional caching depending on available system resources.
*
* Record requests are handled from cached pages when possible. If a page needs to be read, it is
* placed on a queue along with the request that wants to read it. Any requests for the same page
* that arrive while the read is pending are added to the queue entry. A separate reader thread
* handles the queued reads, adding the page to the cache and updating any requests queued with it
* so they can continue processing. This allows the index zone threads to continue processing new
* requests rather than wait for the storage reads.
*
* When an index rebuild is necessary, the volume reads each stored chapter to determine which
* range of chapters contain valid records, so that those records can be used to reconstruct the
* in-memory volume index.
*/
/* The maximum allowable number of contiguous bad chapters */
#define MAX_BAD_CHAPTERS 100
#define VOLUME_CACHE_MAX_ENTRIES (U16_MAX >> 1)
#define VOLUME_CACHE_QUEUED_FLAG (1 << 15)
#define VOLUME_CACHE_MAX_QUEUED_READS 4096
static const u64 BAD_CHAPTER = U64_MAX;
/*
* The invalidate counter is two 32 bits fields stored together atomically. The low order 32 bits
* are the physical page number of the cached page being read. The high order 32 bits are a
* sequence number. This value is written when the zone that owns it begins or completes a cache
* search. Any other thread will only read the counter in wait_for_pending_searches() while waiting
* to update the cache contents.
*/
union invalidate_counter {
u64 value;
struct {
u32 page;
u32 counter;
};
};
static inline u32 map_to_page_number(struct index_geometry *geometry, u32 physical_page)
{
return (physical_page - HEADER_PAGES_PER_VOLUME) % geometry->pages_per_chapter;
}
static inline u32 map_to_chapter_number(struct index_geometry *geometry, u32 physical_page)
{
return (physical_page - HEADER_PAGES_PER_VOLUME) / geometry->pages_per_chapter;
}
static inline bool is_record_page(struct index_geometry *geometry, u32 physical_page)
{
return map_to_page_number(geometry, physical_page) >= geometry->index_pages_per_chapter;
}
static u32 map_to_physical_page(const struct index_geometry *geometry, u32 chapter, u32 page)
{
/* Page zero is the header page, so the first chapter index page is page one. */
return HEADER_PAGES_PER_VOLUME + (geometry->pages_per_chapter * chapter) + page;
}
static inline union invalidate_counter get_invalidate_counter(struct page_cache *cache,
unsigned int zone_number)
{
return (union invalidate_counter) {
.value = READ_ONCE(cache->search_pending_counters[zone_number].atomic_value),
};
}
static inline void set_invalidate_counter(struct page_cache *cache,
unsigned int zone_number,
union invalidate_counter invalidate_counter)
{
WRITE_ONCE(cache->search_pending_counters[zone_number].atomic_value,
invalidate_counter.value);
}
static inline bool search_pending(union invalidate_counter invalidate_counter)
{
return (invalidate_counter.counter & 1) != 0;
}
/* Lock the cache for a zone in order to search for a page. */
static void begin_pending_search(struct page_cache *cache, u32 physical_page,
unsigned int zone_number)
{
union invalidate_counter invalidate_counter =
get_invalidate_counter(cache, zone_number);
invalidate_counter.page = physical_page;
invalidate_counter.counter++;
set_invalidate_counter(cache, zone_number, invalidate_counter);
VDO_ASSERT_LOG_ONLY(search_pending(invalidate_counter),
"Search is pending for zone %u", zone_number);
/*
* This memory barrier ensures that the write to the invalidate counter is seen by other
* threads before this thread accesses the cached page. The corresponding read memory
* barrier is in wait_for_pending_searches().
*/
smp_mb();
}
/* Unlock the cache for a zone by clearing its invalidate counter. */
static void end_pending_search(struct page_cache *cache, unsigned int zone_number)
{
union invalidate_counter invalidate_counter;
/*
* This memory barrier ensures that this thread completes reads of the
* cached page before other threads see the write to the invalidate
* counter.
*/
smp_mb();
invalidate_counter = get_invalidate_counter(cache, zone_number);
VDO_ASSERT_LOG_ONLY(search_pending(invalidate_counter),
"Search is pending for zone %u", zone_number);
invalidate_counter.counter++;
set_invalidate_counter(cache, zone_number, invalidate_counter);
}
static void wait_for_pending_searches(struct page_cache *cache, u32 physical_page)
{
union invalidate_counter initial_counters[MAX_ZONES];
unsigned int i;
/*
* We hold the read_threads_mutex. We are waiting for threads that do not hold the
* read_threads_mutex. Those threads have "locked" their targeted page by setting the
* search_pending_counter. The corresponding write memory barrier is in
* begin_pending_search().
*/
smp_mb();
for (i = 0; i < cache->zone_count; i++)
initial_counters[i] = get_invalidate_counter(cache, i);
for (i = 0; i < cache->zone_count; i++) {
if (search_pending(initial_counters[i]) &&
(initial_counters[i].page == physical_page)) {
/*
* There is an active search using the physical page. We need to wait for
* the search to finish.
*
* FIXME: Investigate using wait_event() to wait for the search to finish.
*/
while (initial_counters[i].value ==
get_invalidate_counter(cache, i).value)
cond_resched();
}
}
}
static void release_page_buffer(struct cached_page *page)
{
if (page->buffer != NULL)
dm_bufio_release(vdo_forget(page->buffer));
}
static void clear_cache_page(struct page_cache *cache, struct cached_page *page)
{
/* Do not clear read_pending because the read queue relies on it. */
release_page_buffer(page);
page->physical_page = cache->indexable_pages;
WRITE_ONCE(page->last_used, 0);
}
static void make_page_most_recent(struct page_cache *cache, struct cached_page *page)
{
/*
* ASSERTION: We are either a zone thread holding a search_pending_counter, or we are any
* thread holding the read_threads_mutex.
*/
if (atomic64_read(&cache->clock) != READ_ONCE(page->last_used))
WRITE_ONCE(page->last_used, atomic64_inc_return(&cache->clock));
}
/* Select a page to remove from the cache to make space for a new entry. */
static struct cached_page *select_victim_in_cache(struct page_cache *cache)
{
struct cached_page *page;
int oldest_index = 0;
s64 oldest_time = S64_MAX;
s64 last_used;
u16 i;
/* Find the oldest unclaimed page. We hold the read_threads_mutex. */
for (i = 0; i < cache->cache_slots; i++) {
/* A page with a pending read must not be replaced. */
if (cache->cache[i].read_pending)
continue;
last_used = READ_ONCE(cache->cache[i].last_used);
if (last_used <= oldest_time) {
oldest_time = last_used;
oldest_index = i;
}
}
page = &cache->cache[oldest_index];
if (page->physical_page != cache->indexable_pages) {
WRITE_ONCE(cache->index[page->physical_page], cache->cache_slots);
wait_for_pending_searches(cache, page->physical_page);
}
page->read_pending = true;
clear_cache_page(cache, page);
return page;
}
/* Make a newly filled cache entry available to other threads. */
static int put_page_in_cache(struct page_cache *cache, u32 physical_page,
struct cached_page *page)
{
int result;
/* We hold the read_threads_mutex. */
result = VDO_ASSERT((page->read_pending), "page to install has a pending read");
if (result != VDO_SUCCESS)
return result;
page->physical_page = physical_page;
make_page_most_recent(cache, page);
page->read_pending = false;
/*
* We hold the read_threads_mutex, but we must have a write memory barrier before making
* the cached_page available to the readers that do not hold the mutex. The corresponding
* read memory barrier is in get_page_and_index().
*/
smp_wmb();
/* This assignment also clears the queued flag. */
WRITE_ONCE(cache->index[physical_page], page - cache->cache);
return UDS_SUCCESS;
}
static void cancel_page_in_cache(struct page_cache *cache, u32 physical_page,
struct cached_page *page)
{
int result;
/* We hold the read_threads_mutex. */
result = VDO_ASSERT((page->read_pending), "page to install has a pending read");
if (result != VDO_SUCCESS)
return;
clear_cache_page(cache, page);
page->read_pending = false;
/* Clear the mapping and the queued flag for the new page. */
WRITE_ONCE(cache->index[physical_page], cache->cache_slots);
}
static inline u16 next_queue_position(u16 position)
{
return (position + 1) % VOLUME_CACHE_MAX_QUEUED_READS;
}
static inline void advance_queue_position(u16 *position)
{
*position = next_queue_position(*position);
}
static inline bool read_queue_is_full(struct page_cache *cache)
{
return cache->read_queue_first == next_queue_position(cache->read_queue_last);
}
static bool enqueue_read(struct page_cache *cache, struct uds_request *request,
u32 physical_page)
{
struct queued_read *queue_entry;
u16 last = cache->read_queue_last;
u16 read_queue_index;
/* We hold the read_threads_mutex. */
if ((cache->index[physical_page] & VOLUME_CACHE_QUEUED_FLAG) == 0) {
/* This page has no existing entry in the queue. */
if (read_queue_is_full(cache))
return false;
/* Fill in the read queue entry. */
cache->read_queue[last].physical_page = physical_page;
cache->read_queue[last].invalid = false;
cache->read_queue[last].first_request = NULL;
cache->read_queue[last].last_request = NULL;
/* Point the cache index to the read queue entry. */
read_queue_index = last;
WRITE_ONCE(cache->index[physical_page],
read_queue_index | VOLUME_CACHE_QUEUED_FLAG);
advance_queue_position(&cache->read_queue_last);
} else {
/* It's already queued, so add this request to the existing entry. */
read_queue_index = cache->index[physical_page] & ~VOLUME_CACHE_QUEUED_FLAG;
}
request->next_request = NULL;
queue_entry = &cache->read_queue[read_queue_index];
if (queue_entry->first_request == NULL)
queue_entry->first_request = request;
else
queue_entry->last_request->next_request = request;
queue_entry->last_request = request;
return true;
}
static void enqueue_page_read(struct volume *volume, struct uds_request *request,
u32 physical_page)
{
/* Mark the page as queued, so that chapter invalidation knows to cancel a read. */
while (!enqueue_read(&volume->page_cache, request, physical_page)) {
vdo_log_debug("Read queue full, waiting for reads to finish");
uds_wait_cond(&volume->read_threads_read_done_cond,
&volume->read_threads_mutex);
}
uds_signal_cond(&volume->read_threads_cond);
}
/*
* Reserve the next read queue entry for processing, but do not actually remove it from the queue.
* Must be followed by release_queued_requests().
*/
static struct queued_read *reserve_read_queue_entry(struct page_cache *cache)
{
/* We hold the read_threads_mutex. */
struct queued_read *entry;
u16 index_value;
bool queued;
/* No items to dequeue */
if (cache->read_queue_next_read == cache->read_queue_last)
return NULL;
entry = &cache->read_queue[cache->read_queue_next_read];
index_value = cache->index[entry->physical_page];
queued = (index_value & VOLUME_CACHE_QUEUED_FLAG) != 0;
/* Check to see if it's still queued before resetting. */
if (entry->invalid && queued)
WRITE_ONCE(cache->index[entry->physical_page], cache->cache_slots);
/*
* If a synchronous read has taken this page, set invalid to true so it doesn't get
* overwritten. Requests will just be requeued.
*/
if (!queued)
entry->invalid = true;
entry->reserved = true;
advance_queue_position(&cache->read_queue_next_read);
return entry;
}
static inline struct queued_read *wait_to_reserve_read_queue_entry(struct volume *volume)
{
struct queued_read *queue_entry = NULL;
while (!volume->read_threads_exiting) {
queue_entry = reserve_read_queue_entry(&volume->page_cache);
if (queue_entry != NULL)
break;
uds_wait_cond(&volume->read_threads_cond, &volume->read_threads_mutex);
}
return queue_entry;
}
static int init_chapter_index_page(const struct volume *volume, u8 *index_page,
u32 chapter, u32 index_page_number,
struct delta_index_page *chapter_index_page)
{
u64 ci_virtual;
u32 ci_chapter;
u32 lowest_list;
u32 highest_list;
struct index_geometry *geometry = volume->geometry;
int result;
result = uds_initialize_chapter_index_page(chapter_index_page, geometry,
index_page, volume->nonce);
if (volume->lookup_mode == LOOKUP_FOR_REBUILD)
return result;
if (result != UDS_SUCCESS) {
return vdo_log_error_strerror(result,
"Reading chapter index page for chapter %u page %u",
chapter, index_page_number);
}
uds_get_list_number_bounds(volume->index_page_map, chapter, index_page_number,
&lowest_list, &highest_list);
ci_virtual = chapter_index_page->virtual_chapter_number;
ci_chapter = uds_map_to_physical_chapter(geometry, ci_virtual);
if ((chapter == ci_chapter) &&
(lowest_list == chapter_index_page->lowest_list_number) &&
(highest_list == chapter_index_page->highest_list_number))
return UDS_SUCCESS;
vdo_log_warning("Index page map updated to %llu",
(unsigned long long) volume->index_page_map->last_update);
vdo_log_warning("Page map expects that chapter %u page %u has range %u to %u, but chapter index page has chapter %llu with range %u to %u",
chapter, index_page_number, lowest_list, highest_list,
(unsigned long long) ci_virtual,
chapter_index_page->lowest_list_number,
chapter_index_page->highest_list_number);
return vdo_log_error_strerror(UDS_CORRUPT_DATA,
"index page map mismatch with chapter index");
}
static int initialize_index_page(const struct volume *volume, u32 physical_page,
struct cached_page *page)
{
u32 chapter = map_to_chapter_number(volume->geometry, physical_page);
u32 index_page_number = map_to_page_number(volume->geometry, physical_page);
return init_chapter_index_page(volume, dm_bufio_get_block_data(page->buffer),
chapter, index_page_number, &page->index_page);
}
static bool search_record_page(const u8 record_page[],
const struct uds_record_name *name,
const struct index_geometry *geometry,
struct uds_record_data *metadata)
{
/*
* The array of records is sorted by name and stored as a binary tree in heap order, so the
* root of the tree is the first array element.
*/
u32 node = 0;
const struct uds_volume_record *records = (const struct uds_volume_record *) record_page;
while (node < geometry->records_per_page) {
int result;
const struct uds_volume_record *record = &records[node];
result = memcmp(name, &record->name, UDS_RECORD_NAME_SIZE);
if (result == 0) {
if (metadata != NULL)
*metadata = record->data;
return true;
}
/* The children of node N are at indexes 2N+1 and 2N+2. */
node = ((2 * node) + ((result < 0) ? 1 : 2));
}
return false;
}
/*
* If we've read in a record page, we're going to do an immediate search, to speed up processing by
* avoiding get_record_from_zone(), and to ensure that requests make progress even when queued. If
* we've read in an index page, we save the record page number so we don't have to resolve the
* index page again. We use the location, virtual_chapter, and old_metadata fields in the request
* to allow the index code to know where to begin processing the request again.
*/
static int search_page(struct cached_page *page, const struct volume *volume,
struct uds_request *request, u32 physical_page)
{
int result;
enum uds_index_region location;
u16 record_page_number;
if (is_record_page(volume->geometry, physical_page)) {
if (search_record_page(dm_bufio_get_block_data(page->buffer),
&request->record_name, volume->geometry,
&request->old_metadata))
location = UDS_LOCATION_RECORD_PAGE_LOOKUP;
else
location = UDS_LOCATION_UNAVAILABLE;
} else {
result = uds_search_chapter_index_page(&page->index_page,
volume->geometry,
&request->record_name,
&record_page_number);
if (result != UDS_SUCCESS)
return result;
if (record_page_number == NO_CHAPTER_INDEX_ENTRY) {
location = UDS_LOCATION_UNAVAILABLE;
} else {
location = UDS_LOCATION_INDEX_PAGE_LOOKUP;
*((u16 *) &request->old_metadata) = record_page_number;
}
}
request->location = location;
request->found = false;
return UDS_SUCCESS;
}
static int process_entry(struct volume *volume, struct queued_read *entry)
{
u32 page_number = entry->physical_page;
struct uds_request *request;
struct cached_page *page = NULL;
u8 *page_data;
int result;
if (entry->invalid) {
vdo_log_debug("Requeuing requests for invalid page");
return UDS_SUCCESS;
}
page = select_victim_in_cache(&volume->page_cache);
mutex_unlock(&volume->read_threads_mutex);
page_data = dm_bufio_read(volume->client, page_number, &page->buffer);
mutex_lock(&volume->read_threads_mutex);
if (IS_ERR(page_data)) {
result = -PTR_ERR(page_data);
vdo_log_warning_strerror(result,
"error reading physical page %u from volume",
page_number);
cancel_page_in_cache(&volume->page_cache, page_number, page);
return result;
}
if (entry->invalid) {
vdo_log_warning("Page %u invalidated after read", page_number);
cancel_page_in_cache(&volume->page_cache, page_number, page);
return UDS_SUCCESS;
}
if (!is_record_page(volume->geometry, page_number)) {
result = initialize_index_page(volume, page_number, page);
if (result != UDS_SUCCESS) {
vdo_log_warning("Error initializing chapter index page");
cancel_page_in_cache(&volume->page_cache, page_number, page);
return result;
}
}
result = put_page_in_cache(&volume->page_cache, page_number, page);
if (result != UDS_SUCCESS) {
vdo_log_warning("Error putting page %u in cache", page_number);
cancel_page_in_cache(&volume->page_cache, page_number, page);
return result;
}
request = entry->first_request;
while ((request != NULL) && (result == UDS_SUCCESS)) {
result = search_page(page, volume, request, page_number);
request = request->next_request;
}
return result;
}
static void release_queued_requests(struct volume *volume, struct queued_read *entry,
int result)
{
struct page_cache *cache = &volume->page_cache;
u16 next_read = cache->read_queue_next_read;
struct uds_request *request;
struct uds_request *next;
for (request = entry->first_request; request != NULL; request = next) {
next = request->next_request;
request->status = result;
request->requeued = true;
uds_enqueue_request(request, STAGE_INDEX);
}
entry->reserved = false;
/* Move the read_queue_first pointer as far as we can. */
while ((cache->read_queue_first != next_read) &&
(!cache->read_queue[cache->read_queue_first].reserved))
advance_queue_position(&cache->read_queue_first);
uds_broadcast_cond(&volume->read_threads_read_done_cond);
}
static void read_thread_function(void *arg)
{
struct volume *volume = arg;
vdo_log_debug("reader starting");
mutex_lock(&volume->read_threads_mutex);
while (true) {
struct queued_read *queue_entry;
int result;
queue_entry = wait_to_reserve_read_queue_entry(volume);
if (volume->read_threads_exiting)
break;
result = process_entry(volume, queue_entry);
release_queued_requests(volume, queue_entry, result);
}
mutex_unlock(&volume->read_threads_mutex);
vdo_log_debug("reader done");
}
static void get_page_and_index(struct page_cache *cache, u32 physical_page,
int *queue_index, struct cached_page **page_ptr)
{
u16 index_value;
u16 index;
bool queued;
/*
* ASSERTION: We are either a zone thread holding a search_pending_counter, or we are any
* thread holding the read_threads_mutex.
*
* Holding only a search_pending_counter is the most frequent case.
*/
/*
* It would be unlikely for the compiler to turn the usage of index_value into two reads of
* cache->index, but it would be possible and very bad if those reads did not return the
* same bits.
*/
index_value = READ_ONCE(cache->index[physical_page]);
queued = (index_value & VOLUME_CACHE_QUEUED_FLAG) != 0;
index = index_value & ~VOLUME_CACHE_QUEUED_FLAG;
if (!queued && (index < cache->cache_slots)) {
*page_ptr = &cache->cache[index];
/*
* We have acquired access to the cached page, but unless we hold the
* read_threads_mutex, we need a read memory barrier now. The corresponding write
* memory barrier is in put_page_in_cache().
*/
smp_rmb();
} else {
*page_ptr = NULL;
}
*queue_index = queued ? index : -1;
}
static void get_page_from_cache(struct page_cache *cache, u32 physical_page,
struct cached_page **page)
{
/*
* ASSERTION: We are in a zone thread.
* ASSERTION: We holding a search_pending_counter or the read_threads_mutex.
*/
int queue_index = -1;
get_page_and_index(cache, physical_page, &queue_index, page);
}
static int read_page_locked(struct volume *volume, u32 physical_page,
struct cached_page **page_ptr)
{
int result = UDS_SUCCESS;
struct cached_page *page = NULL;
u8 *page_data;
page = select_victim_in_cache(&volume->page_cache);
page_data = dm_bufio_read(volume->client, physical_page, &page->buffer);
if (IS_ERR(page_data)) {
result = -PTR_ERR(page_data);
vdo_log_warning_strerror(result,
"error reading physical page %u from volume",
physical_page);
cancel_page_in_cache(&volume->page_cache, physical_page, page);
return result;
}
if (!is_record_page(volume->geometry, physical_page)) {
result = initialize_index_page(volume, physical_page, page);
if (result != UDS_SUCCESS) {
if (volume->lookup_mode != LOOKUP_FOR_REBUILD)
vdo_log_warning("Corrupt index page %u", physical_page);
cancel_page_in_cache(&volume->page_cache, physical_page, page);
return result;
}
}
result = put_page_in_cache(&volume->page_cache, physical_page, page);
if (result != UDS_SUCCESS) {
vdo_log_warning("Error putting page %u in cache", physical_page);
cancel_page_in_cache(&volume->page_cache, physical_page, page);
return result;
}
*page_ptr = page;
return UDS_SUCCESS;
}
/* Retrieve a page from the cache while holding the read threads mutex. */
static int get_volume_page_locked(struct volume *volume, u32 physical_page,
struct cached_page **page_ptr)
{
int result;
struct cached_page *page = NULL;
get_page_from_cache(&volume->page_cache, physical_page, &page);
if (page == NULL) {
result = read_page_locked(volume, physical_page, &page);
if (result != UDS_SUCCESS)
return result;
} else {
make_page_most_recent(&volume->page_cache, page);
}
*page_ptr = page;
return UDS_SUCCESS;
}
/* Retrieve a page from the cache while holding a search_pending lock. */
static int get_volume_page_protected(struct volume *volume, struct uds_request *request,
u32 physical_page, struct cached_page **page_ptr)
{
struct cached_page *page;
unsigned int zone_number = request->zone_number;
get_page_from_cache(&volume->page_cache, physical_page, &page);
if (page != NULL) {
if (zone_number == 0) {
/* Only one zone is allowed to update the LRU. */
make_page_most_recent(&volume->page_cache, page);
}
*page_ptr = page;
return UDS_SUCCESS;
}
/* Prepare to enqueue a read for the page. */
end_pending_search(&volume->page_cache, zone_number);
mutex_lock(&volume->read_threads_mutex);
/*
* Do the lookup again while holding the read mutex (no longer the fast case so this should
* be fine to repeat). We need to do this because a page may have been added to the cache
* by a reader thread between the time we searched above and the time we went to actually
* try to enqueue it below. This could result in us enqueuing another read for a page which
* is already in the cache, which would mean we end up with two entries in the cache for
* the same page.
*/
get_page_from_cache(&volume->page_cache, physical_page, &page);
if (page == NULL) {
enqueue_page_read(volume, request, physical_page);
/*
* The performance gain from unlocking first, while "search pending" mode is off,
* turns out to be significant in some cases. The page is not available yet so
* the order does not matter for correctness as it does below.
*/
mutex_unlock(&volume->read_threads_mutex);
begin_pending_search(&volume->page_cache, physical_page, zone_number);
return UDS_QUEUED;
}
/*
* Now that the page is loaded, the volume needs to switch to "reader thread unlocked" and
* "search pending" state in careful order so no other thread can mess with the data before
* the caller gets to look at it.
*/
begin_pending_search(&volume->page_cache, physical_page, zone_number);
mutex_unlock(&volume->read_threads_mutex);
*page_ptr = page;
return UDS_SUCCESS;
}
static int get_volume_page(struct volume *volume, u32 chapter, u32 page_number,
struct cached_page **page_ptr)
{
int result;
u32 physical_page = map_to_physical_page(volume->geometry, chapter, page_number);
mutex_lock(&volume->read_threads_mutex);
result = get_volume_page_locked(volume, physical_page, page_ptr);
mutex_unlock(&volume->read_threads_mutex);
return result;
}
int uds_get_volume_record_page(struct volume *volume, u32 chapter, u32 page_number,
u8 **data_ptr)
{
int result;
struct cached_page *page = NULL;
result = get_volume_page(volume, chapter, page_number, &page);
if (result == UDS_SUCCESS)
*data_ptr = dm_bufio_get_block_data(page->buffer);
return result;
}
int uds_get_volume_index_page(struct volume *volume, u32 chapter, u32 page_number,
struct delta_index_page **index_page_ptr)
{
int result;
struct cached_page *page = NULL;
result = get_volume_page(volume, chapter, page_number, &page);
if (result == UDS_SUCCESS)
*index_page_ptr = &page->index_page;
return result;
}
/*
* Find the record page associated with a name in a given index page. This will return UDS_QUEUED
* if the page in question must be read from storage.
*/
static int search_cached_index_page(struct volume *volume, struct uds_request *request,
u32 chapter, u32 index_page_number,
u16 *record_page_number)
{
int result;
struct cached_page *page = NULL;
unsigned int zone_number = request->zone_number;
u32 physical_page = map_to_physical_page(volume->geometry, chapter,
index_page_number);
/*
* Make sure the invalidate counter is updated before we try and read the mapping. This
* prevents this thread from reading a page in the cache which has already been marked for
* invalidation by the reader thread, before the reader thread has noticed that the
* invalidate_counter has been incremented.
*/
begin_pending_search(&volume->page_cache, physical_page, zone_number);
result = get_volume_page_protected(volume, request, physical_page, &page);
if (result != UDS_SUCCESS) {
end_pending_search(&volume->page_cache, zone_number);
return result;
}
result = uds_search_chapter_index_page(&page->index_page, volume->geometry,
&request->record_name,
record_page_number);
end_pending_search(&volume->page_cache, zone_number);
return result;
}
/*
* Find the metadata associated with a name in a given record page. This will return UDS_QUEUED if
* the page in question must be read from storage.
*/
int uds_search_cached_record_page(struct volume *volume, struct uds_request *request,
u32 chapter, u16 record_page_number, bool *found)
{
struct cached_page *record_page;
struct index_geometry *geometry = volume->geometry;
unsigned int zone_number = request->zone_number;
int result;
u32 physical_page, page_number;
*found = false;
if (record_page_number == NO_CHAPTER_INDEX_ENTRY)
return UDS_SUCCESS;
result = VDO_ASSERT(record_page_number < geometry->record_pages_per_chapter,
"0 <= %d < %u", record_page_number,
geometry->record_pages_per_chapter);
if (result != VDO_SUCCESS)
return result;
page_number = geometry->index_pages_per_chapter + record_page_number;
physical_page = map_to_physical_page(volume->geometry, chapter, page_number);
/*
* Make sure the invalidate counter is updated before we try and read the mapping. This
* prevents this thread from reading a page in the cache which has already been marked for
* invalidation by the reader thread, before the reader thread has noticed that the
* invalidate_counter has been incremented.
*/
begin_pending_search(&volume->page_cache, physical_page, zone_number);
result = get_volume_page_protected(volume, request, physical_page, &record_page);
if (result != UDS_SUCCESS) {
end_pending_search(&volume->page_cache, zone_number);
return result;
}
if (search_record_page(dm_bufio_get_block_data(record_page->buffer),
&request->record_name, geometry, &request->old_metadata))
*found = true;
end_pending_search(&volume->page_cache, zone_number);
return UDS_SUCCESS;
}
void uds_prefetch_volume_chapter(const struct volume *volume, u32 chapter)
{
const struct index_geometry *geometry = volume->geometry;
u32 physical_page = map_to_physical_page(geometry, chapter, 0);
dm_bufio_prefetch(volume->client, physical_page, geometry->pages_per_chapter);
}
int uds_read_chapter_index_from_volume(const struct volume *volume, u64 virtual_chapter,
struct dm_buffer *volume_buffers[],
struct delta_index_page index_pages[])
{
int result;
u32 i;
const struct index_geometry *geometry = volume->geometry;
u32 physical_chapter = uds_map_to_physical_chapter(geometry, virtual_chapter);
u32 physical_page = map_to_physical_page(geometry, physical_chapter, 0);
dm_bufio_prefetch(volume->client, physical_page, geometry->index_pages_per_chapter);
for (i = 0; i < geometry->index_pages_per_chapter; i++) {
u8 *index_page;
index_page = dm_bufio_read(volume->client, physical_page + i,
&volume_buffers[i]);
if (IS_ERR(index_page)) {
result = -PTR_ERR(index_page);
vdo_log_warning_strerror(result,
"error reading physical page %u",
physical_page);
return result;
}
result = init_chapter_index_page(volume, index_page, physical_chapter, i,
&index_pages[i]);
if (result != UDS_SUCCESS)
return result;
}
return UDS_SUCCESS;
}
int uds_search_volume_page_cache(struct volume *volume, struct uds_request *request,
bool *found)
{
int result;
u32 physical_chapter =
uds_map_to_physical_chapter(volume->geometry, request->virtual_chapter);
u32 index_page_number;
u16 record_page_number;
index_page_number = uds_find_index_page_number(volume->index_page_map,
&request->record_name,
physical_chapter);
if (request->location == UDS_LOCATION_INDEX_PAGE_LOOKUP) {
record_page_number = *((u16 *) &request->old_metadata);
} else {
result = search_cached_index_page(volume, request, physical_chapter,
index_page_number,
&record_page_number);
if (result != UDS_SUCCESS)
return result;
}
return uds_search_cached_record_page(volume, request, physical_chapter,
record_page_number, found);
}
int uds_search_volume_page_cache_for_rebuild(struct volume *volume,
const struct uds_record_name *name,
u64 virtual_chapter, bool *found)
{
int result;
struct index_geometry *geometry = volume->geometry;
struct cached_page *page;
u32 physical_chapter = uds_map_to_physical_chapter(geometry, virtual_chapter);
u32 index_page_number;
u16 record_page_number;
u32 page_number;
*found = false;
index_page_number =
uds_find_index_page_number(volume->index_page_map, name,
physical_chapter);
result = get_volume_page(volume, physical_chapter, index_page_number, &page);
if (result != UDS_SUCCESS)
return result;
result = uds_search_chapter_index_page(&page->index_page, geometry, name,
&record_page_number);
if (result != UDS_SUCCESS)
return result;
if (record_page_number == NO_CHAPTER_INDEX_ENTRY)
return UDS_SUCCESS;
page_number = geometry->index_pages_per_chapter + record_page_number;
result = get_volume_page(volume, physical_chapter, page_number, &page);
if (result != UDS_SUCCESS)
return result;
*found = search_record_page(dm_bufio_get_block_data(page->buffer), name,
geometry, NULL);
return UDS_SUCCESS;
}
static void invalidate_page(struct page_cache *cache, u32 physical_page)
{
struct cached_page *page;
int queue_index = -1;
/* We hold the read_threads_mutex. */
get_page_and_index(cache, physical_page, &queue_index, &page);
if (page != NULL) {
WRITE_ONCE(cache->index[page->physical_page], cache->cache_slots);
wait_for_pending_searches(cache, page->physical_page);
clear_cache_page(cache, page);
} else if (queue_index > -1) {
vdo_log_debug("setting pending read to invalid");
cache->read_queue[queue_index].invalid = true;
}
}
void uds_forget_chapter(struct volume *volume, u64 virtual_chapter)
{
u32 physical_chapter =
uds_map_to_physical_chapter(volume->geometry, virtual_chapter);
u32 first_page = map_to_physical_page(volume->geometry, physical_chapter, 0);
u32 i;
vdo_log_debug("forgetting chapter %llu", (unsigned long long) virtual_chapter);
mutex_lock(&volume->read_threads_mutex);
for (i = 0; i < volume->geometry->pages_per_chapter; i++)
invalidate_page(&volume->page_cache, first_page + i);
mutex_unlock(&volume->read_threads_mutex);
}
/*
* Donate an index pages from a newly written chapter to the page cache since it is likely to be
* used again soon. The caller must already hold the reader thread mutex.
*/
static int donate_index_page_locked(struct volume *volume, u32 physical_chapter,
u32 index_page_number, struct dm_buffer *page_buffer)
{
int result;
struct cached_page *page = NULL;
u32 physical_page =
map_to_physical_page(volume->geometry, physical_chapter,
index_page_number);
page = select_victim_in_cache(&volume->page_cache);
page->buffer = page_buffer;
result = init_chapter_index_page(volume, dm_bufio_get_block_data(page_buffer),
physical_chapter, index_page_number,
&page->index_page);
if (result != UDS_SUCCESS) {
vdo_log_warning("Error initialize chapter index page");
cancel_page_in_cache(&volume->page_cache, physical_page, page);
return result;
}
result = put_page_in_cache(&volume->page_cache, physical_page, page);
if (result != UDS_SUCCESS) {
vdo_log_warning("Error putting page %u in cache", physical_page);
cancel_page_in_cache(&volume->page_cache, physical_page, page);
return result;
}
return UDS_SUCCESS;
}
static int write_index_pages(struct volume *volume, u32 physical_chapter_number,
struct open_chapter_index *chapter_index)
{
struct index_geometry *geometry = volume->geometry;
struct dm_buffer *page_buffer;
u32 first_index_page = map_to_physical_page(geometry, physical_chapter_number, 0);
u32 delta_list_number = 0;
u32 index_page_number;
for (index_page_number = 0;
index_page_number < geometry->index_pages_per_chapter;
index_page_number++) {
u8 *page_data;
u32 physical_page = first_index_page + index_page_number;
u32 lists_packed;
bool last_page;
int result;
page_data = dm_bufio_new(volume->client, physical_page, &page_buffer);
if (IS_ERR(page_data)) {
return vdo_log_warning_strerror(-PTR_ERR(page_data),
"failed to prepare index page");
}
last_page = ((index_page_number + 1) == geometry->index_pages_per_chapter);
result = uds_pack_open_chapter_index_page(chapter_index, page_data,
delta_list_number, last_page,
&lists_packed);
if (result != UDS_SUCCESS) {
dm_bufio_release(page_buffer);
return vdo_log_warning_strerror(result,
"failed to pack index page");
}
dm_bufio_mark_buffer_dirty(page_buffer);
if (lists_packed == 0) {
vdo_log_debug("no delta lists packed on chapter %u page %u",
physical_chapter_number, index_page_number);
} else {
delta_list_number += lists_packed;
}
uds_update_index_page_map(volume->index_page_map,
chapter_index->virtual_chapter_number,
physical_chapter_number, index_page_number,
delta_list_number - 1);
mutex_lock(&volume->read_threads_mutex);
result = donate_index_page_locked(volume, physical_chapter_number,
index_page_number, page_buffer);
mutex_unlock(&volume->read_threads_mutex);
if (result != UDS_SUCCESS) {
dm_bufio_release(page_buffer);
return result;
}
}
return UDS_SUCCESS;
}
static u32 encode_tree(u8 record_page[],
const struct uds_volume_record *sorted_pointers[],
u32 next_record, u32 node, u32 node_count)
{
if (node < node_count) {
u32 child = (2 * node) + 1;
next_record = encode_tree(record_page, sorted_pointers, next_record,
child, node_count);
/*
* In-order traversal: copy the contents of the next record into the page at the
* node offset.
*/
memcpy(&record_page[node * BYTES_PER_RECORD],
sorted_pointers[next_record++], BYTES_PER_RECORD);
next_record = encode_tree(record_page, sorted_pointers, next_record,
child + 1, node_count);
}
return next_record;
}
static int encode_record_page(const struct volume *volume,
const struct uds_volume_record records[], u8 record_page[])
{
int result;
u32 i;
u32 records_per_page = volume->geometry->records_per_page;
const struct uds_volume_record **record_pointers = volume->record_pointers;
for (i = 0; i < records_per_page; i++)
record_pointers[i] = &records[i];
/*
* Sort the record pointers by using just the names in the records, which is less work than
* sorting the entire record values.
*/
BUILD_BUG_ON(offsetof(struct uds_volume_record, name) != 0);
result = uds_radix_sort(volume->radix_sorter, (const u8 **) record_pointers,
records_per_page, UDS_RECORD_NAME_SIZE);
if (result != UDS_SUCCESS)
return result;
encode_tree(record_page, record_pointers, 0, 0, records_per_page);
return UDS_SUCCESS;
}
static int write_record_pages(struct volume *volume, u32 physical_chapter_number,
const struct uds_volume_record *records)
{
u32 record_page_number;
struct index_geometry *geometry = volume->geometry;
struct dm_buffer *page_buffer;
const struct uds_volume_record *next_record = records;
u32 first_record_page = map_to_physical_page(geometry, physical_chapter_number,
geometry->index_pages_per_chapter);
for (record_page_number = 0;
record_page_number < geometry->record_pages_per_chapter;
record_page_number++) {
u8 *page_data;
u32 physical_page = first_record_page + record_page_number;
int result;
page_data = dm_bufio_new(volume->client, physical_page, &page_buffer);
if (IS_ERR(page_data)) {
return vdo_log_warning_strerror(-PTR_ERR(page_data),
"failed to prepare record page");
}
result = encode_record_page(volume, next_record, page_data);
if (result != UDS_SUCCESS) {
dm_bufio_release(page_buffer);
return vdo_log_warning_strerror(result,
"failed to encode record page %u",
record_page_number);
}
next_record += geometry->records_per_page;
dm_bufio_mark_buffer_dirty(page_buffer);
dm_bufio_release(page_buffer);
}
return UDS_SUCCESS;
}
int uds_write_chapter(struct volume *volume, struct open_chapter_index *chapter_index,
const struct uds_volume_record *records)
{
int result;
u32 physical_chapter_number =
uds_map_to_physical_chapter(volume->geometry,
chapter_index->virtual_chapter_number);
result = write_index_pages(volume, physical_chapter_number, chapter_index);
if (result != UDS_SUCCESS)
return result;
result = write_record_pages(volume, physical_chapter_number, records);
if (result != UDS_SUCCESS)
return result;
result = -dm_bufio_write_dirty_buffers(volume->client);
if (result != UDS_SUCCESS)
vdo_log_error_strerror(result, "cannot sync chapter to volume");
return result;
}
static void probe_chapter(struct volume *volume, u32 chapter_number,
u64 *virtual_chapter_number)
{
const struct index_geometry *geometry = volume->geometry;
u32 expected_list_number = 0;
u32 i;
u64 vcn = BAD_CHAPTER;
*virtual_chapter_number = BAD_CHAPTER;
dm_bufio_prefetch(volume->client,
map_to_physical_page(geometry, chapter_number, 0),
geometry->index_pages_per_chapter);
for (i = 0; i < geometry->index_pages_per_chapter; i++) {
struct delta_index_page *page;
int result;
result = uds_get_volume_index_page(volume, chapter_number, i, &page);
if (result != UDS_SUCCESS)
return;
if (page->virtual_chapter_number == BAD_CHAPTER) {
vdo_log_error("corrupt index page in chapter %u",
chapter_number);
return;
}
if (vcn == BAD_CHAPTER) {
vcn = page->virtual_chapter_number;
} else if (page->virtual_chapter_number != vcn) {
vdo_log_error("inconsistent chapter %u index page %u: expected vcn %llu, got vcn %llu",
chapter_number, i, (unsigned long long) vcn,
(unsigned long long) page->virtual_chapter_number);
return;
}
if (expected_list_number != page->lowest_list_number) {
vdo_log_error("inconsistent chapter %u index page %u: expected list number %u, got list number %u",
chapter_number, i, expected_list_number,
page->lowest_list_number);
return;
}
expected_list_number = page->highest_list_number + 1;
result = uds_validate_chapter_index_page(page, geometry);
if (result != UDS_SUCCESS)
return;
}
if (chapter_number != uds_map_to_physical_chapter(geometry, vcn)) {
vdo_log_error("chapter %u vcn %llu is out of phase (%u)", chapter_number,
(unsigned long long) vcn, geometry->chapters_per_volume);
return;
}
*virtual_chapter_number = vcn;
}
/* Find the last valid physical chapter in the volume. */
static void find_real_end_of_volume(struct volume *volume, u32 limit, u32 *limit_ptr)
{
u32 span = 1;
u32 tries = 0;
while (limit > 0) {
u32 chapter = (span > limit) ? 0 : limit - span;
u64 vcn = 0;
probe_chapter(volume, chapter, &vcn);
if (vcn == BAD_CHAPTER) {
limit = chapter;
if (++tries > 1)
span *= 2;
} else {
if (span == 1)
break;
span /= 2;
tries = 0;
}
}
*limit_ptr = limit;
}
static int find_chapter_limits(struct volume *volume, u32 chapter_limit, u64 *lowest_vcn,
u64 *highest_vcn)
{
struct index_geometry *geometry = volume->geometry;
u64 zero_vcn;
u64 lowest = BAD_CHAPTER;
u64 highest = BAD_CHAPTER;
u64 moved_chapter = BAD_CHAPTER;
u32 left_chapter = 0;
u32 right_chapter = 0;
u32 bad_chapters = 0;
/*
* This method assumes there is at most one run of contiguous bad chapters caused by
* unflushed writes. Either the bad spot is at the beginning and end, or somewhere in the
* middle. Wherever it is, the highest and lowest VCNs are adjacent to it. Otherwise the
* volume is cleanly saved and somewhere in the middle of it the highest VCN immediately
* precedes the lowest one.
*/
/* It doesn't matter if this results in a bad spot (BAD_CHAPTER). */
probe_chapter(volume, 0, &zero_vcn);
/*
* Binary search for end of the discontinuity in the monotonically increasing virtual
* chapter numbers; bad spots are treated as a span of BAD_CHAPTER values. In effect we're
* searching for the index of the smallest value less than zero_vcn. In the case we go off
* the end it means that chapter 0 has the lowest vcn.
*
* If a virtual chapter is out-of-order, it will be the one moved by conversion. Always
* skip over the moved chapter when searching, adding it to the range at the end if
* necessary.
*/
if (geometry->remapped_physical > 0) {
u64 remapped_vcn;
probe_chapter(volume, geometry->remapped_physical, &remapped_vcn);
if (remapped_vcn == geometry->remapped_virtual)
moved_chapter = geometry->remapped_physical;
}
left_chapter = 0;
right_chapter = chapter_limit;
while (left_chapter < right_chapter) {
u64 probe_vcn;
u32 chapter = (left_chapter + right_chapter) / 2;
if (chapter == moved_chapter)
chapter--;
probe_chapter(volume, chapter, &probe_vcn);
if (zero_vcn <= probe_vcn) {
left_chapter = chapter + 1;
if (left_chapter == moved_chapter)
left_chapter++;
} else {
right_chapter = chapter;
}
}
/* If left_chapter goes off the end, chapter 0 has the lowest virtual chapter number.*/
if (left_chapter >= chapter_limit)
left_chapter = 0;
/* At this point, left_chapter is the chapter with the lowest virtual chapter number. */
probe_chapter(volume, left_chapter, &lowest);
/* The moved chapter might be the lowest in the range. */
if ((moved_chapter != BAD_CHAPTER) && (lowest == geometry->remapped_virtual + 1))
lowest = geometry->remapped_virtual;
/*
* Circularly scan backwards, moving over any bad chapters until encountering a good one,
* which is the chapter with the highest vcn.
*/
while (highest == BAD_CHAPTER) {
right_chapter = (right_chapter + chapter_limit - 1) % chapter_limit;
if (right_chapter == moved_chapter)
continue;
probe_chapter(volume, right_chapter, &highest);
if (bad_chapters++ >= MAX_BAD_CHAPTERS) {
vdo_log_error("too many bad chapters in volume: %u",
bad_chapters);
return UDS_CORRUPT_DATA;
}
}
*lowest_vcn = lowest;
*highest_vcn = highest;
return UDS_SUCCESS;
}
/*
* Find the highest and lowest contiguous chapters present in the volume and determine their
* virtual chapter numbers. This is used by rebuild.
*/
int uds_find_volume_chapter_boundaries(struct volume *volume, u64 *lowest_vcn,
u64 *highest_vcn, bool *is_empty)
{
u32 chapter_limit = volume->geometry->chapters_per_volume;
find_real_end_of_volume(volume, chapter_limit, &chapter_limit);
if (chapter_limit == 0) {
*lowest_vcn = 0;
*highest_vcn = 0;
*is_empty = true;
return UDS_SUCCESS;
}
*is_empty = false;
return find_chapter_limits(volume, chapter_limit, lowest_vcn, highest_vcn);
}
int __must_check uds_replace_volume_storage(struct volume *volume,
struct index_layout *layout,
struct block_device *bdev)
{
int result;
u32 i;
result = uds_replace_index_layout_storage(layout, bdev);
if (result != UDS_SUCCESS)
return result;
/* Release all outstanding dm_bufio objects */
for (i = 0; i < volume->page_cache.indexable_pages; i++)
volume->page_cache.index[i] = volume->page_cache.cache_slots;
for (i = 0; i < volume->page_cache.cache_slots; i++)
clear_cache_page(&volume->page_cache, &volume->page_cache.cache[i]);
if (volume->sparse_cache != NULL)
uds_invalidate_sparse_cache(volume->sparse_cache);
if (volume->client != NULL)
dm_bufio_client_destroy(vdo_forget(volume->client));
return uds_open_volume_bufio(layout, volume->geometry->bytes_per_page,
volume->reserved_buffers, &volume->client);
}
static int __must_check initialize_page_cache(struct page_cache *cache,
const struct index_geometry *geometry,
u32 chapters_in_cache,
unsigned int zone_count)
{
int result;
u32 i;
cache->indexable_pages = geometry->pages_per_volume + 1;
cache->cache_slots = chapters_in_cache * geometry->record_pages_per_chapter;
cache->zone_count = zone_count;
atomic64_set(&cache->clock, 1);
result = VDO_ASSERT((cache->cache_slots <= VOLUME_CACHE_MAX_ENTRIES),
"requested cache size, %u, within limit %u",
cache->cache_slots, VOLUME_CACHE_MAX_ENTRIES);
if (result != VDO_SUCCESS)
return result;
result = vdo_allocate(VOLUME_CACHE_MAX_QUEUED_READS, struct queued_read,
"volume read queue", &cache->read_queue);
if (result != VDO_SUCCESS)
return result;
result = vdo_allocate(cache->zone_count, struct search_pending_counter,
"Volume Cache Zones", &cache->search_pending_counters);
if (result != VDO_SUCCESS)
return result;
result = vdo_allocate(cache->indexable_pages, u16, "page cache index",
&cache->index);
if (result != VDO_SUCCESS)
return result;
result = vdo_allocate(cache->cache_slots, struct cached_page, "page cache cache",
&cache->cache);
if (result != VDO_SUCCESS)
return result;
/* Initialize index values to invalid values. */
for (i = 0; i < cache->indexable_pages; i++)
cache->index[i] = cache->cache_slots;
for (i = 0; i < cache->cache_slots; i++)
clear_cache_page(cache, &cache->cache[i]);
return UDS_SUCCESS;
}
int uds_make_volume(const struct uds_configuration *config, struct index_layout *layout,
struct volume **new_volume)
{
unsigned int i;
struct volume *volume = NULL;
struct index_geometry *geometry;
unsigned int reserved_buffers;
int result;
result = vdo_allocate(1, struct volume, "volume", &volume);
if (result != VDO_SUCCESS)
return result;
volume->nonce = uds_get_volume_nonce(layout);
result = uds_copy_index_geometry(config->geometry, &volume->geometry);
if (result != UDS_SUCCESS) {
uds_free_volume(volume);
return vdo_log_warning_strerror(result,
"failed to allocate geometry: error");
}
geometry = volume->geometry;
/*
* Reserve a buffer for each entry in the page cache, one for the chapter writer, and one
* for each entry in the sparse cache.
*/
reserved_buffers = config->cache_chapters * geometry->record_pages_per_chapter;
reserved_buffers += 1;
if (uds_is_sparse_index_geometry(geometry))
reserved_buffers += (config->cache_chapters * geometry->index_pages_per_chapter);
volume->reserved_buffers = reserved_buffers;
result = uds_open_volume_bufio(layout, geometry->bytes_per_page,
volume->reserved_buffers, &volume->client);
if (result != UDS_SUCCESS) {
uds_free_volume(volume);
return result;
}
result = uds_make_radix_sorter(geometry->records_per_page,
&volume->radix_sorter);
if (result != UDS_SUCCESS) {
uds_free_volume(volume);
return result;
}
result = vdo_allocate(geometry->records_per_page,
const struct uds_volume_record *, "record pointers",
&volume->record_pointers);
if (result != VDO_SUCCESS) {
uds_free_volume(volume);
return result;
}
if (uds_is_sparse_index_geometry(geometry)) {
size_t page_size = sizeof(struct delta_index_page) + geometry->bytes_per_page;
result = uds_make_sparse_cache(geometry, config->cache_chapters,
config->zone_count,
&volume->sparse_cache);
if (result != UDS_SUCCESS) {
uds_free_volume(volume);
return result;
}
volume->cache_size =
page_size * geometry->index_pages_per_chapter * config->cache_chapters;
}
result = initialize_page_cache(&volume->page_cache, geometry,
config->cache_chapters, config->zone_count);
if (result != UDS_SUCCESS) {
uds_free_volume(volume);
return result;
}
volume->cache_size += volume->page_cache.cache_slots * sizeof(struct delta_index_page);
result = uds_make_index_page_map(geometry, &volume->index_page_map);
if (result != UDS_SUCCESS) {
uds_free_volume(volume);
return result;
}
mutex_init(&volume->read_threads_mutex);
uds_init_cond(&volume->read_threads_read_done_cond);
uds_init_cond(&volume->read_threads_cond);
result = vdo_allocate(config->read_threads, struct thread *, "reader threads",
&volume->reader_threads);
if (result != VDO_SUCCESS) {
uds_free_volume(volume);
return result;
}
for (i = 0; i < config->read_threads; i++) {
result = vdo_create_thread(read_thread_function, (void *) volume,
"reader", &volume->reader_threads[i]);
if (result != VDO_SUCCESS) {
uds_free_volume(volume);
return result;
}
volume->read_thread_count = i + 1;
}
*new_volume = volume;
return UDS_SUCCESS;
}
static void uninitialize_page_cache(struct page_cache *cache)
{
u16 i;
if (cache->cache != NULL) {
for (i = 0; i < cache->cache_slots; i++)
release_page_buffer(&cache->cache[i]);
}
vdo_free(cache->index);
vdo_free(cache->cache);
vdo_free(cache->search_pending_counters);
vdo_free(cache->read_queue);
}
void uds_free_volume(struct volume *volume)
{
if (volume == NULL)
return;
if (volume->reader_threads != NULL) {
unsigned int i;
/* This works even if some threads weren't started. */
mutex_lock(&volume->read_threads_mutex);
volume->read_threads_exiting = true;
uds_broadcast_cond(&volume->read_threads_cond);
mutex_unlock(&volume->read_threads_mutex);
for (i = 0; i < volume->read_thread_count; i++)
vdo_join_threads(volume->reader_threads[i]);
vdo_free(volume->reader_threads);
volume->reader_threads = NULL;
}
/* Must destroy the client AFTER freeing the cached pages. */
uninitialize_page_cache(&volume->page_cache);
uds_free_sparse_cache(volume->sparse_cache);
if (volume->client != NULL)
dm_bufio_client_destroy(vdo_forget(volume->client));
uds_free_index_page_map(volume->index_page_map);
uds_free_radix_sorter(volume->radix_sorter);
vdo_free(volume->geometry);
vdo_free(volume->record_pointers);
vdo_free(volume);
}