linux/drivers/iio/light/veml6030.c
David Lechner f646c99ade iio: light: veml6030: use = { } instead of memset()
Use { } instead of memset() to zero-initialize stack memory to simplify
the code.

Signed-off-by: David Lechner <dlechner@baylibre.com>
Tested-by: Javier Carrasco <javier.carrasco.cruz@gmail.com>
Reviewed-by: Javier Carrasco <javier.carrasco.cruz@gmail.com>
Reviewed-by: Nuno Sá <nuno.sa@analog.com>
Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Link: https://patch.msgid.link/20250611-iio-zero-init-stack-with-instead-of-memset-v1-21-ebb2d0a24302@baylibre.com
Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
2025-06-26 19:32:57 +01:00

1242 lines
32 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/*
* VEML6030, VMEL6035 and VEML7700 Ambient Light Sensors
*
* Copyright (c) 2019, Rishi Gupta <gupt21@gmail.com>
*
* VEML6030:
* Datasheet: https://www.vishay.com/docs/84366/veml6030.pdf
* Appnote-84367: https://www.vishay.com/docs/84367/designingveml6030.pdf
*
* VEML6035:
* Datasheet: https://www.vishay.com/docs/84889/veml6035.pdf
* Appnote-84944: https://www.vishay.com/docs/84944/designingveml6035.pdf
*
* VEML7700:
* Datasheet: https://www.vishay.com/docs/84286/veml7700.pdf
* Appnote-84323: https://www.vishay.com/docs/84323/designingveml7700.pdf
*/
#include <linux/bitfield.h>
#include <linux/module.h>
#include <linux/i2c.h>
#include <linux/err.h>
#include <linux/regmap.h>
#include <linux/interrupt.h>
#include <linux/pm_runtime.h>
#include <linux/units.h>
#include <linux/regulator/consumer.h>
#include <linux/iio/iio.h>
#include <linux/iio/sysfs.h>
#include <linux/iio/events.h>
#include <linux/iio/iio-gts-helper.h>
#include <linux/iio/trigger_consumer.h>
#include <linux/iio/triggered_buffer.h>
/* Device registers */
#define VEML6030_REG_ALS_CONF 0x00
#define VEML6030_REG_ALS_WH 0x01
#define VEML6030_REG_ALS_WL 0x02
#define VEML6030_REG_ALS_PSM 0x03
#define VEML6030_REG_ALS_DATA 0x04
#define VEML6030_REG_WH_DATA 0x05
#define VEML6030_REG_ALS_INT 0x06
#define VEML6030_REG_DATA(ch) (VEML6030_REG_ALS_DATA + (ch))
/* Bit masks for specific functionality */
#define VEML6030_ALS_IT GENMASK(9, 6)
#define VEML6030_PSM GENMASK(2, 1)
#define VEML6030_ALS_PERS GENMASK(5, 4)
#define VEML6030_ALS_GAIN GENMASK(12, 11)
#define VEML6030_PSM_EN BIT(0)
#define VEML6030_INT_TH_LOW BIT(15)
#define VEML6030_INT_TH_HIGH BIT(14)
#define VEML6030_ALS_INT_EN BIT(1)
#define VEML6030_ALS_SD BIT(0)
#define VEML6035_GAIN_M GENMASK(12, 10)
#define VEML6035_GAIN BIT(10)
#define VEML6035_DG BIT(11)
#define VEML6035_SENS BIT(12)
#define VEML6035_INT_CHAN BIT(3)
#define VEML6035_CHAN_EN BIT(2)
/* Regfields */
#define VEML6030_GAIN_RF REG_FIELD(VEML6030_REG_ALS_CONF, 11, 12)
#define VEML6030_IT_RF REG_FIELD(VEML6030_REG_ALS_CONF, 6, 9)
#define VEML6035_GAIN_RF REG_FIELD(VEML6030_REG_ALS_CONF, 10, 12)
/* Maximum scales x 10000 to work with integers */
#define VEML6030_MAX_SCALE 21504
#define VEML6035_MAX_SCALE 4096
enum veml6030_scan {
VEML6030_SCAN_ALS,
VEML6030_SCAN_WH,
VEML6030_SCAN_TIMESTAMP,
};
struct veml6030_rf {
struct regmap_field *it;
struct regmap_field *gain;
};
struct veml603x_chip {
const char *name;
const struct iio_chan_spec *channels;
const int num_channels;
const struct reg_field gain_rf;
const struct reg_field it_rf;
const int max_scale;
int (*hw_init)(struct iio_dev *indio_dev, struct device *dev);
int (*set_info)(struct iio_dev *indio_dev);
};
/*
* The resolution depends on both gain and integration time. The
* cur_resolution stores one of the resolution mentioned in the
* table during startup and gets updated whenever integration time
* or gain is changed.
*
* Table 'resolution and maximum detection range' in the appnotes
* is visualized as a 2D array. The cur_gain stores index of gain
* in this table (0-3 for VEML6030, 0-5 for VEML6035) while the
* cur_integration_time holds index of integration time (0-5).
*/
struct veml6030_data {
struct i2c_client *client;
struct regmap *regmap;
struct veml6030_rf rf;
const struct veml603x_chip *chip;
struct iio_gts gts;
};
#define VEML6030_SEL_IT_25MS 0x0C
#define VEML6030_SEL_IT_50MS 0x08
#define VEML6030_SEL_IT_100MS 0x00
#define VEML6030_SEL_IT_200MS 0x01
#define VEML6030_SEL_IT_400MS 0x02
#define VEML6030_SEL_IT_800MS 0x03
static const struct iio_itime_sel_mul veml6030_it_sel[] = {
GAIN_SCALE_ITIME_US(25000, VEML6030_SEL_IT_25MS, 1),
GAIN_SCALE_ITIME_US(50000, VEML6030_SEL_IT_50MS, 2),
GAIN_SCALE_ITIME_US(100000, VEML6030_SEL_IT_100MS, 4),
GAIN_SCALE_ITIME_US(200000, VEML6030_SEL_IT_200MS, 8),
GAIN_SCALE_ITIME_US(400000, VEML6030_SEL_IT_400MS, 16),
GAIN_SCALE_ITIME_US(800000, VEML6030_SEL_IT_800MS, 32),
};
/* Gains are multiplied by 8 to work with integers. The values in the
* iio-gts tables don't need corrections because the maximum value of
* the scale refers to GAIN = x1, and the rest of the values are
* obtained from the resulting linear function.
*/
#define VEML6030_SEL_MILLI_GAIN_X125 2
#define VEML6030_SEL_MILLI_GAIN_X250 3
#define VEML6030_SEL_MILLI_GAIN_X1000 0
#define VEML6030_SEL_MILLI_GAIN_X2000 1
static const struct iio_gain_sel_pair veml6030_gain_sel[] = {
GAIN_SCALE_GAIN(1, VEML6030_SEL_MILLI_GAIN_X125),
GAIN_SCALE_GAIN(2, VEML6030_SEL_MILLI_GAIN_X250),
GAIN_SCALE_GAIN(8, VEML6030_SEL_MILLI_GAIN_X1000),
GAIN_SCALE_GAIN(16, VEML6030_SEL_MILLI_GAIN_X2000),
};
#define VEML6035_SEL_MILLI_GAIN_X125 4
#define VEML6035_SEL_MILLI_GAIN_X250 5
#define VEML6035_SEL_MILLI_GAIN_X500 7
#define VEML6035_SEL_MILLI_GAIN_X1000 0
#define VEML6035_SEL_MILLI_GAIN_X2000 1
#define VEML6035_SEL_MILLI_GAIN_X4000 3
static const struct iio_gain_sel_pair veml6035_gain_sel[] = {
GAIN_SCALE_GAIN(1, VEML6035_SEL_MILLI_GAIN_X125),
GAIN_SCALE_GAIN(2, VEML6035_SEL_MILLI_GAIN_X250),
GAIN_SCALE_GAIN(4, VEML6035_SEL_MILLI_GAIN_X500),
GAIN_SCALE_GAIN(8, VEML6035_SEL_MILLI_GAIN_X1000),
GAIN_SCALE_GAIN(16, VEML6035_SEL_MILLI_GAIN_X2000),
GAIN_SCALE_GAIN(32, VEML6035_SEL_MILLI_GAIN_X4000),
};
/*
* Persistence = 1/2/4/8 x integration time
* Minimum time for which light readings must stay above configured
* threshold to assert the interrupt.
*/
static const char * const period_values[] = {
"0.1 0.2 0.4 0.8",
"0.2 0.4 0.8 1.6",
"0.4 0.8 1.6 3.2",
"0.8 1.6 3.2 6.4",
"0.05 0.1 0.2 0.4",
"0.025 0.050 0.1 0.2"
};
/*
* Return list of valid period values in seconds corresponding to
* the currently active integration time.
*/
static ssize_t in_illuminance_period_available_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct veml6030_data *data = iio_priv(dev_to_iio_dev(dev));
int ret, reg, x;
ret = regmap_read(data->regmap, VEML6030_REG_ALS_CONF, &reg);
if (ret) {
dev_err(&data->client->dev,
"can't read als conf register %d\n", ret);
return ret;
}
ret = ((reg >> 6) & 0xF);
switch (ret) {
case 0:
case 1:
case 2:
case 3:
x = ret;
break;
case 8:
x = 4;
break;
case 12:
x = 5;
break;
default:
return -EINVAL;
}
return sysfs_emit(buf, "%s\n", period_values[x]);
}
static IIO_DEVICE_ATTR_RO(in_illuminance_period_available, 0);
static struct attribute *veml6030_event_attributes[] = {
&iio_dev_attr_in_illuminance_period_available.dev_attr.attr,
NULL
};
static const struct attribute_group veml6030_event_attr_group = {
.attrs = veml6030_event_attributes,
};
static int veml6030_als_pwr_on(struct veml6030_data *data)
{
int ret;
ret = regmap_clear_bits(data->regmap, VEML6030_REG_ALS_CONF,
VEML6030_ALS_SD);
if (ret)
return ret;
/* Wait 4 ms to let processor & oscillator start correctly */
fsleep(4000);
return 0;
}
static int veml6030_als_shut_down(struct veml6030_data *data)
{
return regmap_set_bits(data->regmap, VEML6030_REG_ALS_CONF,
VEML6030_ALS_SD);
}
static void veml6030_als_shut_down_action(void *data)
{
veml6030_als_shut_down(data);
}
static const struct iio_event_spec veml6030_event_spec[] = {
{
.type = IIO_EV_TYPE_THRESH,
.dir = IIO_EV_DIR_RISING,
.mask_separate = BIT(IIO_EV_INFO_VALUE),
}, {
.type = IIO_EV_TYPE_THRESH,
.dir = IIO_EV_DIR_FALLING,
.mask_separate = BIT(IIO_EV_INFO_VALUE),
}, {
.type = IIO_EV_TYPE_THRESH,
.dir = IIO_EV_DIR_EITHER,
.mask_separate = BIT(IIO_EV_INFO_PERIOD) |
BIT(IIO_EV_INFO_ENABLE),
},
};
/* Channel number */
enum veml6030_chan {
CH_ALS,
CH_WHITE,
};
static const struct iio_chan_spec veml6030_channels[] = {
{
.type = IIO_LIGHT,
.channel = CH_ALS,
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
BIT(IIO_CHAN_INFO_PROCESSED) |
BIT(IIO_CHAN_INFO_INT_TIME) |
BIT(IIO_CHAN_INFO_SCALE),
.info_mask_shared_by_all_available = BIT(IIO_CHAN_INFO_INT_TIME) |
BIT(IIO_CHAN_INFO_SCALE),
.event_spec = veml6030_event_spec,
.num_event_specs = ARRAY_SIZE(veml6030_event_spec),
.scan_index = VEML6030_SCAN_ALS,
.scan_type = {
.sign = 'u',
.realbits = 16,
.storagebits = 16,
.endianness = IIO_CPU,
},
},
{
.type = IIO_INTENSITY,
.channel = CH_WHITE,
.modified = 1,
.channel2 = IIO_MOD_LIGHT_BOTH,
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
BIT(IIO_CHAN_INFO_INT_TIME) |
BIT(IIO_CHAN_INFO_SCALE),
.info_mask_shared_by_all_available = BIT(IIO_CHAN_INFO_INT_TIME) |
BIT(IIO_CHAN_INFO_SCALE),
.scan_index = VEML6030_SCAN_WH,
.scan_type = {
.sign = 'u',
.realbits = 16,
.storagebits = 16,
.endianness = IIO_CPU,
},
},
IIO_CHAN_SOFT_TIMESTAMP(VEML6030_SCAN_TIMESTAMP),
};
static const struct iio_chan_spec veml7700_channels[] = {
{
.type = IIO_LIGHT,
.channel = CH_ALS,
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
BIT(IIO_CHAN_INFO_PROCESSED) |
BIT(IIO_CHAN_INFO_INT_TIME) |
BIT(IIO_CHAN_INFO_SCALE),
.info_mask_shared_by_all_available = BIT(IIO_CHAN_INFO_INT_TIME) |
BIT(IIO_CHAN_INFO_SCALE),
.scan_index = VEML6030_SCAN_ALS,
.scan_type = {
.sign = 'u',
.realbits = 16,
.storagebits = 16,
.endianness = IIO_CPU,
},
},
{
.type = IIO_INTENSITY,
.channel = CH_WHITE,
.modified = 1,
.channel2 = IIO_MOD_LIGHT_BOTH,
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
BIT(IIO_CHAN_INFO_INT_TIME) |
BIT(IIO_CHAN_INFO_SCALE),
.info_mask_shared_by_all_available = BIT(IIO_CHAN_INFO_INT_TIME) |
BIT(IIO_CHAN_INFO_SCALE),
.scan_index = VEML6030_SCAN_WH,
.scan_type = {
.sign = 'u',
.realbits = 16,
.storagebits = 16,
.endianness = IIO_CPU,
},
},
IIO_CHAN_SOFT_TIMESTAMP(VEML6030_SCAN_TIMESTAMP),
};
static const struct regmap_range veml6030_readable_ranges[] = {
regmap_reg_range(VEML6030_REG_ALS_CONF, VEML6030_REG_ALS_INT),
};
static const struct regmap_access_table veml6030_readable_table = {
.yes_ranges = veml6030_readable_ranges,
.n_yes_ranges = ARRAY_SIZE(veml6030_readable_ranges),
};
static const struct regmap_range veml6030_writable_ranges[] = {
regmap_reg_range(VEML6030_REG_ALS_CONF, VEML6030_REG_ALS_PSM),
};
static const struct regmap_access_table veml6030_writable_table = {
.yes_ranges = veml6030_writable_ranges,
.n_yes_ranges = ARRAY_SIZE(veml6030_writable_ranges),
};
static const struct regmap_range veml6030_volatile_ranges[] = {
regmap_reg_range(VEML6030_REG_ALS_DATA, VEML6030_REG_WH_DATA),
};
static const struct regmap_access_table veml6030_volatile_table = {
.yes_ranges = veml6030_volatile_ranges,
.n_yes_ranges = ARRAY_SIZE(veml6030_volatile_ranges),
};
static const struct regmap_config veml6030_regmap_config = {
.name = "veml6030_regmap",
.reg_bits = 8,
.val_bits = 16,
.max_register = VEML6030_REG_ALS_INT,
.val_format_endian = REGMAP_ENDIAN_LITTLE,
.rd_table = &veml6030_readable_table,
.wr_table = &veml6030_writable_table,
.volatile_table = &veml6030_volatile_table,
.cache_type = REGCACHE_RBTREE,
};
static int veml6030_get_it(struct veml6030_data *data, int *val, int *val2)
{
int ret, it_idx;
ret = regmap_field_read(data->rf.it, &it_idx);
if (ret)
return ret;
ret = iio_gts_find_int_time_by_sel(&data->gts, it_idx);
if (ret < 0)
return ret;
*val2 = ret;
*val = 0;
return IIO_VAL_INT_PLUS_MICRO;
}
static int veml6030_set_it(struct iio_dev *indio_dev, int val, int val2)
{
struct veml6030_data *data = iio_priv(indio_dev);
int ret, gain_idx, it_idx, new_gain, prev_gain, prev_it;
bool in_range;
if (val || !iio_gts_valid_time(&data->gts, val2))
return -EINVAL;
ret = regmap_field_read(data->rf.it, &it_idx);
if (ret)
return ret;
ret = regmap_field_read(data->rf.gain, &gain_idx);
if (ret)
return ret;
prev_it = iio_gts_find_int_time_by_sel(&data->gts, it_idx);
if (prev_it < 0)
return prev_it;
if (prev_it == val2)
return 0;
prev_gain = iio_gts_find_gain_by_sel(&data->gts, gain_idx);
if (prev_gain < 0)
return prev_gain;
ret = iio_gts_find_new_gain_by_gain_time_min(&data->gts, prev_gain, prev_it,
val2, &new_gain, &in_range);
if (ret)
return ret;
if (!in_range)
dev_dbg(&data->client->dev, "Optimal gain out of range\n");
ret = iio_gts_find_sel_by_int_time(&data->gts, val2);
if (ret < 0)
return ret;
ret = regmap_field_write(data->rf.it, ret);
if (ret)
return ret;
ret = iio_gts_find_sel_by_gain(&data->gts, new_gain);
if (ret < 0)
return ret;
return regmap_field_write(data->rf.gain, ret);
}
static int veml6030_read_persistence(struct iio_dev *indio_dev,
int *val, int *val2)
{
int ret, reg, period, x, y;
struct veml6030_data *data = iio_priv(indio_dev);
ret = veml6030_get_it(data, &x, &y);
if (ret < 0)
return ret;
ret = regmap_read(data->regmap, VEML6030_REG_ALS_CONF, &reg);
if (ret) {
dev_err(&data->client->dev,
"can't read als conf register %d\n", ret);
}
/* integration time multiplied by 1/2/4/8 */
period = y * (1 << ((reg >> 4) & 0x03));
*val = period / 1000000;
*val2 = period % 1000000;
return IIO_VAL_INT_PLUS_MICRO;
}
static int veml6030_write_persistence(struct iio_dev *indio_dev,
int val, int val2)
{
int ret, period, x, y;
struct veml6030_data *data = iio_priv(indio_dev);
ret = veml6030_get_it(data, &x, &y);
if (ret < 0)
return ret;
if (!val) {
period = val2 / y;
} else {
if ((val == 1) && (val2 == 600000))
period = 1600000 / y;
else if ((val == 3) && (val2 == 200000))
period = 3200000 / y;
else if ((val == 6) && (val2 == 400000))
period = 6400000 / y;
else
period = -1;
}
if (period <= 0 || period > 8 || hweight8(period) != 1)
return -EINVAL;
ret = regmap_update_bits(data->regmap, VEML6030_REG_ALS_CONF,
VEML6030_ALS_PERS, (ffs(period) - 1) << 4);
if (ret)
dev_err(&data->client->dev,
"can't set persistence value %d\n", ret);
return ret;
}
static int veml6030_set_scale(struct iio_dev *indio_dev, int val, int val2)
{
int ret, gain_sel, it_idx, it_sel;
struct veml6030_data *data = iio_priv(indio_dev);
ret = regmap_field_read(data->rf.it, &it_idx);
if (ret)
return ret;
ret = iio_gts_find_gain_time_sel_for_scale(&data->gts, val, val2,
&gain_sel, &it_sel);
if (ret)
return ret;
ret = regmap_field_write(data->rf.it, it_sel);
if (ret)
return ret;
ret = regmap_field_write(data->rf.gain, gain_sel);
if (ret)
return ret;
return 0;
}
static int veml6030_read_thresh(struct iio_dev *indio_dev,
int *val, int *val2, int dir)
{
int ret, reg;
struct veml6030_data *data = iio_priv(indio_dev);
if (dir == IIO_EV_DIR_RISING)
ret = regmap_read(data->regmap, VEML6030_REG_ALS_WH, &reg);
else
ret = regmap_read(data->regmap, VEML6030_REG_ALS_WL, &reg);
if (ret) {
dev_err(&data->client->dev,
"can't read als threshold value %d\n", ret);
return ret;
}
*val = reg & 0xffff;
return IIO_VAL_INT;
}
static int veml6030_write_thresh(struct iio_dev *indio_dev,
int val, int val2, int dir)
{
int ret;
struct veml6030_data *data = iio_priv(indio_dev);
if (val > 0xFFFF || val < 0 || val2)
return -EINVAL;
if (dir == IIO_EV_DIR_RISING) {
ret = regmap_write(data->regmap, VEML6030_REG_ALS_WH, val);
if (ret)
dev_err(&data->client->dev,
"can't set high threshold %d\n", ret);
} else {
ret = regmap_write(data->regmap, VEML6030_REG_ALS_WL, val);
if (ret)
dev_err(&data->client->dev,
"can't set low threshold %d\n", ret);
}
return ret;
}
static int veml6030_get_total_gain(struct veml6030_data *data)
{
int gain, it, reg, ret;
ret = regmap_field_read(data->rf.gain, &reg);
if (ret)
return ret;
gain = iio_gts_find_gain_by_sel(&data->gts, reg);
if (gain < 0)
return gain;
ret = regmap_field_read(data->rf.it, &reg);
if (ret)
return ret;
it = iio_gts_find_int_time_by_sel(&data->gts, reg);
if (it < 0)
return it;
return iio_gts_get_total_gain(&data->gts, gain, it);
}
static int veml6030_get_scale(struct veml6030_data *data, int *val, int *val2)
{
int gain, it, reg, ret;
ret = regmap_field_read(data->rf.gain, &reg);
if (ret)
return ret;
gain = iio_gts_find_gain_by_sel(&data->gts, reg);
if (gain < 0)
return gain;
ret = regmap_field_read(data->rf.it, &reg);
if (ret)
return ret;
it = iio_gts_find_int_time_by_sel(&data->gts, reg);
if (it < 0)
return it;
ret = iio_gts_get_scale(&data->gts, gain, it, val, val2);
if (ret)
return ret;
return IIO_VAL_INT_PLUS_NANO;
}
static int veml6030_process_als(struct veml6030_data *data, int raw,
int *val, int *val2)
{
int total_gain;
total_gain = veml6030_get_total_gain(data);
if (total_gain < 0)
return total_gain;
*val = raw * data->chip->max_scale / total_gain / 10000;
*val2 = raw * data->chip->max_scale / total_gain % 10000 * 100;
return IIO_VAL_INT_PLUS_MICRO;
}
/*
* Provide both raw as well as light reading in lux.
* light (in lux) = resolution * raw reading
*/
static int veml6030_read_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan, int *val,
int *val2, long mask)
{
int ret, reg;
struct veml6030_data *data = iio_priv(indio_dev);
struct regmap *regmap = data->regmap;
struct device *dev = &data->client->dev;
switch (mask) {
case IIO_CHAN_INFO_RAW:
case IIO_CHAN_INFO_PROCESSED:
switch (chan->type) {
case IIO_LIGHT:
ret = regmap_read(regmap, VEML6030_REG_ALS_DATA, &reg);
if (ret < 0) {
dev_err(dev, "can't read als data %d\n", ret);
return ret;
}
if (mask == IIO_CHAN_INFO_PROCESSED)
return veml6030_process_als(data, reg, val, val2);
*val = reg;
return IIO_VAL_INT;
case IIO_INTENSITY:
ret = regmap_read(regmap, VEML6030_REG_WH_DATA, &reg);
if (ret < 0) {
dev_err(dev, "can't read white data %d\n", ret);
return ret;
}
*val = reg;
return IIO_VAL_INT;
default:
return -EINVAL;
}
case IIO_CHAN_INFO_INT_TIME:
return veml6030_get_it(data, val, val2);
case IIO_CHAN_INFO_SCALE:
return veml6030_get_scale(data, val, val2);
default:
return -EINVAL;
}
}
static int veml6030_read_avail(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
const int **vals, int *type, int *length,
long mask)
{
struct veml6030_data *data = iio_priv(indio_dev);
switch (mask) {
case IIO_CHAN_INFO_INT_TIME:
return iio_gts_avail_times(&data->gts, vals, type, length);
case IIO_CHAN_INFO_SCALE:
return iio_gts_all_avail_scales(&data->gts, vals, type, length);
}
return -EINVAL;
}
static int veml6030_write_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
int val, int val2, long mask)
{
switch (mask) {
case IIO_CHAN_INFO_INT_TIME:
return veml6030_set_it(indio_dev, val, val2);
case IIO_CHAN_INFO_SCALE:
return veml6030_set_scale(indio_dev, val, val2);
default:
return -EINVAL;
}
}
static int veml6030_write_raw_get_fmt(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
long mask)
{
switch (mask) {
case IIO_CHAN_INFO_SCALE:
return IIO_VAL_INT_PLUS_NANO;
case IIO_CHAN_INFO_INT_TIME:
return IIO_VAL_INT_PLUS_MICRO;
default:
return -EINVAL;
}
}
static int veml6030_read_event_val(struct iio_dev *indio_dev,
const struct iio_chan_spec *chan, enum iio_event_type type,
enum iio_event_direction dir, enum iio_event_info info,
int *val, int *val2)
{
switch (info) {
case IIO_EV_INFO_VALUE:
switch (dir) {
case IIO_EV_DIR_RISING:
case IIO_EV_DIR_FALLING:
return veml6030_read_thresh(indio_dev, val, val2, dir);
default:
return -EINVAL;
}
break;
case IIO_EV_INFO_PERIOD:
return veml6030_read_persistence(indio_dev, val, val2);
default:
return -EINVAL;
}
}
static int veml6030_write_event_val(struct iio_dev *indio_dev,
const struct iio_chan_spec *chan, enum iio_event_type type,
enum iio_event_direction dir, enum iio_event_info info,
int val, int val2)
{
switch (info) {
case IIO_EV_INFO_VALUE:
return veml6030_write_thresh(indio_dev, val, val2, dir);
case IIO_EV_INFO_PERIOD:
return veml6030_write_persistence(indio_dev, val, val2);
default:
return -EINVAL;
}
}
static int veml6030_read_interrupt_config(struct iio_dev *indio_dev,
const struct iio_chan_spec *chan, enum iio_event_type type,
enum iio_event_direction dir)
{
int ret, reg;
struct veml6030_data *data = iio_priv(indio_dev);
ret = regmap_read(data->regmap, VEML6030_REG_ALS_CONF, &reg);
if (ret) {
dev_err(&data->client->dev,
"can't read als conf register %d\n", ret);
return ret;
}
if (reg & VEML6030_ALS_INT_EN)
return 1;
else
return 0;
}
/*
* Sensor should not be measuring light when interrupt is configured.
* Therefore correct sequence to configure interrupt functionality is:
* shut down -> enable/disable interrupt -> power on
*
* state = 1 enables interrupt, state = 0 disables interrupt
*/
static int veml6030_write_interrupt_config(struct iio_dev *indio_dev,
const struct iio_chan_spec *chan, enum iio_event_type type,
enum iio_event_direction dir, bool state)
{
int ret;
struct veml6030_data *data = iio_priv(indio_dev);
ret = veml6030_als_shut_down(data);
if (ret < 0) {
dev_err(&data->client->dev,
"can't disable als to configure interrupt %d\n", ret);
return ret;
}
/* enable interrupt + power on */
ret = regmap_update_bits(data->regmap, VEML6030_REG_ALS_CONF,
VEML6030_ALS_INT_EN | VEML6030_ALS_SD, state << 1);
if (ret)
dev_err(&data->client->dev,
"can't enable interrupt & poweron als %d\n", ret);
return ret;
}
static const struct iio_info veml6030_info = {
.read_raw = veml6030_read_raw,
.read_avail = veml6030_read_avail,
.write_raw = veml6030_write_raw,
.write_raw_get_fmt = veml6030_write_raw_get_fmt,
.read_event_value = veml6030_read_event_val,
.write_event_value = veml6030_write_event_val,
.read_event_config = veml6030_read_interrupt_config,
.write_event_config = veml6030_write_interrupt_config,
.event_attrs = &veml6030_event_attr_group,
};
static const struct iio_info veml6030_info_no_irq = {
.read_raw = veml6030_read_raw,
.read_avail = veml6030_read_avail,
.write_raw = veml6030_write_raw,
.write_raw_get_fmt = veml6030_write_raw_get_fmt,
};
static irqreturn_t veml6030_event_handler(int irq, void *private)
{
int ret, reg, evtdir;
struct iio_dev *indio_dev = private;
struct veml6030_data *data = iio_priv(indio_dev);
ret = regmap_read(data->regmap, VEML6030_REG_ALS_INT, &reg);
if (ret) {
dev_err(&data->client->dev,
"can't read als interrupt register %d\n", ret);
return IRQ_HANDLED;
}
/* Spurious interrupt handling */
if (!(reg & (VEML6030_INT_TH_HIGH | VEML6030_INT_TH_LOW)))
return IRQ_NONE;
if (reg & VEML6030_INT_TH_HIGH)
evtdir = IIO_EV_DIR_RISING;
else
evtdir = IIO_EV_DIR_FALLING;
iio_push_event(indio_dev, IIO_UNMOD_EVENT_CODE(IIO_INTENSITY,
0, IIO_EV_TYPE_THRESH, evtdir),
iio_get_time_ns(indio_dev));
return IRQ_HANDLED;
}
static irqreturn_t veml6030_trigger_handler(int irq, void *p)
{
struct iio_poll_func *pf = p;
struct iio_dev *iio = pf->indio_dev;
struct veml6030_data *data = iio_priv(iio);
unsigned int reg;
int ch, ret, i = 0;
struct {
u16 chans[2];
aligned_s64 timestamp;
} scan = { };
iio_for_each_active_channel(iio, ch) {
ret = regmap_read(data->regmap, VEML6030_REG_DATA(ch),
&reg);
if (ret)
goto done;
scan.chans[i++] = reg;
}
iio_push_to_buffers_with_timestamp(iio, &scan, pf->timestamp);
done:
iio_trigger_notify_done(iio->trig);
return IRQ_HANDLED;
}
static int veml6030_set_info(struct iio_dev *indio_dev)
{
struct veml6030_data *data = iio_priv(indio_dev);
struct i2c_client *client = data->client;
int ret;
if (client->irq) {
ret = devm_request_threaded_irq(&client->dev, client->irq,
NULL, veml6030_event_handler,
IRQF_TRIGGER_LOW | IRQF_ONESHOT,
indio_dev->name, indio_dev);
if (ret < 0)
return dev_err_probe(&client->dev, ret,
"irq %d request failed\n",
client->irq);
indio_dev->info = &veml6030_info;
} else {
indio_dev->info = &veml6030_info_no_irq;
}
return 0;
}
static int veml7700_set_info(struct iio_dev *indio_dev)
{
indio_dev->info = &veml6030_info_no_irq;
return 0;
}
static int veml6030_regfield_init(struct iio_dev *indio_dev)
{
struct veml6030_data *data = iio_priv(indio_dev);
struct regmap *regmap = data->regmap;
struct device *dev = &data->client->dev;
struct regmap_field *rm_field;
struct veml6030_rf *rf = &data->rf;
rm_field = devm_regmap_field_alloc(dev, regmap, data->chip->it_rf);
if (IS_ERR(rm_field))
return PTR_ERR(rm_field);
rf->it = rm_field;
rm_field = devm_regmap_field_alloc(dev, regmap, data->chip->gain_rf);
if (IS_ERR(rm_field))
return PTR_ERR(rm_field);
rf->gain = rm_field;
return 0;
}
/*
* Set ALS gain to 1/8, integration time to 100 ms, PSM to mode 2,
* persistence to 1 x integration time and the threshold
* interrupt disabled by default. First shutdown the sensor,
* update registers and then power on the sensor.
*/
static int veml6030_hw_init(struct iio_dev *indio_dev, struct device *dev)
{
int ret, val;
struct veml6030_data *data = iio_priv(indio_dev);
ret = devm_iio_init_iio_gts(dev, 2, 150400000,
veml6030_gain_sel, ARRAY_SIZE(veml6030_gain_sel),
veml6030_it_sel, ARRAY_SIZE(veml6030_it_sel),
&data->gts);
if (ret)
return dev_err_probe(dev, ret, "failed to init iio gts\n");
ret = veml6030_als_shut_down(data);
if (ret)
return dev_err_probe(dev, ret, "can't shutdown als\n");
ret = regmap_write(data->regmap, VEML6030_REG_ALS_CONF, 0x1001);
if (ret)
return dev_err_probe(dev, ret, "can't setup als configs\n");
ret = regmap_update_bits(data->regmap, VEML6030_REG_ALS_PSM,
VEML6030_PSM | VEML6030_PSM_EN, 0x03);
if (ret)
return dev_err_probe(dev, ret, "can't setup default PSM\n");
ret = regmap_write(data->regmap, VEML6030_REG_ALS_WH, 0xFFFF);
if (ret)
return dev_err_probe(dev, ret, "can't setup high threshold\n");
ret = regmap_write(data->regmap, VEML6030_REG_ALS_WL, 0x0000);
if (ret)
return dev_err_probe(dev, ret, "can't setup low threshold\n");
ret = veml6030_als_pwr_on(data);
if (ret)
return dev_err_probe(dev, ret, "can't poweron als\n");
ret = devm_add_action_or_reset(dev, veml6030_als_shut_down_action, data);
if (ret < 0)
return ret;
/* Clear stale interrupt status bits if any during start */
ret = regmap_read(data->regmap, VEML6030_REG_ALS_INT, &val);
if (ret < 0)
return dev_err_probe(dev, ret,
"can't clear als interrupt status\n");
return ret;
}
/*
* Set ALS gain to 1/8, integration time to 100 ms, ALS and WHITE
* channel enabled, ALS channel interrupt, PSM enabled,
* PSM_WAIT = 0.8 s, persistence to 1 x integration time and the
* threshold interrupt disabled by default. First shutdown the sensor,
* update registers and then power on the sensor.
*/
static int veml6035_hw_init(struct iio_dev *indio_dev, struct device *dev)
{
int ret, val;
struct veml6030_data *data = iio_priv(indio_dev);
ret = devm_iio_init_iio_gts(dev, 0, 409600000,
veml6035_gain_sel, ARRAY_SIZE(veml6035_gain_sel),
veml6030_it_sel, ARRAY_SIZE(veml6030_it_sel),
&data->gts);
if (ret)
return dev_err_probe(dev, ret, "failed to init iio gts\n");
ret = veml6030_als_shut_down(data);
if (ret)
return dev_err_probe(dev, ret, "can't shutdown als\n");
ret = regmap_write(data->regmap, VEML6030_REG_ALS_CONF,
VEML6035_SENS | VEML6035_CHAN_EN | VEML6030_ALS_SD);
if (ret)
return dev_err_probe(dev, ret, "can't setup als configs\n");
ret = regmap_update_bits(data->regmap, VEML6030_REG_ALS_PSM,
VEML6030_PSM | VEML6030_PSM_EN, 0x03);
if (ret)
return dev_err_probe(dev, ret, "can't setup default PSM\n");
ret = regmap_write(data->regmap, VEML6030_REG_ALS_WH, 0xFFFF);
if (ret)
return dev_err_probe(dev, ret, "can't setup high threshold\n");
ret = regmap_write(data->regmap, VEML6030_REG_ALS_WL, 0x0000);
if (ret)
return dev_err_probe(dev, ret, "can't setup low threshold\n");
ret = veml6030_als_pwr_on(data);
if (ret)
return dev_err_probe(dev, ret, "can't poweron als\n");
ret = devm_add_action_or_reset(dev, veml6030_als_shut_down_action, data);
if (ret < 0)
return ret;
/* Clear stale interrupt status bits if any during start */
ret = regmap_read(data->regmap, VEML6030_REG_ALS_INT, &val);
if (ret < 0)
return dev_err_probe(dev, ret,
"can't clear als interrupt status\n");
return 0;
}
static int veml6030_probe(struct i2c_client *client)
{
int ret;
struct veml6030_data *data;
struct iio_dev *indio_dev;
struct regmap *regmap;
if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C))
return dev_err_probe(&client->dev, -EOPNOTSUPP,
"i2c adapter doesn't support plain i2c\n");
regmap = devm_regmap_init_i2c(client, &veml6030_regmap_config);
if (IS_ERR(regmap))
return dev_err_probe(&client->dev, PTR_ERR(regmap),
"can't setup regmap\n");
indio_dev = devm_iio_device_alloc(&client->dev, sizeof(*data));
if (!indio_dev)
return -ENOMEM;
data = iio_priv(indio_dev);
i2c_set_clientdata(client, indio_dev);
data->client = client;
data->regmap = regmap;
ret = devm_regulator_get_enable(&client->dev, "vdd");
if (ret)
return dev_err_probe(&client->dev, ret,
"failed to enable regulator\n");
data->chip = i2c_get_match_data(client);
if (!data->chip)
return -EINVAL;
indio_dev->name = data->chip->name;
indio_dev->channels = data->chip->channels;
indio_dev->num_channels = data->chip->num_channels;
indio_dev->modes = INDIO_DIRECT_MODE;
ret = data->chip->set_info(indio_dev);
if (ret < 0)
return ret;
ret = veml6030_regfield_init(indio_dev);
if (ret)
return dev_err_probe(&client->dev, ret,
"failed to init regfields\n");
ret = data->chip->hw_init(indio_dev, &client->dev);
if (ret < 0)
return ret;
ret = devm_iio_triggered_buffer_setup(&client->dev, indio_dev, NULL,
veml6030_trigger_handler, NULL);
if (ret)
return dev_err_probe(&client->dev, ret,
"Failed to register triggered buffer");
return devm_iio_device_register(&client->dev, indio_dev);
}
static int veml6030_runtime_suspend(struct device *dev)
{
int ret;
struct iio_dev *indio_dev = i2c_get_clientdata(to_i2c_client(dev));
struct veml6030_data *data = iio_priv(indio_dev);
ret = veml6030_als_shut_down(data);
if (ret < 0)
dev_err(&data->client->dev, "can't suspend als %d\n", ret);
return ret;
}
static int veml6030_runtime_resume(struct device *dev)
{
int ret;
struct iio_dev *indio_dev = i2c_get_clientdata(to_i2c_client(dev));
struct veml6030_data *data = iio_priv(indio_dev);
ret = veml6030_als_pwr_on(data);
if (ret < 0)
dev_err(&data->client->dev, "can't resume als %d\n", ret);
return ret;
}
static DEFINE_RUNTIME_DEV_PM_OPS(veml6030_pm_ops, veml6030_runtime_suspend,
veml6030_runtime_resume, NULL);
static const struct veml603x_chip veml6030_chip = {
.name = "veml6030",
.channels = veml6030_channels,
.num_channels = ARRAY_SIZE(veml6030_channels),
.gain_rf = VEML6030_GAIN_RF,
.it_rf = VEML6030_IT_RF,
.max_scale = VEML6030_MAX_SCALE,
.hw_init = veml6030_hw_init,
.set_info = veml6030_set_info,
};
static const struct veml603x_chip veml6035_chip = {
.name = "veml6035",
.channels = veml6030_channels,
.num_channels = ARRAY_SIZE(veml6030_channels),
.gain_rf = VEML6035_GAIN_RF,
.it_rf = VEML6030_IT_RF,
.max_scale = VEML6035_MAX_SCALE,
.hw_init = veml6035_hw_init,
.set_info = veml6030_set_info,
};
static const struct veml603x_chip veml7700_chip = {
.name = "veml7700",
.channels = veml7700_channels,
.num_channels = ARRAY_SIZE(veml7700_channels),
.gain_rf = VEML6030_GAIN_RF,
.it_rf = VEML6030_IT_RF,
.max_scale = VEML6030_MAX_SCALE,
.hw_init = veml6030_hw_init,
.set_info = veml7700_set_info,
};
static const struct of_device_id veml6030_of_match[] = {
{
.compatible = "vishay,veml6030",
.data = &veml6030_chip,
},
{
.compatible = "vishay,veml6035",
.data = &veml6035_chip,
},
{
.compatible = "vishay,veml7700",
.data = &veml7700_chip,
},
{ }
};
MODULE_DEVICE_TABLE(of, veml6030_of_match);
static const struct i2c_device_id veml6030_id[] = {
{ "veml6030", (kernel_ulong_t)&veml6030_chip},
{ "veml6035", (kernel_ulong_t)&veml6035_chip},
{ "veml7700", (kernel_ulong_t)&veml7700_chip},
{ }
};
MODULE_DEVICE_TABLE(i2c, veml6030_id);
static struct i2c_driver veml6030_driver = {
.driver = {
.name = "veml6030",
.of_match_table = veml6030_of_match,
.pm = pm_ptr(&veml6030_pm_ops),
},
.probe = veml6030_probe,
.id_table = veml6030_id,
};
module_i2c_driver(veml6030_driver);
MODULE_AUTHOR("Rishi Gupta <gupt21@gmail.com>");
MODULE_DESCRIPTION("VEML6030 Ambient Light Sensor");
MODULE_LICENSE("GPL v2");
MODULE_IMPORT_NS("IIO_GTS_HELPER");