linux/drivers/iio/proximity/hx9023s.c
Jonathan Cameron fc11c42dd1 iio: proximity: Use iio_push_to_buffers_with_ts() to provide length for runtime checks.
This new function allows us to perform debug checks in the helper to ensure
that the overrun does not occur. Use it in all the simple cases where
either a static buffer or a structure is used in the drivers.

Reviewed-by: David Lechner <dlechner@baylibre.com>
Link: https://patch.msgid.link/20250413103443.2420727-18-jic23@kernel.org
Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
2025-05-21 14:20:26 +01:00

1223 lines
32 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2024 NanjingTianyihexin Electronics Ltd.
* http://www.tianyihexin.com
*
* Driver for NanjingTianyihexin HX9023S Cap Sensor.
* Datasheet available at:
* http://www.tianyihexin.com/ueditor/php/upload/file/20240614/1718336303992081.pdf
*/
#include <linux/array_size.h>
#include <linux/bitfield.h>
#include <linux/bitops.h>
#include <linux/cleanup.h>
#include <linux/device.h>
#include <linux/errno.h>
#include <linux/firmware.h>
#include <linux/i2c.h>
#include <linux/interrupt.h>
#include <linux/irqreturn.h>
#include <linux/math64.h>
#include <linux/mod_devicetable.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/pm.h>
#include <linux/property.h>
#include <linux/regmap.h>
#include <linux/regulator/consumer.h>
#include <linux/types.h>
#include <linux/units.h>
#include <asm/byteorder.h>
#include <linux/unaligned.h>
#include <linux/iio/buffer.h>
#include <linux/iio/events.h>
#include <linux/iio/iio.h>
#include <linux/iio/trigger.h>
#include <linux/iio/triggered_buffer.h>
#include <linux/iio/trigger_consumer.h>
#include <linux/iio/types.h>
#define HX9023S_CHIP_ID 0x1D
#define HX9023S_CH_NUM 5
#define HX9023S_POS 0x03
#define HX9023S_NEG 0x02
#define HX9023S_NOT_CONNECTED 16
#define HX9023S_GLOBAL_CTRL0 0x00
#define HX9023S_PRF_CFG 0x02
#define HX9023S_CH0_CFG_7_0 0x03
#define HX9023S_CH4_CFG_9_8 0x0C
#define HX9023S_RANGE_7_0 0x0D
#define HX9023S_RANGE_9_8 0x0E
#define HX9023S_RANGE_18_16 0x0F
#define HX9023S_AVG0_NOSR0_CFG 0x10
#define HX9023S_NOSR12_CFG 0x11
#define HX9023S_NOSR34_CFG 0x12
#define HX9023S_AVG12_CFG 0x13
#define HX9023S_AVG34_CFG 0x14
#define HX9023S_OFFSET_DAC0_7_0 0x15
#define HX9023S_OFFSET_DAC4_9_8 0x1E
#define HX9023S_SAMPLE_NUM_7_0 0x1F
#define HX9023S_INTEGRATION_NUM_7_0 0x21
#define HX9023S_CH_NUM_CFG 0x24
#define HX9023S_LP_ALP_4_CFG 0x29
#define HX9023S_LP_ALP_1_0_CFG 0x2A
#define HX9023S_LP_ALP_3_2_CFG 0x2B
#define HX9023S_UP_ALP_1_0_CFG 0x2C
#define HX9023S_UP_ALP_3_2_CFG 0x2D
#define HX9023S_DN_UP_ALP_0_4_CFG 0x2E
#define HX9023S_DN_ALP_2_1_CFG 0x2F
#define HX9023S_DN_ALP_4_3_CFG 0x30
#define HX9023S_RAW_BL_RD_CFG 0x38
#define HX9023S_INTERRUPT_CFG 0x39
#define HX9023S_INTERRUPT_CFG1 0x3A
#define HX9023S_CALI_DIFF_CFG 0x3B
#define HX9023S_DITHER_CFG 0x3C
#define HX9023S_DEVICE_ID 0x60
#define HX9023S_PROX_STATUS 0x6B
#define HX9023S_PROX_INT_HIGH_CFG 0x6C
#define HX9023S_PROX_INT_LOW_CFG 0x6D
#define HX9023S_PROX_HIGH_DIFF_CFG_CH0_0 0x80
#define HX9023S_PROX_LOW_DIFF_CFG_CH0_0 0x88
#define HX9023S_PROX_LOW_DIFF_CFG_CH3_1 0x8F
#define HX9023S_PROX_HIGH_DIFF_CFG_CH4_0 0x9E
#define HX9023S_PROX_HIGH_DIFF_CFG_CH4_1 0x9F
#define HX9023S_PROX_LOW_DIFF_CFG_CH4_0 0xA2
#define HX9023S_PROX_LOW_DIFF_CFG_CH4_1 0xA3
#define HX9023S_CAP_INI_CH4_0 0xB3
#define HX9023S_LP_DIFF_CH4_2 0xBA
#define HX9023S_RAW_BL_CH4_0 0xB5
#define HX9023S_LP_DIFF_CH4_0 0xB8
#define HX9023S_DSP_CONFIG_CTRL1 0xC8
#define HX9023S_CAP_INI_CH0_0 0xE0
#define HX9023S_RAW_BL_CH0_0 0xE8
#define HX9023S_LP_DIFF_CH0_0 0xF4
#define HX9023S_LP_DIFF_CH3_2 0xFF
#define HX9023S_DATA_LOCK_MASK BIT(4)
#define HX9023S_INTERRUPT_MASK GENMASK(9, 0)
#define HX9023S_PROX_DEBOUNCE_MASK GENMASK(3, 0)
#define FW_VER_OFFSET 2
#define FW_REG_CNT_OFFSET 3
#define FW_DATA_OFFSET 16
struct hx9023s_bin {
u16 reg_count;
u16 fw_size;
u8 fw_ver;
u8 data[] __counted_by(fw_size);
};
struct hx9023s_ch_data {
s16 raw; /* Raw Data*/
s16 lp; /* Low Pass Filter Data*/
s16 bl; /* Base Line Data */
s16 diff; /* Difference of Low Pass Data and Base Line Data */
struct {
unsigned int near;
unsigned int far;
} thres;
u16 dac;
u8 channel_positive;
u8 channel_negative;
bool sel_bl;
bool sel_raw;
bool sel_diff;
bool sel_lp;
bool enable;
};
struct hx9023s_data {
struct iio_trigger *trig;
struct regmap *regmap;
unsigned long chan_prox_stat;
unsigned long chan_read;
unsigned long chan_event;
unsigned long ch_en_stat;
unsigned long chan_in_use;
unsigned int prox_state_reg;
bool trigger_enabled;
struct {
__le16 channels[HX9023S_CH_NUM];
aligned_s64 ts;
} buffer;
/*
* Serialize access to registers below:
* HX9023S_PROX_INT_LOW_CFG,
* HX9023S_PROX_INT_HIGH_CFG,
* HX9023S_INTERRUPT_CFG,
* HX9023S_CH_NUM_CFG
* Serialize access to channel configuration in
* hx9023s_push_events and hx9023s_trigger_handler.
*/
struct mutex mutex;
struct hx9023s_ch_data ch_data[HX9023S_CH_NUM];
};
static const struct reg_sequence hx9023s_reg_init_list[] = {
/* scan period */
REG_SEQ0(HX9023S_PRF_CFG, 0x17),
/* full scale of conversion phase of each channel */
REG_SEQ0(HX9023S_RANGE_7_0, 0x11),
REG_SEQ0(HX9023S_RANGE_9_8, 0x02),
REG_SEQ0(HX9023S_RANGE_18_16, 0x00),
/* ADC average number and OSR number of each channel */
REG_SEQ0(HX9023S_AVG0_NOSR0_CFG, 0x71),
REG_SEQ0(HX9023S_NOSR12_CFG, 0x44),
REG_SEQ0(HX9023S_NOSR34_CFG, 0x00),
REG_SEQ0(HX9023S_AVG12_CFG, 0x33),
REG_SEQ0(HX9023S_AVG34_CFG, 0x00),
/* sample & integration frequency of the ADC */
REG_SEQ0(HX9023S_SAMPLE_NUM_7_0, 0x65),
REG_SEQ0(HX9023S_INTEGRATION_NUM_7_0, 0x65),
/* coefficient of the first order low pass filter during each channel */
REG_SEQ0(HX9023S_LP_ALP_1_0_CFG, 0x22),
REG_SEQ0(HX9023S_LP_ALP_3_2_CFG, 0x22),
REG_SEQ0(HX9023S_LP_ALP_4_CFG, 0x02),
/* up coefficient of the first order low pass filter during each channel */
REG_SEQ0(HX9023S_UP_ALP_1_0_CFG, 0x88),
REG_SEQ0(HX9023S_UP_ALP_3_2_CFG, 0x88),
REG_SEQ0(HX9023S_DN_UP_ALP_0_4_CFG, 0x18),
/* down coefficient of the first order low pass filter during each channel */
REG_SEQ0(HX9023S_DN_ALP_2_1_CFG, 0x11),
REG_SEQ0(HX9023S_DN_ALP_4_3_CFG, 0x11),
/* selection of data for the Data Mux Register to output data */
REG_SEQ0(HX9023S_RAW_BL_RD_CFG, 0xF0),
/* enable the interrupt function */
REG_SEQ0(HX9023S_INTERRUPT_CFG, 0xFF),
REG_SEQ0(HX9023S_INTERRUPT_CFG1, 0x3B),
REG_SEQ0(HX9023S_DITHER_CFG, 0x21),
/* threshold of the offset compensation */
REG_SEQ0(HX9023S_CALI_DIFF_CFG, 0x07),
/* proximity persistency number(near & far) */
REG_SEQ0(HX9023S_PROX_INT_HIGH_CFG, 0x01),
REG_SEQ0(HX9023S_PROX_INT_LOW_CFG, 0x01),
/* disable the data lock */
REG_SEQ0(HX9023S_DSP_CONFIG_CTRL1, 0x00),
};
static const struct iio_event_spec hx9023s_events[] = {
{
.type = IIO_EV_TYPE_THRESH,
.dir = IIO_EV_DIR_RISING,
.mask_shared_by_all = BIT(IIO_EV_INFO_PERIOD),
.mask_separate = BIT(IIO_EV_INFO_VALUE),
},
{
.type = IIO_EV_TYPE_THRESH,
.dir = IIO_EV_DIR_FALLING,
.mask_shared_by_all = BIT(IIO_EV_INFO_PERIOD),
.mask_separate = BIT(IIO_EV_INFO_VALUE),
},
{
.type = IIO_EV_TYPE_THRESH,
.dir = IIO_EV_DIR_EITHER,
.mask_separate = BIT(IIO_EV_INFO_ENABLE),
},
};
#define HX9023S_CHANNEL(idx) \
{ \
.type = IIO_PROXIMITY, \
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \
.info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ),\
.indexed = 1, \
.channel = idx, \
.address = 0, \
.event_spec = hx9023s_events, \
.num_event_specs = ARRAY_SIZE(hx9023s_events), \
.scan_index = idx, \
.scan_type = { \
.sign = 's', \
.realbits = 16, \
.storagebits = 16, \
.endianness = IIO_BE, \
}, \
}
static const struct iio_chan_spec hx9023s_channels[] = {
HX9023S_CHANNEL(0),
HX9023S_CHANNEL(1),
HX9023S_CHANNEL(2),
HX9023S_CHANNEL(3),
HX9023S_CHANNEL(4),
IIO_CHAN_SOFT_TIMESTAMP(5),
};
static const unsigned int hx9023s_samp_freq_table[] = {
2, 2, 4, 6, 8, 10, 14, 18, 22, 26,
30, 34, 38, 42, 46, 50, 56, 62, 68, 74,
80, 90, 100, 200, 300, 400, 600, 800, 1000, 2000,
3000, 4000,
};
static const struct regmap_range hx9023s_rd_reg_ranges[] = {
regmap_reg_range(HX9023S_GLOBAL_CTRL0, HX9023S_LP_DIFF_CH3_2),
};
static const struct regmap_range hx9023s_wr_reg_ranges[] = {
regmap_reg_range(HX9023S_GLOBAL_CTRL0, HX9023S_LP_DIFF_CH3_2),
};
static const struct regmap_range hx9023s_volatile_reg_ranges[] = {
regmap_reg_range(HX9023S_CAP_INI_CH4_0, HX9023S_LP_DIFF_CH4_2),
regmap_reg_range(HX9023S_CAP_INI_CH0_0, HX9023S_LP_DIFF_CH3_2),
regmap_reg_range(HX9023S_PROX_STATUS, HX9023S_PROX_STATUS),
};
static const struct regmap_access_table hx9023s_rd_regs = {
.yes_ranges = hx9023s_rd_reg_ranges,
.n_yes_ranges = ARRAY_SIZE(hx9023s_rd_reg_ranges),
};
static const struct regmap_access_table hx9023s_wr_regs = {
.yes_ranges = hx9023s_wr_reg_ranges,
.n_yes_ranges = ARRAY_SIZE(hx9023s_wr_reg_ranges),
};
static const struct regmap_access_table hx9023s_volatile_regs = {
.yes_ranges = hx9023s_volatile_reg_ranges,
.n_yes_ranges = ARRAY_SIZE(hx9023s_volatile_reg_ranges),
};
static const struct regmap_config hx9023s_regmap_config = {
.reg_bits = 8,
.val_bits = 8,
.cache_type = REGCACHE_MAPLE,
.rd_table = &hx9023s_rd_regs,
.wr_table = &hx9023s_wr_regs,
.volatile_table = &hx9023s_volatile_regs,
};
static int hx9023s_interrupt_enable(struct hx9023s_data *data)
{
return regmap_update_bits(data->regmap, HX9023S_INTERRUPT_CFG,
HX9023S_INTERRUPT_MASK, HX9023S_INTERRUPT_MASK);
}
static int hx9023s_interrupt_disable(struct hx9023s_data *data)
{
return regmap_update_bits(data->regmap, HX9023S_INTERRUPT_CFG,
HX9023S_INTERRUPT_MASK, 0x00);
}
static int hx9023s_data_lock(struct hx9023s_data *data, bool locked)
{
if (locked)
return regmap_update_bits(data->regmap,
HX9023S_DSP_CONFIG_CTRL1,
HX9023S_DATA_LOCK_MASK,
HX9023S_DATA_LOCK_MASK);
else
return regmap_update_bits(data->regmap,
HX9023S_DSP_CONFIG_CTRL1,
HX9023S_DATA_LOCK_MASK, 0);
}
static int hx9023s_ch_cfg(struct hx9023s_data *data)
{
__le16 reg_list[HX9023S_CH_NUM];
u8 ch_pos[HX9023S_CH_NUM];
u8 ch_neg[HX9023S_CH_NUM];
/* Bit positions corresponding to input pin connections */
u8 conn_cs[HX9023S_CH_NUM] = { 0, 2, 4, 6, 8 };
unsigned int i;
u16 reg;
for (i = 0; i < HX9023S_CH_NUM; i++) {
ch_pos[i] = data->ch_data[i].channel_positive == HX9023S_NOT_CONNECTED ?
HX9023S_NOT_CONNECTED : conn_cs[data->ch_data[i].channel_positive];
ch_neg[i] = data->ch_data[i].channel_negative == HX9023S_NOT_CONNECTED ?
HX9023S_NOT_CONNECTED : conn_cs[data->ch_data[i].channel_negative];
reg = (HX9023S_POS << ch_pos[i]) | (HX9023S_NEG << ch_neg[i]);
reg_list[i] = cpu_to_le16(reg);
}
return regmap_bulk_write(data->regmap, HX9023S_CH0_CFG_7_0, reg_list,
sizeof(reg_list));
}
static int hx9023s_write_far_debounce(struct hx9023s_data *data, int val)
{
guard(mutex)(&data->mutex);
return regmap_update_bits(data->regmap, HX9023S_PROX_INT_LOW_CFG,
HX9023S_PROX_DEBOUNCE_MASK,
FIELD_GET(HX9023S_PROX_DEBOUNCE_MASK, val));
}
static int hx9023s_write_near_debounce(struct hx9023s_data *data, int val)
{
guard(mutex)(&data->mutex);
return regmap_update_bits(data->regmap, HX9023S_PROX_INT_HIGH_CFG,
HX9023S_PROX_DEBOUNCE_MASK,
FIELD_GET(HX9023S_PROX_DEBOUNCE_MASK, val));
}
static int hx9023s_read_far_debounce(struct hx9023s_data *data, int *val)
{
int ret;
ret = regmap_read(data->regmap, HX9023S_PROX_INT_LOW_CFG, val);
if (ret)
return ret;
*val = FIELD_GET(HX9023S_PROX_DEBOUNCE_MASK, *val);
return IIO_VAL_INT;
}
static int hx9023s_read_near_debounce(struct hx9023s_data *data, int *val)
{
int ret;
ret = regmap_read(data->regmap, HX9023S_PROX_INT_HIGH_CFG, val);
if (ret)
return ret;
*val = FIELD_GET(HX9023S_PROX_DEBOUNCE_MASK, *val);
return IIO_VAL_INT;
}
static int hx9023s_get_thres_near(struct hx9023s_data *data, u8 ch, int *val)
{
int ret;
__le16 buf;
unsigned int reg, tmp;
reg = (ch == 4) ? HX9023S_PROX_HIGH_DIFF_CFG_CH4_0 :
HX9023S_PROX_HIGH_DIFF_CFG_CH0_0 + (ch * 2);
ret = regmap_bulk_read(data->regmap, reg, &buf, sizeof(buf));
if (ret)
return ret;
tmp = (le16_to_cpu(buf) & GENMASK(9, 0)) * 32;
data->ch_data[ch].thres.near = tmp;
*val = tmp;
return IIO_VAL_INT;
}
static int hx9023s_get_thres_far(struct hx9023s_data *data, u8 ch, int *val)
{
int ret;
__le16 buf;
unsigned int reg, tmp;
reg = (ch == 4) ? HX9023S_PROX_LOW_DIFF_CFG_CH4_0 :
HX9023S_PROX_LOW_DIFF_CFG_CH0_0 + (ch * 2);
ret = regmap_bulk_read(data->regmap, reg, &buf, sizeof(buf));
if (ret)
return ret;
tmp = (le16_to_cpu(buf) & GENMASK(9, 0)) * 32;
data->ch_data[ch].thres.far = tmp;
*val = tmp;
return IIO_VAL_INT;
}
static int hx9023s_set_thres_near(struct hx9023s_data *data, u8 ch, int val)
{
__le16 val_le16 = cpu_to_le16((val / 32) & GENMASK(9, 0));
unsigned int reg;
data->ch_data[ch].thres.near = ((val / 32) & GENMASK(9, 0)) * 32;
reg = (ch == 4) ? HX9023S_PROX_HIGH_DIFF_CFG_CH4_0 :
HX9023S_PROX_HIGH_DIFF_CFG_CH0_0 + (ch * 2);
return regmap_bulk_write(data->regmap, reg, &val_le16, sizeof(val_le16));
}
static int hx9023s_set_thres_far(struct hx9023s_data *data, u8 ch, int val)
{
__le16 val_le16 = cpu_to_le16((val / 32) & GENMASK(9, 0));
unsigned int reg;
data->ch_data[ch].thres.far = ((val / 32) & GENMASK(9, 0)) * 32;
reg = (ch == 4) ? HX9023S_PROX_LOW_DIFF_CFG_CH4_0 :
HX9023S_PROX_LOW_DIFF_CFG_CH0_0 + (ch * 2);
return regmap_bulk_write(data->regmap, reg, &val_le16, sizeof(val_le16));
}
static int hx9023s_get_prox_state(struct hx9023s_data *data)
{
return regmap_read(data->regmap, HX9023S_PROX_STATUS, &data->prox_state_reg);
}
static int hx9023s_data_select(struct hx9023s_data *data)
{
int ret;
unsigned int i, buf;
unsigned long tmp;
ret = regmap_read(data->regmap, HX9023S_RAW_BL_RD_CFG, &buf);
if (ret)
return ret;
tmp = buf;
for (i = 0; i < 4; i++) {
data->ch_data[i].sel_diff = test_bit(i, &tmp);
data->ch_data[i].sel_lp = !data->ch_data[i].sel_diff;
data->ch_data[i].sel_bl = test_bit(i + 4, &tmp);
data->ch_data[i].sel_raw = !data->ch_data[i].sel_bl;
}
ret = regmap_read(data->regmap, HX9023S_INTERRUPT_CFG1, &buf);
if (ret)
return ret;
tmp = buf;
data->ch_data[4].sel_diff = test_bit(2, &tmp);
data->ch_data[4].sel_lp = !data->ch_data[4].sel_diff;
data->ch_data[4].sel_bl = test_bit(3, &tmp);
data->ch_data[4].sel_raw = !data->ch_data[4].sel_bl;
return 0;
}
static int hx9023s_sample(struct hx9023s_data *data)
{
int ret;
unsigned int i;
u8 buf[HX9023S_CH_NUM * 3];
u16 value;
ret = hx9023s_data_lock(data, true);
if (ret)
return ret;
ret = hx9023s_data_select(data);
if (ret)
goto err;
/* 3 bytes for each of channels 0 to 3 which have contiguous registers */
ret = regmap_bulk_read(data->regmap, HX9023S_RAW_BL_CH0_0, buf, 12);
if (ret)
goto err;
/* 3 bytes for channel 4 */
ret = regmap_bulk_read(data->regmap, HX9023S_RAW_BL_CH4_0, buf + 12, 3);
if (ret)
goto err;
for (i = 0; i < HX9023S_CH_NUM; i++) {
value = get_unaligned_le16(&buf[i * 3 + 1]);
data->ch_data[i].raw = 0;
data->ch_data[i].bl = 0;
if (data->ch_data[i].sel_raw)
data->ch_data[i].raw = value;
if (data->ch_data[i].sel_bl)
data->ch_data[i].bl = value;
}
/* 3 bytes for each of channels 0 to 3 which have contiguous registers */
ret = regmap_bulk_read(data->regmap, HX9023S_LP_DIFF_CH0_0, buf, 12);
if (ret)
goto err;
/* 3 bytes for channel 4 */
ret = regmap_bulk_read(data->regmap, HX9023S_LP_DIFF_CH4_0, buf + 12, 3);
if (ret)
goto err;
for (i = 0; i < HX9023S_CH_NUM; i++) {
value = get_unaligned_le16(&buf[i * 3 + 1]);
data->ch_data[i].lp = 0;
data->ch_data[i].diff = 0;
if (data->ch_data[i].sel_lp)
data->ch_data[i].lp = value;
if (data->ch_data[i].sel_diff)
data->ch_data[i].diff = value;
}
for (i = 0; i < HX9023S_CH_NUM; i++) {
if (data->ch_data[i].sel_lp && data->ch_data[i].sel_bl)
data->ch_data[i].diff = data->ch_data[i].lp - data->ch_data[i].bl;
}
/* 2 bytes for each of channels 0 to 4 which have contiguous registers */
ret = regmap_bulk_read(data->regmap, HX9023S_OFFSET_DAC0_7_0, buf, 10);
if (ret)
goto err;
for (i = 0; i < HX9023S_CH_NUM; i++) {
value = get_unaligned_le16(&buf[i * 2]);
value = FIELD_GET(GENMASK(11, 0), value);
data->ch_data[i].dac = value;
}
err:
return hx9023s_data_lock(data, false);
}
static int hx9023s_ch_en(struct hx9023s_data *data, u8 ch_id, bool en)
{
int ret;
unsigned int buf;
ret = regmap_read(data->regmap, HX9023S_CH_NUM_CFG, &buf);
if (ret)
return ret;
data->ch_en_stat = buf;
if (en && data->ch_en_stat == 0)
data->prox_state_reg = 0;
data->ch_data[ch_id].enable = en;
__assign_bit(ch_id, &data->ch_en_stat, en);
return regmap_write(data->regmap, HX9023S_CH_NUM_CFG, data->ch_en_stat);
}
static int hx9023s_property_get(struct hx9023s_data *data)
{
struct device *dev = regmap_get_device(data->regmap);
u32 array[2];
u32 i, reg, temp;
int ret;
data->chan_in_use = 0;
for (i = 0; i < HX9023S_CH_NUM; i++) {
data->ch_data[i].channel_positive = HX9023S_NOT_CONNECTED;
data->ch_data[i].channel_negative = HX9023S_NOT_CONNECTED;
}
device_for_each_child_node_scoped(dev, child) {
ret = fwnode_property_read_u32(child, "reg", &reg);
if (ret || reg >= HX9023S_CH_NUM)
return dev_err_probe(dev, ret < 0 ? ret : -EINVAL,
"Failed to read reg\n");
__set_bit(reg, &data->chan_in_use);
ret = fwnode_property_read_u32(child, "single-channel", &temp);
if (ret == 0) {
data->ch_data[reg].channel_positive = temp;
data->ch_data[reg].channel_negative = HX9023S_NOT_CONNECTED;
} else {
ret = fwnode_property_read_u32_array(child, "diff-channels",
array, ARRAY_SIZE(array));
if (ret == 0) {
data->ch_data[reg].channel_positive = array[0];
data->ch_data[reg].channel_negative = array[1];
} else {
return dev_err_probe(dev, ret,
"Property read failed: %d\n",
reg);
}
}
}
return 0;
}
static int hx9023s_update_chan_en(struct hx9023s_data *data,
unsigned long chan_read,
unsigned long chan_event)
{
unsigned int i;
unsigned long channels = chan_read | chan_event;
if ((data->chan_read | data->chan_event) != channels) {
for_each_set_bit(i, &channels, HX9023S_CH_NUM)
hx9023s_ch_en(data, i, test_bit(i, &data->chan_in_use));
for_each_clear_bit(i, &channels, HX9023S_CH_NUM)
hx9023s_ch_en(data, i, false);
}
data->chan_read = chan_read;
data->chan_event = chan_event;
return 0;
}
static int hx9023s_get_proximity(struct hx9023s_data *data,
const struct iio_chan_spec *chan,
int *val)
{
int ret;
ret = hx9023s_sample(data);
if (ret)
return ret;
ret = hx9023s_get_prox_state(data);
if (ret)
return ret;
*val = data->ch_data[chan->channel].diff;
return IIO_VAL_INT;
}
static int hx9023s_get_samp_freq(struct hx9023s_data *data, int *val, int *val2)
{
int ret;
unsigned int odr, index;
ret = regmap_read(data->regmap, HX9023S_PRF_CFG, &index);
if (ret)
return ret;
odr = hx9023s_samp_freq_table[index];
*val = KILO / odr;
*val2 = div_u64((KILO % odr) * MICRO, odr);
return IIO_VAL_INT_PLUS_MICRO;
}
static int hx9023s_read_raw(struct iio_dev *indio_dev,
const struct iio_chan_spec *chan,
int *val, int *val2, long mask)
{
struct hx9023s_data *data = iio_priv(indio_dev);
int ret;
if (chan->type != IIO_PROXIMITY)
return -EINVAL;
switch (mask) {
case IIO_CHAN_INFO_RAW:
if (!iio_device_claim_direct(indio_dev))
return -EBUSY;
ret = hx9023s_get_proximity(data, chan, val);
iio_device_release_direct(indio_dev);
return ret;
case IIO_CHAN_INFO_SAMP_FREQ:
return hx9023s_get_samp_freq(data, val, val2);
default:
return -EINVAL;
}
}
static int hx9023s_set_samp_freq(struct hx9023s_data *data, int val, int val2)
{
struct device *dev = regmap_get_device(data->regmap);
unsigned int i, period_ms;
period_ms = div_u64(NANO, (val * MEGA + val2));
for (i = 0; i < ARRAY_SIZE(hx9023s_samp_freq_table); i++) {
if (period_ms == hx9023s_samp_freq_table[i])
break;
}
if (i == ARRAY_SIZE(hx9023s_samp_freq_table)) {
dev_err(dev, "Period:%dms NOT found!\n", period_ms);
return -EINVAL;
}
return regmap_write(data->regmap, HX9023S_PRF_CFG, i);
}
static int hx9023s_write_raw(struct iio_dev *indio_dev,
const struct iio_chan_spec *chan,
int val, int val2, long mask)
{
struct hx9023s_data *data = iio_priv(indio_dev);
if (chan->type != IIO_PROXIMITY)
return -EINVAL;
if (mask != IIO_CHAN_INFO_SAMP_FREQ)
return -EINVAL;
return hx9023s_set_samp_freq(data, val, val2);
}
static irqreturn_t hx9023s_irq_handler(int irq, void *private)
{
struct iio_dev *indio_dev = private;
struct hx9023s_data *data = iio_priv(indio_dev);
if (data->trigger_enabled)
iio_trigger_poll(data->trig);
return IRQ_WAKE_THREAD;
}
static void hx9023s_push_events(struct iio_dev *indio_dev)
{
struct hx9023s_data *data = iio_priv(indio_dev);
s64 timestamp = iio_get_time_ns(indio_dev);
unsigned long prox_changed;
unsigned int chan;
int ret;
ret = hx9023s_sample(data);
if (ret)
return;
ret = hx9023s_get_prox_state(data);
if (ret)
return;
prox_changed = (data->chan_prox_stat ^ data->prox_state_reg) & data->chan_event;
for_each_set_bit(chan, &prox_changed, HX9023S_CH_NUM) {
unsigned int dir;
dir = (data->prox_state_reg & BIT(chan)) ?
IIO_EV_DIR_FALLING : IIO_EV_DIR_RISING;
iio_push_event(indio_dev,
IIO_UNMOD_EVENT_CODE(IIO_PROXIMITY, chan,
IIO_EV_TYPE_THRESH, dir),
timestamp);
}
data->chan_prox_stat = data->prox_state_reg;
}
static irqreturn_t hx9023s_irq_thread_handler(int irq, void *private)
{
struct iio_dev *indio_dev = private;
struct hx9023s_data *data = iio_priv(indio_dev);
guard(mutex)(&data->mutex);
hx9023s_push_events(indio_dev);
return IRQ_HANDLED;
}
static int hx9023s_read_event_val(struct iio_dev *indio_dev,
const struct iio_chan_spec *chan,
enum iio_event_type type,
enum iio_event_direction dir,
enum iio_event_info info, int *val, int *val2)
{
struct hx9023s_data *data = iio_priv(indio_dev);
if (chan->type != IIO_PROXIMITY)
return -EINVAL;
switch (info) {
case IIO_EV_INFO_VALUE:
switch (dir) {
case IIO_EV_DIR_RISING:
return hx9023s_get_thres_far(data, chan->channel, val);
case IIO_EV_DIR_FALLING:
return hx9023s_get_thres_near(data, chan->channel, val);
default:
return -EINVAL;
}
case IIO_EV_INFO_PERIOD:
switch (dir) {
case IIO_EV_DIR_RISING:
return hx9023s_read_far_debounce(data, val);
case IIO_EV_DIR_FALLING:
return hx9023s_read_near_debounce(data, val);
default:
return -EINVAL;
}
default:
return -EINVAL;
}
}
static int hx9023s_write_event_val(struct iio_dev *indio_dev,
const struct iio_chan_spec *chan,
enum iio_event_type type,
enum iio_event_direction dir,
enum iio_event_info info, int val, int val2)
{
struct hx9023s_data *data = iio_priv(indio_dev);
if (chan->type != IIO_PROXIMITY)
return -EINVAL;
switch (info) {
case IIO_EV_INFO_VALUE:
switch (dir) {
case IIO_EV_DIR_RISING:
return hx9023s_set_thres_far(data, chan->channel, val);
case IIO_EV_DIR_FALLING:
return hx9023s_set_thres_near(data, chan->channel, val);
default:
return -EINVAL;
}
case IIO_EV_INFO_PERIOD:
switch (dir) {
case IIO_EV_DIR_RISING:
return hx9023s_write_far_debounce(data, val);
case IIO_EV_DIR_FALLING:
return hx9023s_write_near_debounce(data, val);
default:
return -EINVAL;
}
default:
return -EINVAL;
}
}
static int hx9023s_read_event_config(struct iio_dev *indio_dev,
const struct iio_chan_spec *chan,
enum iio_event_type type,
enum iio_event_direction dir)
{
struct hx9023s_data *data = iio_priv(indio_dev);
return test_bit(chan->channel, &data->chan_event);
}
static int hx9023s_write_event_config(struct iio_dev *indio_dev,
const struct iio_chan_spec *chan,
enum iio_event_type type,
enum iio_event_direction dir,
bool state)
{
struct hx9023s_data *data = iio_priv(indio_dev);
if (test_bit(chan->channel, &data->chan_in_use)) {
hx9023s_ch_en(data, chan->channel, state);
__assign_bit(chan->channel, &data->chan_event,
data->ch_data[chan->channel].enable);
}
return 0;
}
static const struct iio_info hx9023s_info = {
.read_raw = hx9023s_read_raw,
.write_raw = hx9023s_write_raw,
.read_event_value = hx9023s_read_event_val,
.write_event_value = hx9023s_write_event_val,
.read_event_config = hx9023s_read_event_config,
.write_event_config = hx9023s_write_event_config,
};
static int hx9023s_set_trigger_state(struct iio_trigger *trig, bool state)
{
struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig);
struct hx9023s_data *data = iio_priv(indio_dev);
guard(mutex)(&data->mutex);
if (state)
hx9023s_interrupt_enable(data);
else if (!data->chan_read)
hx9023s_interrupt_disable(data);
data->trigger_enabled = state;
return 0;
}
static const struct iio_trigger_ops hx9023s_trigger_ops = {
.set_trigger_state = hx9023s_set_trigger_state,
};
static irqreturn_t hx9023s_trigger_handler(int irq, void *private)
{
struct iio_poll_func *pf = private;
struct iio_dev *indio_dev = pf->indio_dev;
struct hx9023s_data *data = iio_priv(indio_dev);
struct device *dev = regmap_get_device(data->regmap);
unsigned int bit, index, i = 0;
int ret;
guard(mutex)(&data->mutex);
ret = hx9023s_sample(data);
if (ret) {
dev_warn(dev, "sampling failed\n");
goto out;
}
ret = hx9023s_get_prox_state(data);
if (ret) {
dev_warn(dev, "get prox failed\n");
goto out;
}
iio_for_each_active_channel(indio_dev, bit) {
index = indio_dev->channels[bit].channel;
data->buffer.channels[i++] = cpu_to_le16(data->ch_data[index].diff);
}
iio_push_to_buffers_with_ts(indio_dev, &data->buffer,
sizeof(data->buffer), pf->timestamp);
out:
iio_trigger_notify_done(indio_dev->trig);
return IRQ_HANDLED;
}
static int hx9023s_buffer_preenable(struct iio_dev *indio_dev)
{
struct hx9023s_data *data = iio_priv(indio_dev);
unsigned long channels = 0;
unsigned int bit;
guard(mutex)(&data->mutex);
iio_for_each_active_channel(indio_dev, bit)
__set_bit(indio_dev->channels[bit].channel, &channels);
hx9023s_update_chan_en(data, channels, data->chan_event);
return 0;
}
static int hx9023s_buffer_postdisable(struct iio_dev *indio_dev)
{
struct hx9023s_data *data = iio_priv(indio_dev);
guard(mutex)(&data->mutex);
hx9023s_update_chan_en(data, 0, data->chan_event);
return 0;
}
static const struct iio_buffer_setup_ops hx9023s_buffer_setup_ops = {
.preenable = hx9023s_buffer_preenable,
.postdisable = hx9023s_buffer_postdisable,
};
static int hx9023s_id_check(struct iio_dev *indio_dev)
{
struct hx9023s_data *data = iio_priv(indio_dev);
struct device *dev = regmap_get_device(data->regmap);
unsigned int id;
int ret;
ret = regmap_read(data->regmap, HX9023S_DEVICE_ID, &id);
if (ret)
return ret;
if (id != HX9023S_CHIP_ID)
dev_warn(dev, "Unexpected chip ID, assuming compatible\n");
return 0;
}
static int hx9023s_bin_load(struct hx9023s_data *data, struct hx9023s_bin *bin)
{
u8 *cfg_start = bin->data + FW_DATA_OFFSET;
u8 addr, val;
u16 i;
int ret;
for (i = 0; i < bin->reg_count; i++) {
addr = cfg_start[i * 2];
val = cfg_start[i * 2 + 1];
ret = regmap_write(data->regmap, addr, val);
if (ret < 0)
return ret;
}
return 0;
}
static int hx9023s_send_cfg(const struct firmware *fw, struct hx9023s_data *data)
{
struct hx9023s_bin *bin __free(kfree) =
kzalloc(fw->size + sizeof(*bin), GFP_KERNEL);
if (!bin)
return -ENOMEM;
memcpy(bin->data, fw->data, fw->size);
bin->fw_size = fw->size;
bin->fw_ver = bin->data[FW_VER_OFFSET];
bin->reg_count = get_unaligned_le16(bin->data + FW_REG_CNT_OFFSET);
release_firmware(fw);
return hx9023s_bin_load(data, bin);
}
static void hx9023s_cfg_update(const struct firmware *fw, void *context)
{
struct hx9023s_data *data = context;
struct device *dev = regmap_get_device(data->regmap);
int ret;
if (!fw || !fw->data) {
dev_warn(dev, "No firmware\n");
goto no_fw;
}
ret = hx9023s_send_cfg(fw, data);
if (ret) {
dev_warn(dev, "Firmware update failed: %d\n", ret);
goto no_fw;
}
ret = regcache_sync(data->regmap);
if (ret)
dev_err(dev, "regcache sync failed\n");
return;
no_fw:
ret = regmap_multi_reg_write(data->regmap, hx9023s_reg_init_list,
ARRAY_SIZE(hx9023s_reg_init_list));
if (ret) {
dev_err(dev, "Error loading default configuration\n");
return;
}
ret = regcache_sync(data->regmap);
if (ret)
dev_err(dev, "regcache sync failed\n");
}
static int hx9023s_probe(struct i2c_client *client)
{
struct device *dev = &client->dev;
struct iio_dev *indio_dev;
struct hx9023s_data *data;
int ret;
indio_dev = devm_iio_device_alloc(dev, sizeof(*data));
if (!indio_dev)
return -ENOMEM;
data = iio_priv(indio_dev);
mutex_init(&data->mutex);
data->regmap = devm_regmap_init_i2c(client, &hx9023s_regmap_config);
if (IS_ERR(data->regmap))
return dev_err_probe(dev, PTR_ERR(data->regmap),
"regmap init failed\n");
ret = hx9023s_property_get(data);
if (ret)
return dev_err_probe(dev, ret, "dts phase failed\n");
ret = devm_regulator_get_enable(dev, "vdd");
if (ret)
return dev_err_probe(dev, ret, "regulator get failed\n");
ret = hx9023s_id_check(indio_dev);
if (ret)
return dev_err_probe(dev, ret, "id check failed\n");
indio_dev->name = "hx9023s";
indio_dev->channels = hx9023s_channels;
indio_dev->num_channels = ARRAY_SIZE(hx9023s_channels);
indio_dev->info = &hx9023s_info;
indio_dev->modes = INDIO_DIRECT_MODE;
i2c_set_clientdata(client, indio_dev);
ret = hx9023s_ch_cfg(data);
if (ret)
return dev_err_probe(dev, ret, "channel config failed\n");
ret = request_firmware_nowait(THIS_MODULE, true, "hx9023s.bin", dev,
GFP_KERNEL, data, hx9023s_cfg_update);
if (ret)
return dev_err_probe(dev, ret, "reg config failed\n");
if (client->irq) {
ret = devm_request_threaded_irq(dev, client->irq,
hx9023s_irq_handler,
hx9023s_irq_thread_handler,
IRQF_ONESHOT,
"hx9023s_event", indio_dev);
if (ret)
return dev_err_probe(dev, ret, "irq request failed\n");
data->trig = devm_iio_trigger_alloc(dev, "%s-dev%d",
indio_dev->name,
iio_device_id(indio_dev));
if (!data->trig)
return dev_err_probe(dev, -ENOMEM,
"iio trigger alloc failed\n");
data->trig->ops = &hx9023s_trigger_ops;
iio_trigger_set_drvdata(data->trig, indio_dev);
ret = devm_iio_trigger_register(dev, data->trig);
if (ret)
return dev_err_probe(dev, ret,
"iio trigger register failed\n");
}
ret = devm_iio_triggered_buffer_setup(dev, indio_dev,
iio_pollfunc_store_time,
hx9023s_trigger_handler,
&hx9023s_buffer_setup_ops);
if (ret)
return dev_err_probe(dev, ret,
"iio triggered buffer setup failed\n");
return devm_iio_device_register(dev, indio_dev);
}
static int hx9023s_suspend(struct device *dev)
{
struct hx9023s_data *data = iio_priv(dev_get_drvdata(dev));
guard(mutex)(&data->mutex);
hx9023s_interrupt_disable(data);
return 0;
}
static int hx9023s_resume(struct device *dev)
{
struct hx9023s_data *data = iio_priv(dev_get_drvdata(dev));
guard(mutex)(&data->mutex);
if (data->trigger_enabled)
hx9023s_interrupt_enable(data);
return 0;
}
static DEFINE_SIMPLE_DEV_PM_OPS(hx9023s_pm_ops, hx9023s_suspend,
hx9023s_resume);
static const struct of_device_id hx9023s_of_match[] = {
{ .compatible = "tyhx,hx9023s" },
{ }
};
MODULE_DEVICE_TABLE(of, hx9023s_of_match);
static const struct i2c_device_id hx9023s_id[] = {
{ "hx9023s" },
{ }
};
MODULE_DEVICE_TABLE(i2c, hx9023s_id);
static struct i2c_driver hx9023s_driver = {
.driver = {
.name = "hx9023s",
.of_match_table = hx9023s_of_match,
.pm = &hx9023s_pm_ops,
/*
* The I2C operations in hx9023s_reg_init() and hx9023s_ch_cfg()
* are time-consuming. Prefer async so we don't delay boot
* if we're builtin to the kernel.
*/
.probe_type = PROBE_PREFER_ASYNCHRONOUS,
},
.probe = hx9023s_probe,
.id_table = hx9023s_id,
};
module_i2c_driver(hx9023s_driver);
MODULE_AUTHOR("Yasin Lee <yasin.lee.x@gmail.com>");
MODULE_DESCRIPTION("Driver for TYHX HX9023S SAR sensor");
MODULE_LICENSE("GPL");