linux/drivers/iio/light/opt4060.c
David Lechner acddd60981 iio: light: opt4060: use = { } instead of memset()
Use { } instead of memset() to zero-initialize stack memory to simplify
the code.

Signed-off-by: David Lechner <dlechner@baylibre.com>
Reviewed-by: Nuno Sá <nuno.sa@analog.com>
Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Link: https://patch.msgid.link/20250611-iio-zero-init-stack-with-instead-of-memset-v1-20-ebb2d0a24302@baylibre.com
Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
2025-06-26 19:32:57 +01:00

1342 lines
36 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (C) 2024 Axis Communications AB
*
* Datasheet: https://www.ti.com/lit/gpn/opt4060
*
* Device driver for the Texas Instruments OPT4060 RGBW Color Sensor.
*/
#include <linux/bitfield.h>
#include <linux/i2c.h>
#include <linux/iio/iio.h>
#include <linux/math64.h>
#include <linux/units.h>
#include <linux/limits.h>
#include <linux/module.h>
#include <linux/property.h>
#include <linux/regmap.h>
#include <linux/mutex.h>
#include <linux/regulator/consumer.h>
#include <linux/iio/events.h>
#include <linux/iio/trigger.h>
#include <linux/iio/trigger_consumer.h>
#include <linux/iio/triggered_buffer.h>
/* OPT4060 register set */
#define OPT4060_RED_MSB 0x00
#define OPT4060_RED_LSB 0x01
#define OPT4060_GREEN_MSB 0x02
#define OPT4060_GREEN_LSB 0x03
#define OPT4060_BLUE_MSB 0x04
#define OPT4060_BLUE_LSB 0x05
#define OPT4060_CLEAR_MSB 0x06
#define OPT4060_CLEAR_LSB 0x07
#define OPT4060_THRESHOLD_LOW 0x08
#define OPT4060_THRESHOLD_HIGH 0x09
#define OPT4060_CTRL 0x0a
#define OPT4060_INT_CTRL 0x0b
#define OPT4060_RES_CTRL 0x0c
#define OPT4060_DEVICE_ID 0x11
/* OPT4060 register mask */
#define OPT4060_EXPONENT_MASK GENMASK(15, 12)
#define OPT4060_MSB_MASK GENMASK(11, 0)
#define OPT4060_LSB_MASK GENMASK(15, 8)
#define OPT4060_COUNTER_MASK GENMASK(7, 4)
#define OPT4060_CRC_MASK GENMASK(3, 0)
/* OPT4060 device id mask */
#define OPT4060_DEVICE_ID_MASK GENMASK(11, 0)
/* OPT4060 control register masks */
#define OPT4060_CTRL_QWAKE_MASK BIT(15)
#define OPT4060_CTRL_RANGE_MASK GENMASK(13, 10)
#define OPT4060_CTRL_CONV_TIME_MASK GENMASK(9, 6)
#define OPT4060_CTRL_OPER_MODE_MASK GENMASK(5, 4)
#define OPT4060_CTRL_LATCH_MASK BIT(3)
#define OPT4060_CTRL_INT_POL_MASK BIT(2)
#define OPT4060_CTRL_FAULT_COUNT_MASK GENMASK(1, 0)
/* OPT4060 interrupt control register masks */
#define OPT4060_INT_CTRL_THRESH_SEL GENMASK(6, 5)
#define OPT4060_INT_CTRL_OUTPUT BIT(4)
#define OPT4060_INT_CTRL_INT_CFG GENMASK(3, 2)
#define OPT4060_INT_CTRL_THRESHOLD 0x0
#define OPT4060_INT_CTRL_NEXT_CH 0x1
#define OPT4060_INT_CTRL_ALL_CH 0x3
/* OPT4060 result control register masks */
#define OPT4060_RES_CTRL_OVERLOAD BIT(3)
#define OPT4060_RES_CTRL_CONV_READY BIT(2)
#define OPT4060_RES_CTRL_FLAG_H BIT(1)
#define OPT4060_RES_CTRL_FLAG_L BIT(0)
/* OPT4060 constants */
#define OPT4060_DEVICE_ID_VAL 0x821
/* OPT4060 operating modes */
#define OPT4060_CTRL_OPER_MODE_OFF 0x0
#define OPT4060_CTRL_OPER_MODE_FORCED 0x1
#define OPT4060_CTRL_OPER_MODE_ONE_SHOT 0x2
#define OPT4060_CTRL_OPER_MODE_CONTINUOUS 0x3
/* OPT4060 conversion control register definitions */
#define OPT4060_CTRL_CONVERSION_0_6MS 0x0
#define OPT4060_CTRL_CONVERSION_1MS 0x1
#define OPT4060_CTRL_CONVERSION_1_8MS 0x2
#define OPT4060_CTRL_CONVERSION_3_4MS 0x3
#define OPT4060_CTRL_CONVERSION_6_5MS 0x4
#define OPT4060_CTRL_CONVERSION_12_7MS 0x5
#define OPT4060_CTRL_CONVERSION_25MS 0x6
#define OPT4060_CTRL_CONVERSION_50MS 0x7
#define OPT4060_CTRL_CONVERSION_100MS 0x8
#define OPT4060_CTRL_CONVERSION_200MS 0x9
#define OPT4060_CTRL_CONVERSION_400MS 0xa
#define OPT4060_CTRL_CONVERSION_800MS 0xb
/* OPT4060 fault count control register definitions */
#define OPT4060_CTRL_FAULT_COUNT_1 0x0
#define OPT4060_CTRL_FAULT_COUNT_2 0x1
#define OPT4060_CTRL_FAULT_COUNT_4 0x2
#define OPT4060_CTRL_FAULT_COUNT_8 0x3
/* OPT4060 scale light level range definitions */
#define OPT4060_CTRL_LIGHT_SCALE_AUTO 12
/* OPT4060 default values */
#define OPT4060_DEFAULT_CONVERSION_TIME OPT4060_CTRL_CONVERSION_50MS
/*
* enum opt4060_chan_type - OPT4060 channel types
* @OPT4060_RED: Red channel.
* @OPT4060_GREEN: Green channel.
* @OPT4060_BLUE: Blue channel.
* @OPT4060_CLEAR: Clear (white) channel.
* @OPT4060_ILLUM: Calculated illuminance channel.
* @OPT4060_NUM_CHANS: Number of channel types.
*/
enum opt4060_chan_type {
OPT4060_RED,
OPT4060_GREEN,
OPT4060_BLUE,
OPT4060_CLEAR,
OPT4060_ILLUM,
OPT4060_NUM_CHANS
};
struct opt4060_chip {
struct regmap *regmap;
struct device *dev;
struct iio_trigger *trig;
u8 int_time;
int irq;
/*
* Mutex for protecting sensor irq settings. Switching between interrupt
* on each sample and on thresholds needs to be synchronized.
*/
struct mutex irq_setting_lock;
/*
* Mutex for protecting event enabling.
*/
struct mutex event_enabling_lock;
struct completion completion;
bool thresh_event_lo_active;
bool thresh_event_hi_active;
};
struct opt4060_channel_factor {
u32 mul;
u32 div;
};
static const int opt4060_int_time_available[][2] = {
{ 0, 600 },
{ 0, 1000 },
{ 0, 1800 },
{ 0, 3400 },
{ 0, 6500 },
{ 0, 12700 },
{ 0, 25000 },
{ 0, 50000 },
{ 0, 100000 },
{ 0, 200000 },
{ 0, 400000 },
{ 0, 800000 },
};
/*
* Conversion time is integration time + time to set register
* this is used as integration time.
*/
static const int opt4060_int_time_reg[][2] = {
{ 600, OPT4060_CTRL_CONVERSION_0_6MS },
{ 1000, OPT4060_CTRL_CONVERSION_1MS },
{ 1800, OPT4060_CTRL_CONVERSION_1_8MS },
{ 3400, OPT4060_CTRL_CONVERSION_3_4MS },
{ 6500, OPT4060_CTRL_CONVERSION_6_5MS },
{ 12700, OPT4060_CTRL_CONVERSION_12_7MS },
{ 25000, OPT4060_CTRL_CONVERSION_25MS },
{ 50000, OPT4060_CTRL_CONVERSION_50MS },
{ 100000, OPT4060_CTRL_CONVERSION_100MS },
{ 200000, OPT4060_CTRL_CONVERSION_200MS },
{ 400000, OPT4060_CTRL_CONVERSION_400MS },
{ 800000, OPT4060_CTRL_CONVERSION_800MS },
};
static int opt4060_als_time_to_index(const u32 als_integration_time)
{
int i;
for (i = 0; i < ARRAY_SIZE(opt4060_int_time_available); i++) {
if (als_integration_time == opt4060_int_time_available[i][1])
return i;
}
return -EINVAL;
}
static u8 opt4060_calculate_crc(u8 exp, u32 mantissa, u8 count)
{
u8 crc;
/*
* Calculates a 4-bit CRC from a 20-bit mantissa, 4-bit exponent and a 4-bit counter.
* crc[0] = XOR(mantissa[19:0], exp[3:0], count[3:0])
* crc[1] = XOR(mantissa[1,3,5,7,9,11,13,15,17,19], exp[1,3], count[1,3])
* crc[2] = XOR(mantissa[3,7,11,15,19], exp[3], count[3])
* crc[3] = XOR(mantissa[3,11,19])
*/
crc = (hweight32(mantissa) + hweight32(exp) + hweight32(count)) % 2;
crc |= ((hweight32(mantissa & 0xAAAAA) + hweight32(exp & 0xA)
+ hweight32(count & 0xA)) % 2) << 1;
crc |= ((hweight32(mantissa & 0x88888) + hweight32(exp & 0x8)
+ hweight32(count & 0x8)) % 2) << 2;
crc |= (hweight32(mantissa & 0x80808) % 2) << 3;
return crc;
}
static int opt4060_set_int_state(struct opt4060_chip *chip, u32 state)
{
int ret;
unsigned int regval;
guard(mutex)(&chip->irq_setting_lock);
regval = FIELD_PREP(OPT4060_INT_CTRL_INT_CFG, state);
ret = regmap_update_bits(chip->regmap, OPT4060_INT_CTRL,
OPT4060_INT_CTRL_INT_CFG, regval);
if (ret)
dev_err(chip->dev, "Failed to set interrupt config\n");
return ret;
}
static int opt4060_set_sampling_mode(struct opt4060_chip *chip,
bool continuous)
{
unsigned int reg;
int ret;
ret = regmap_read(chip->regmap, OPT4060_CTRL, &reg);
if (ret < 0) {
dev_err(chip->dev, "Failed to read ctrl register\n");
return ret;
}
reg &= ~OPT4060_CTRL_OPER_MODE_MASK;
if (continuous)
reg |= FIELD_PREP(OPT4060_CTRL_OPER_MODE_MASK,
OPT4060_CTRL_OPER_MODE_CONTINUOUS);
else
reg |= FIELD_PREP(OPT4060_CTRL_OPER_MODE_MASK,
OPT4060_CTRL_OPER_MODE_ONE_SHOT);
/*
* Trigger a new conversions by writing to CRTL register. It is not
* possible to use regmap_update_bits() since that will only write when
* data is modified.
*/
ret = regmap_write(chip->regmap, OPT4060_CTRL, reg);
if (ret)
dev_err(chip->dev, "Failed to set ctrl register\n");
return ret;
}
static bool opt4060_event_active(struct opt4060_chip *chip)
{
return chip->thresh_event_lo_active || chip->thresh_event_hi_active;
}
static int opt4060_set_state_common(struct opt4060_chip *chip,
bool continuous_sampling,
bool continuous_irq)
{
int ret = 0;
/* It is important to setup irq before sampling to avoid missing samples. */
if (continuous_irq)
ret = opt4060_set_int_state(chip, OPT4060_INT_CTRL_ALL_CH);
else
ret = opt4060_set_int_state(chip, OPT4060_INT_CTRL_THRESHOLD);
if (ret) {
dev_err(chip->dev, "Failed to set irq state.\n");
return ret;
}
if (continuous_sampling || opt4060_event_active(chip))
ret = opt4060_set_sampling_mode(chip, true);
else
ret = opt4060_set_sampling_mode(chip, false);
if (ret)
dev_err(chip->dev, "Failed to set sampling state.\n");
return ret;
}
/*
* Function for setting the driver state for sampling and irq. Either direct
* mode of buffer mode will be claimed during the transition to prevent races
* between sysfs read, buffer or events.
*/
static int opt4060_set_driver_state(struct iio_dev *indio_dev,
bool continuous_sampling,
bool continuous_irq)
{
struct opt4060_chip *chip = iio_priv(indio_dev);
int ret = 0;
any_mode_retry:
if (iio_device_claim_buffer_mode(indio_dev)) {
/*
* This one is a *bit* hacky. If we cannot claim buffer mode,
* then try direct mode so that we make sure things cannot
* concurrently change. And we just keep trying until we get one
* of the modes...
*/
if (!iio_device_claim_direct(indio_dev))
goto any_mode_retry;
/*
* This path means that we managed to claim direct mode. In
* this case the buffer isn't enabled and it's okay to leave
* continuous mode for sampling and/or irq.
*/
ret = opt4060_set_state_common(chip, continuous_sampling,
continuous_irq);
iio_device_release_direct(indio_dev);
return ret;
} else {
/*
* This path means that we managed to claim buffer mode. In
* this case the buffer is enabled and irq and sampling must go
* to or remain continuous, but only if the trigger is from this
* device.
*/
if (!iio_trigger_validate_own_device(indio_dev->trig, indio_dev))
ret = opt4060_set_state_common(chip, true, true);
else
ret = opt4060_set_state_common(chip, continuous_sampling,
continuous_irq);
iio_device_release_buffer_mode(indio_dev);
}
return ret;
}
/*
* This function is called with framework mutex locked.
*/
static int opt4060_trigger_set_state(struct iio_trigger *trig, bool state)
{
struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig);
struct opt4060_chip *chip = iio_priv(indio_dev);
return opt4060_set_state_common(chip, state, state);
}
static int opt4060_read_raw_value(struct opt4060_chip *chip,
unsigned long address, u32 *raw)
{
int ret;
u16 result[2];
u32 mantissa_raw;
u16 msb, lsb;
u8 exp, count, crc, calc_crc;
ret = regmap_bulk_read(chip->regmap, address, result, 2);
if (ret) {
dev_err(chip->dev, "Reading channel data failed\n");
return ret;
}
exp = FIELD_GET(OPT4060_EXPONENT_MASK, result[0]);
msb = FIELD_GET(OPT4060_MSB_MASK, result[0]);
count = FIELD_GET(OPT4060_COUNTER_MASK, result[1]);
crc = FIELD_GET(OPT4060_CRC_MASK, result[1]);
lsb = FIELD_GET(OPT4060_LSB_MASK, result[1]);
mantissa_raw = (msb << 8) + lsb;
calc_crc = opt4060_calculate_crc(exp, mantissa_raw, count);
if (calc_crc != crc)
return -EIO;
*raw = mantissa_raw << exp;
return 0;
}
static int opt4060_trigger_new_samples(struct iio_dev *indio_dev)
{
struct opt4060_chip *chip = iio_priv(indio_dev);
int ret;
/*
* The conversion time should be 500us startup time plus the integration time
* times the number of channels. An exact timeout isn't critical, it's better
* not to get incorrect errors in the log. Setting the timeout to double the
* theoretical time plus and extra 100ms margin.
*/
unsigned int timeout_us = (500 + OPT4060_NUM_CHANS *
opt4060_int_time_reg[chip->int_time][0]) * 2 + 100000;
/* Setting the state in one shot mode with irq on each sample. */
ret = opt4060_set_driver_state(indio_dev, false, true);
if (ret)
return ret;
if (chip->irq) {
guard(mutex)(&chip->irq_setting_lock);
reinit_completion(&chip->completion);
if (wait_for_completion_timeout(&chip->completion,
usecs_to_jiffies(timeout_us)) == 0) {
dev_err(chip->dev, "Completion timed out.\n");
return -ETIME;
}
} else {
unsigned int ready;
ret = regmap_read_poll_timeout(chip->regmap, OPT4060_RES_CTRL,
ready, (ready & OPT4060_RES_CTRL_CONV_READY),
1000, timeout_us);
if (ret)
dev_err(chip->dev, "Conversion ready did not finish within timeout.\n");
}
/* Setting the state in one shot mode with irq on thresholds. */
return opt4060_set_driver_state(indio_dev, false, false);
}
static int opt4060_read_chan_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan, int *val)
{
struct opt4060_chip *chip = iio_priv(indio_dev);
u32 adc_raw;
int ret;
ret = opt4060_trigger_new_samples(indio_dev);
if (ret) {
dev_err(chip->dev, "Failed to trigger new samples.\n");
return ret;
}
ret = opt4060_read_raw_value(chip, chan->address, &adc_raw);
if (ret) {
dev_err(chip->dev, "Reading raw channel data failed.\n");
return ret;
}
*val = adc_raw;
return IIO_VAL_INT;
}
/*
* Returns the scale values used for red, green and blue. Scales the raw value
* so that for a particular test light source, typically white, the measurement
* intensity is the same across different color channels.
*/
static int opt4060_get_chan_scale(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
int *val, int *val2)
{
struct opt4060_chip *chip = iio_priv(indio_dev);
switch (chan->scan_index) {
case OPT4060_RED:
/* 2.4 */
*val = 2;
*val2 = 400000;
break;
case OPT4060_GREEN:
/* 1.0 */
*val = 1;
*val2 = 0;
break;
case OPT4060_BLUE:
/* 1.3 */
*val = 1;
*val2 = 300000;
break;
default:
dev_err(chip->dev, "Unexpected channel index.\n");
return -EINVAL;
}
return IIO_VAL_INT_PLUS_MICRO;
}
static int opt4060_calc_illuminance(struct opt4060_chip *chip, int *val)
{
u32 lux_raw;
int ret;
/* The green wide spectral channel is used for illuminance. */
ret = opt4060_read_raw_value(chip, OPT4060_GREEN_MSB, &lux_raw);
if (ret) {
dev_err(chip->dev, "Reading raw channel data failed\n");
return ret;
}
/* Illuminance is calculated by ADC_RAW * 2.15e-3. */
*val = DIV_U64_ROUND_CLOSEST((u64)(lux_raw * 215), 1000);
return ret;
}
static int opt4060_read_illuminance(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
int *val)
{
struct opt4060_chip *chip = iio_priv(indio_dev);
int ret;
ret = opt4060_trigger_new_samples(indio_dev);
if (ret) {
dev_err(chip->dev, "Failed to trigger new samples.\n");
return ret;
}
ret = opt4060_calc_illuminance(chip, val);
if (ret) {
dev_err(chip->dev, "Failed to calculate illuminance.\n");
return ret;
}
return IIO_VAL_INT;
}
static int opt4060_set_int_time(struct opt4060_chip *chip)
{
unsigned int regval;
int ret;
regval = FIELD_PREP(OPT4060_CTRL_CONV_TIME_MASK, chip->int_time);
ret = regmap_update_bits(chip->regmap, OPT4060_CTRL,
OPT4060_CTRL_CONV_TIME_MASK, regval);
if (ret)
dev_err(chip->dev, "Failed to set integration time.\n");
return ret;
}
static int opt4060_power_down(struct opt4060_chip *chip)
{
int ret;
ret = regmap_clear_bits(chip->regmap, OPT4060_CTRL, OPT4060_CTRL_OPER_MODE_MASK);
if (ret)
dev_err(chip->dev, "Failed to power down\n");
return ret;
}
static void opt4060_chip_off_action(void *chip)
{
opt4060_power_down(chip);
}
#define _OPT4060_COLOR_CHANNEL(_color, _mask, _ev_spec, _num_ev_spec) \
{ \
.type = IIO_INTENSITY, \
.modified = 1, \
.channel2 = IIO_MOD_LIGHT_##_color, \
.info_mask_separate = _mask, \
.info_mask_shared_by_all = BIT(IIO_CHAN_INFO_INT_TIME), \
.info_mask_shared_by_all_available = BIT(IIO_CHAN_INFO_INT_TIME), \
.address = OPT4060_##_color##_MSB, \
.scan_index = OPT4060_##_color, \
.scan_type = { \
.sign = 'u', \
.realbits = 32, \
.storagebits = 32, \
.endianness = IIO_CPU, \
}, \
.event_spec = _ev_spec, \
.num_event_specs = _num_ev_spec, \
}
#define OPT4060_COLOR_CHANNEL(_color, _mask) \
_OPT4060_COLOR_CHANNEL(_color, _mask, opt4060_event_spec, \
ARRAY_SIZE(opt4060_event_spec)) \
#define OPT4060_COLOR_CHANNEL_NO_EVENTS(_color, _mask) \
_OPT4060_COLOR_CHANNEL(_color, _mask, NULL, 0) \
#define OPT4060_LIGHT_CHANNEL(_channel) \
{ \
.type = IIO_LIGHT, \
.info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED), \
.info_mask_shared_by_all = BIT(IIO_CHAN_INFO_INT_TIME), \
.info_mask_shared_by_all_available = BIT(IIO_CHAN_INFO_INT_TIME), \
.scan_index = OPT4060_##_channel, \
.scan_type = { \
.sign = 'u', \
.realbits = 32, \
.storagebits = 32, \
.endianness = IIO_CPU, \
}, \
}
static const struct iio_event_spec opt4060_event_spec[] = {
{
.type = IIO_EV_TYPE_THRESH,
.dir = IIO_EV_DIR_RISING,
.mask_separate = BIT(IIO_EV_INFO_VALUE) |
BIT(IIO_EV_INFO_ENABLE),
}, {
.type = IIO_EV_TYPE_THRESH,
.dir = IIO_EV_DIR_FALLING,
.mask_separate = BIT(IIO_EV_INFO_VALUE) |
BIT(IIO_EV_INFO_ENABLE),
}, {
.type = IIO_EV_TYPE_THRESH,
.dir = IIO_EV_DIR_EITHER,
.mask_separate = BIT(IIO_EV_INFO_PERIOD),
},
};
static const struct iio_chan_spec opt4060_channels[] = {
OPT4060_COLOR_CHANNEL(RED, BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE)),
OPT4060_COLOR_CHANNEL(GREEN, BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE)),
OPT4060_COLOR_CHANNEL(BLUE, BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE)),
OPT4060_COLOR_CHANNEL(CLEAR, BIT(IIO_CHAN_INFO_RAW)),
OPT4060_LIGHT_CHANNEL(ILLUM),
IIO_CHAN_SOFT_TIMESTAMP(OPT4060_NUM_CHANS),
};
static const struct iio_chan_spec opt4060_channels_no_events[] = {
OPT4060_COLOR_CHANNEL_NO_EVENTS(RED, BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE)),
OPT4060_COLOR_CHANNEL_NO_EVENTS(GREEN, BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE)),
OPT4060_COLOR_CHANNEL_NO_EVENTS(BLUE, BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE)),
OPT4060_COLOR_CHANNEL_NO_EVENTS(CLEAR, BIT(IIO_CHAN_INFO_RAW)),
OPT4060_LIGHT_CHANNEL(ILLUM),
IIO_CHAN_SOFT_TIMESTAMP(OPT4060_NUM_CHANS),
};
static int opt4060_read_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
int *val, int *val2, long mask)
{
struct opt4060_chip *chip = iio_priv(indio_dev);
switch (mask) {
case IIO_CHAN_INFO_RAW:
return opt4060_read_chan_raw(indio_dev, chan, val);
case IIO_CHAN_INFO_SCALE:
return opt4060_get_chan_scale(indio_dev, chan, val, val2);
case IIO_CHAN_INFO_PROCESSED:
return opt4060_read_illuminance(indio_dev, chan, val);
case IIO_CHAN_INFO_INT_TIME:
*val = 0;
*val2 = opt4060_int_time_reg[chip->int_time][0];
return IIO_VAL_INT_PLUS_MICRO;
default:
return -EINVAL;
}
}
static int opt4060_write_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
int val, int val2, long mask)
{
struct opt4060_chip *chip = iio_priv(indio_dev);
int int_time;
switch (mask) {
case IIO_CHAN_INFO_INT_TIME:
int_time = opt4060_als_time_to_index(val2);
if (int_time < 0)
return int_time;
chip->int_time = int_time;
return opt4060_set_int_time(chip);
default:
return -EINVAL;
}
}
static int opt4060_write_raw_get_fmt(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
long mask)
{
switch (mask) {
case IIO_CHAN_INFO_INT_TIME:
return IIO_VAL_INT_PLUS_MICRO;
default:
return -EINVAL;
}
}
static u32 opt4060_calc_th_reg(u32 adc_val)
{
u32 th_val, th_exp, bits;
/*
* The threshold registers take 4 bits of exponent and 12 bits of data
* ADC = TH_VAL << (8 + TH_EXP)
*/
bits = fls(adc_val);
if (bits > 31)
th_exp = 11; /* Maximum exponent */
else if (bits > 20)
th_exp = bits - 20;
else
th_exp = 0;
th_val = (adc_val >> (8 + th_exp)) & 0xfff;
return (th_exp << 12) + th_val;
}
static u32 opt4060_calc_val_from_th_reg(u32 th_reg)
{
/*
* The threshold registers take 4 bits of exponent and 12 bits of data
* ADC = TH_VAL << (8 + TH_EXP)
*/
u32 th_val, th_exp;
th_exp = (th_reg >> 12) & 0xf;
th_val = th_reg & 0xfff;
return th_val << (8 + th_exp);
}
static int opt4060_read_available(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
const int **vals, int *type, int *length,
long mask)
{
switch (mask) {
case IIO_CHAN_INFO_INT_TIME:
*length = ARRAY_SIZE(opt4060_int_time_available) * 2;
*vals = (const int *)opt4060_int_time_available;
*type = IIO_VAL_INT_PLUS_MICRO;
return IIO_AVAIL_LIST;
default:
return -EINVAL;
}
}
static ssize_t opt4060_read_ev_period(struct opt4060_chip *chip, int *val,
int *val2)
{
int ret, pers, fault_count, int_time;
u64 uval;
int_time = opt4060_int_time_reg[chip->int_time][0];
ret = regmap_read(chip->regmap, OPT4060_CTRL, &fault_count);
if (ret < 0)
return ret;
fault_count = fault_count & OPT4060_CTRL_FAULT_COUNT_MASK;
switch (fault_count) {
case OPT4060_CTRL_FAULT_COUNT_2:
pers = 2;
break;
case OPT4060_CTRL_FAULT_COUNT_4:
pers = 4;
break;
case OPT4060_CTRL_FAULT_COUNT_8:
pers = 8;
break;
default:
pers = 1;
break;
}
uval = mul_u32_u32(int_time, pers);
*val = div_u64_rem(uval, MICRO, val2);
return IIO_VAL_INT_PLUS_MICRO;
}
static ssize_t opt4060_write_ev_period(struct opt4060_chip *chip, int val,
int val2)
{
u64 uval, int_time;
unsigned int regval, fault_count_val;
uval = mul_u32_u32(val, MICRO) + val2;
int_time = opt4060_int_time_reg[chip->int_time][0];
/* Check if the period is closest to 1, 2, 4 or 8 times integration time.*/
if (uval <= int_time)
fault_count_val = OPT4060_CTRL_FAULT_COUNT_1;
else if (uval <= int_time * 2)
fault_count_val = OPT4060_CTRL_FAULT_COUNT_2;
else if (uval <= int_time * 4)
fault_count_val = OPT4060_CTRL_FAULT_COUNT_4;
else
fault_count_val = OPT4060_CTRL_FAULT_COUNT_8;
regval = FIELD_PREP(OPT4060_CTRL_FAULT_COUNT_MASK, fault_count_val);
return regmap_update_bits(chip->regmap, OPT4060_CTRL,
OPT4060_CTRL_FAULT_COUNT_MASK, regval);
}
static int opt4060_get_channel_sel(struct opt4060_chip *chip, int *ch_sel)
{
int ret;
u32 regval;
ret = regmap_read(chip->regmap, OPT4060_INT_CTRL, &regval);
if (ret) {
dev_err(chip->dev, "Failed to get channel selection.\n");
return ret;
}
*ch_sel = FIELD_GET(OPT4060_INT_CTRL_THRESH_SEL, regval);
return ret;
}
static int opt4060_set_channel_sel(struct opt4060_chip *chip, int ch_sel)
{
int ret;
u32 regval;
regval = FIELD_PREP(OPT4060_INT_CTRL_THRESH_SEL, ch_sel);
ret = regmap_update_bits(chip->regmap, OPT4060_INT_CTRL,
OPT4060_INT_CTRL_THRESH_SEL, regval);
if (ret)
dev_err(chip->dev, "Failed to set channel selection.\n");
return ret;
}
static int opt4060_get_thresholds(struct opt4060_chip *chip, u32 *th_lo, u32 *th_hi)
{
int ret;
u32 regval;
ret = regmap_read(chip->regmap, OPT4060_THRESHOLD_LOW, &regval);
if (ret) {
dev_err(chip->dev, "Failed to read THRESHOLD_LOW.\n");
return ret;
}
*th_lo = opt4060_calc_val_from_th_reg(regval);
ret = regmap_read(chip->regmap, OPT4060_THRESHOLD_HIGH, &regval);
if (ret) {
dev_err(chip->dev, "Failed to read THRESHOLD_LOW.\n");
return ret;
}
*th_hi = opt4060_calc_val_from_th_reg(regval);
return ret;
}
static int opt4060_set_thresholds(struct opt4060_chip *chip, u32 th_lo, u32 th_hi)
{
int ret;
ret = regmap_write(chip->regmap, OPT4060_THRESHOLD_LOW, opt4060_calc_th_reg(th_lo));
if (ret) {
dev_err(chip->dev, "Failed to write THRESHOLD_LOW.\n");
return ret;
}
ret = regmap_write(chip->regmap, OPT4060_THRESHOLD_HIGH, opt4060_calc_th_reg(th_hi));
if (ret)
dev_err(chip->dev, "Failed to write THRESHOLD_HIGH.\n");
return ret;
}
static int opt4060_read_event(struct iio_dev *indio_dev,
const struct iio_chan_spec *chan,
enum iio_event_type type,
enum iio_event_direction dir,
enum iio_event_info info,
int *val, int *val2)
{
struct opt4060_chip *chip = iio_priv(indio_dev);
u32 th_lo, th_hi;
int ret;
if (chan->type != IIO_INTENSITY)
return -EINVAL;
if (type != IIO_EV_TYPE_THRESH)
return -EINVAL;
switch (info) {
case IIO_EV_INFO_VALUE:
ret = opt4060_get_thresholds(chip, &th_lo, &th_hi);
if (ret)
return ret;
if (dir == IIO_EV_DIR_FALLING) {
*val = th_lo;
ret = IIO_VAL_INT;
} else if (dir == IIO_EV_DIR_RISING) {
*val = th_hi;
ret = IIO_VAL_INT;
}
return ret;
case IIO_EV_INFO_PERIOD:
return opt4060_read_ev_period(chip, val, val2);
default:
return -EINVAL;
}
}
static int opt4060_write_event(struct iio_dev *indio_dev,
const struct iio_chan_spec *chan,
enum iio_event_type type,
enum iio_event_direction dir,
enum iio_event_info info,
int val, int val2)
{
struct opt4060_chip *chip = iio_priv(indio_dev);
u32 th_lo, th_hi;
int ret;
if (chan->type != IIO_INTENSITY)
return -EINVAL;
if (type != IIO_EV_TYPE_THRESH)
return -EINVAL;
switch (info) {
case IIO_EV_INFO_VALUE:
ret = opt4060_get_thresholds(chip, &th_lo, &th_hi);
if (ret)
return ret;
if (dir == IIO_EV_DIR_FALLING)
th_lo = val;
else if (dir == IIO_EV_DIR_RISING)
th_hi = val;
return opt4060_set_thresholds(chip, th_lo, th_hi);
case IIO_EV_INFO_PERIOD:
return opt4060_write_ev_period(chip, val, val2);
default:
return -EINVAL;
}
}
static int opt4060_read_event_config(struct iio_dev *indio_dev,
const struct iio_chan_spec *chan,
enum iio_event_type type,
enum iio_event_direction dir)
{
int ch_sel, ch_idx = chan->scan_index;
struct opt4060_chip *chip = iio_priv(indio_dev);
int ret;
if (chan->type != IIO_INTENSITY)
return -EINVAL;
if (type != IIO_EV_TYPE_THRESH)
return -EINVAL;
ret = opt4060_get_channel_sel(chip, &ch_sel);
if (ret)
return ret;
if (((dir == IIO_EV_DIR_FALLING) && chip->thresh_event_lo_active) ||
((dir == IIO_EV_DIR_RISING) && chip->thresh_event_hi_active))
return ch_sel == ch_idx;
return ret;
}
static int opt4060_write_event_config(struct iio_dev *indio_dev,
const struct iio_chan_spec *chan,
enum iio_event_type type,
enum iio_event_direction dir, bool state)
{
int ch_sel, ch_idx = chan->scan_index;
struct opt4060_chip *chip = iio_priv(indio_dev);
int ret;
guard(mutex)(&chip->event_enabling_lock);
if (chan->type != IIO_INTENSITY)
return -EINVAL;
if (type != IIO_EV_TYPE_THRESH)
return -EINVAL;
ret = opt4060_get_channel_sel(chip, &ch_sel);
if (ret)
return ret;
if (state) {
/* Only one channel can be active at the same time */
if ((chip->thresh_event_lo_active || chip->thresh_event_hi_active) &&
(ch_idx != ch_sel))
return -EBUSY;
if (dir == IIO_EV_DIR_FALLING)
chip->thresh_event_lo_active = true;
else if (dir == IIO_EV_DIR_RISING)
chip->thresh_event_hi_active = true;
ret = opt4060_set_channel_sel(chip, ch_idx);
if (ret)
return ret;
} else {
if (ch_idx == ch_sel) {
if (dir == IIO_EV_DIR_FALLING)
chip->thresh_event_lo_active = false;
else if (dir == IIO_EV_DIR_RISING)
chip->thresh_event_hi_active = false;
}
}
return opt4060_set_driver_state(indio_dev,
chip->thresh_event_hi_active |
chip->thresh_event_lo_active,
false);
}
static const struct iio_info opt4060_info = {
.read_raw = opt4060_read_raw,
.write_raw = opt4060_write_raw,
.write_raw_get_fmt = opt4060_write_raw_get_fmt,
.read_avail = opt4060_read_available,
.read_event_value = opt4060_read_event,
.write_event_value = opt4060_write_event,
.read_event_config = opt4060_read_event_config,
.write_event_config = opt4060_write_event_config,
};
static const struct iio_info opt4060_info_no_irq = {
.read_raw = opt4060_read_raw,
.write_raw = opt4060_write_raw,
.write_raw_get_fmt = opt4060_write_raw_get_fmt,
.read_avail = opt4060_read_available,
};
static int opt4060_load_defaults(struct opt4060_chip *chip)
{
u16 reg;
int ret;
chip->int_time = OPT4060_DEFAULT_CONVERSION_TIME;
/* Set initial MIN/MAX thresholds */
ret = opt4060_set_thresholds(chip, 0, UINT_MAX);
if (ret)
return ret;
/*
* Setting auto-range, latched window for thresholds, one-shot conversion
* and quick wake-up mode as default.
*/
reg = FIELD_PREP(OPT4060_CTRL_RANGE_MASK,
OPT4060_CTRL_LIGHT_SCALE_AUTO);
reg |= FIELD_PREP(OPT4060_CTRL_CONV_TIME_MASK, chip->int_time);
reg |= FIELD_PREP(OPT4060_CTRL_OPER_MODE_MASK,
OPT4060_CTRL_OPER_MODE_ONE_SHOT);
reg |= OPT4060_CTRL_QWAKE_MASK | OPT4060_CTRL_LATCH_MASK;
ret = regmap_write(chip->regmap, OPT4060_CTRL, reg);
if (ret)
dev_err(chip->dev, "Failed to set configuration\n");
return ret;
}
static bool opt4060_volatile_reg(struct device *dev, unsigned int reg)
{
return reg <= OPT4060_CLEAR_LSB || reg == OPT4060_RES_CTRL;
}
static bool opt4060_writable_reg(struct device *dev, unsigned int reg)
{
return reg >= OPT4060_THRESHOLD_LOW || reg >= OPT4060_INT_CTRL;
}
static bool opt4060_readonly_reg(struct device *dev, unsigned int reg)
{
return reg == OPT4060_DEVICE_ID;
}
static bool opt4060_readable_reg(struct device *dev, unsigned int reg)
{
/* Volatile, writable and read-only registers are readable. */
return opt4060_volatile_reg(dev, reg) || opt4060_writable_reg(dev, reg) ||
opt4060_readonly_reg(dev, reg);
}
static const struct regmap_config opt4060_regmap_config = {
.name = "opt4060",
.reg_bits = 8,
.val_bits = 16,
.cache_type = REGCACHE_MAPLE,
.max_register = OPT4060_DEVICE_ID,
.readable_reg = opt4060_readable_reg,
.writeable_reg = opt4060_writable_reg,
.volatile_reg = opt4060_volatile_reg,
.val_format_endian = REGMAP_ENDIAN_BIG,
};
static const struct iio_trigger_ops opt4060_trigger_ops = {
.set_trigger_state = opt4060_trigger_set_state,
};
static irqreturn_t opt4060_trigger_handler(int irq, void *p)
{
struct iio_poll_func *pf = p;
struct iio_dev *idev = pf->indio_dev;
struct opt4060_chip *chip = iio_priv(idev);
struct {
u32 chan[OPT4060_NUM_CHANS];
aligned_s64 ts;
} raw = { };
int i = 0;
int chan, ret;
/* If the trigger is not from this driver, a new sample is needed.*/
if (iio_trigger_validate_own_device(idev->trig, idev))
opt4060_trigger_new_samples(idev);
iio_for_each_active_channel(idev, chan) {
if (chan == OPT4060_ILLUM)
ret = opt4060_calc_illuminance(chip, &raw.chan[i++]);
else
ret = opt4060_read_raw_value(chip,
idev->channels[chan].address,
&raw.chan[i++]);
if (ret) {
dev_err(chip->dev, "Reading channel data failed\n");
goto err_read;
}
}
iio_push_to_buffers_with_timestamp(idev, &raw, pf->timestamp);
err_read:
iio_trigger_notify_done(idev->trig);
return IRQ_HANDLED;
}
static irqreturn_t opt4060_irq_thread(int irq, void *private)
{
struct iio_dev *idev = private;
struct opt4060_chip *chip = iio_priv(idev);
int ret, dummy;
unsigned int int_res;
ret = regmap_read(chip->regmap, OPT4060_RES_CTRL, &int_res);
if (ret < 0) {
dev_err(chip->dev, "Failed to read interrupt reasons.\n");
return IRQ_NONE;
}
/* Read OPT4060_CTRL to clear interrupt */
ret = regmap_read(chip->regmap, OPT4060_CTRL, &dummy);
if (ret < 0) {
dev_err(chip->dev, "Failed to clear interrupt\n");
return IRQ_NONE;
}
/* Handle events */
if (int_res & (OPT4060_RES_CTRL_FLAG_H | OPT4060_RES_CTRL_FLAG_L)) {
u64 code;
int chan = 0;
ret = opt4060_get_channel_sel(chip, &chan);
if (ret) {
dev_err(chip->dev, "Failed to read threshold channel.\n");
return IRQ_NONE;
}
/* Check if the interrupt is from the lower threshold */
if (int_res & OPT4060_RES_CTRL_FLAG_L) {
code = IIO_MOD_EVENT_CODE(IIO_INTENSITY,
chan,
idev->channels[chan].channel2,
IIO_EV_TYPE_THRESH,
IIO_EV_DIR_FALLING);
iio_push_event(idev, code, iio_get_time_ns(idev));
}
/* Check if the interrupt is from the upper threshold */
if (int_res & OPT4060_RES_CTRL_FLAG_H) {
code = IIO_MOD_EVENT_CODE(IIO_INTENSITY,
chan,
idev->channels[chan].channel2,
IIO_EV_TYPE_THRESH,
IIO_EV_DIR_RISING);
iio_push_event(idev, code, iio_get_time_ns(idev));
}
}
/* Handle conversion ready */
if (int_res & OPT4060_RES_CTRL_CONV_READY) {
/* Signal completion for potentially waiting reads */
complete(&chip->completion);
/* Handle data ready triggers */
if (iio_buffer_enabled(idev))
iio_trigger_poll_nested(chip->trig);
}
return IRQ_HANDLED;
}
static int opt4060_setup_buffer(struct opt4060_chip *chip, struct iio_dev *idev)
{
int ret;
ret = devm_iio_triggered_buffer_setup(chip->dev, idev,
&iio_pollfunc_store_time,
opt4060_trigger_handler, NULL);
if (ret)
return dev_err_probe(chip->dev, ret,
"Buffer setup failed.\n");
return ret;
}
static int opt4060_setup_trigger(struct opt4060_chip *chip, struct iio_dev *idev)
{
struct iio_trigger *data_trigger;
char *name;
int ret;
data_trigger = devm_iio_trigger_alloc(chip->dev, "%s-data-ready-dev%d",
idev->name, iio_device_id(idev));
if (!data_trigger)
return -ENOMEM;
/*
* The data trigger allows for sample capture on each new conversion
* ready interrupt.
*/
chip->trig = data_trigger;
data_trigger->ops = &opt4060_trigger_ops;
iio_trigger_set_drvdata(data_trigger, idev);
ret = devm_iio_trigger_register(chip->dev, data_trigger);
if (ret)
return dev_err_probe(chip->dev, ret,
"Data ready trigger registration failed\n");
name = devm_kasprintf(chip->dev, GFP_KERNEL, "%s-opt4060",
dev_name(chip->dev));
if (!name)
return dev_err_probe(chip->dev, -ENOMEM, "Failed to alloc chip name\n");
ret = devm_request_threaded_irq(chip->dev, chip->irq, NULL, opt4060_irq_thread,
IRQF_TRIGGER_FALLING | IRQF_ONESHOT,
name, idev);
if (ret)
return dev_err_probe(chip->dev, ret, "Could not request IRQ\n");
init_completion(&chip->completion);
ret = devm_mutex_init(chip->dev, &chip->irq_setting_lock);
if (ret)
return ret;
ret = devm_mutex_init(chip->dev, &chip->event_enabling_lock);
if (ret)
return ret;
ret = regmap_write_bits(chip->regmap, OPT4060_INT_CTRL,
OPT4060_INT_CTRL_OUTPUT,
OPT4060_INT_CTRL_OUTPUT);
if (ret)
return dev_err_probe(chip->dev, ret,
"Failed to set interrupt as output\n");
return 0;
}
static int opt4060_probe(struct i2c_client *client)
{
struct device *dev = &client->dev;
struct opt4060_chip *chip;
struct iio_dev *indio_dev;
int ret;
unsigned int regval, dev_id;
indio_dev = devm_iio_device_alloc(dev, sizeof(*chip));
if (!indio_dev)
return -ENOMEM;
chip = iio_priv(indio_dev);
ret = devm_regulator_get_enable(dev, "vdd");
if (ret)
return dev_err_probe(dev, ret, "Failed to enable vdd supply\n");
chip->regmap = devm_regmap_init_i2c(client, &opt4060_regmap_config);
if (IS_ERR(chip->regmap))
return dev_err_probe(dev, PTR_ERR(chip->regmap),
"regmap initialization failed\n");
chip->dev = dev;
chip->irq = client->irq;
ret = regmap_reinit_cache(chip->regmap, &opt4060_regmap_config);
if (ret)
return dev_err_probe(dev, ret,
"failed to reinit regmap cache\n");
ret = regmap_read(chip->regmap, OPT4060_DEVICE_ID, &regval);
if (ret < 0)
return dev_err_probe(dev, ret,
"Failed to read the device ID register\n");
dev_id = FIELD_GET(OPT4060_DEVICE_ID_MASK, regval);
if (dev_id != OPT4060_DEVICE_ID_VAL)
dev_info(dev, "Device ID: %#04x unknown\n", dev_id);
if (chip->irq) {
indio_dev->info = &opt4060_info;
indio_dev->channels = opt4060_channels;
indio_dev->num_channels = ARRAY_SIZE(opt4060_channels);
} else {
indio_dev->info = &opt4060_info_no_irq;
indio_dev->channels = opt4060_channels_no_events;
indio_dev->num_channels = ARRAY_SIZE(opt4060_channels_no_events);
}
indio_dev->modes = INDIO_DIRECT_MODE;
indio_dev->name = "opt4060";
ret = opt4060_load_defaults(chip);
if (ret < 0)
return dev_err_probe(dev, ret,
"Failed to set sensor defaults\n");
ret = devm_add_action_or_reset(dev, opt4060_chip_off_action, chip);
if (ret < 0)
return dev_err_probe(dev, ret,
"Failed to setup power off action\n");
ret = opt4060_setup_buffer(chip, indio_dev);
if (ret)
return ret;
if (chip->irq) {
ret = opt4060_setup_trigger(chip, indio_dev);
if (ret)
return ret;
}
return devm_iio_device_register(dev, indio_dev);
}
static const struct i2c_device_id opt4060_id[] = {
{ "opt4060", },
{ }
};
MODULE_DEVICE_TABLE(i2c, opt4060_id);
static const struct of_device_id opt4060_of_match[] = {
{ .compatible = "ti,opt4060" },
{ }
};
MODULE_DEVICE_TABLE(of, opt4060_of_match);
static struct i2c_driver opt4060_driver = {
.driver = {
.name = "opt4060",
.of_match_table = opt4060_of_match,
},
.probe = opt4060_probe,
.id_table = opt4060_id,
};
module_i2c_driver(opt4060_driver);
MODULE_AUTHOR("Per-Daniel Olsson <perdaniel.olsson@axis.com>");
MODULE_DESCRIPTION("Texas Instruments OPT4060 RGBW color sensor driver");
MODULE_LICENSE("GPL");